Why research informed teaching (RIT) in acoustics education: How can we embed research in acoustics education to improve students' learning?

Conference paper


Aygun, H. (2017). Why research informed teaching (RIT) in acoustics education: How can we embed research in acoustics education to improve students' learning? 24th International Congress on Sound and Vibration. London, UK 23 - 27 Jul 2017 London South Bank University.
AuthorsAygun, H.
TypeConference paper
Abstract

How do acoustic students learn? How can we understand if students learn what we teach them? Should lecturer's objectives be achieving the learning objectives of module whereas students want to pass or get high marks? How can we embed research in acoustics education? Does research improve students' learning? Lecturer roles are to deliver the course material, and to broaden the learners' understanding with a different point of view. Sometimes lecturers need to change the way they teach according to the level of the learners by using different teaching methods and strategies (Ramsden, 2003; Biggs and Tang, 2007; Petty, 2009; Cowan, 2006; and Gravells, and Avis et al, 2009) depending on the level and skills of students, and evaluate them while the lessons progress and change or adopt new strategies if needed to. This paper highlights research on students' learning, and implementation of RIT in acoustic education.

Year2017
Journal24th International Congress on Sound and Vibration, ICSV 2017
PublisherLondon South Bank University
Accepted author manuscript
License
CC BY 4.0
File Access Level
Open
Publication dates
Print23 Jul 2017
Publication process dates
Deposited05 Dec 2017
Accepted01 Jan 2017
Permalink -

https://openresearch.lsbu.ac.uk/item/86y7y

  • 3
    total views
  • 3
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Related outputs

Determining mechanical parameters of the bone using a vibro-acoustic method
Aygun, H (2019). Determining mechanical parameters of the bone using a vibro-acoustic method. Acoustics 2019. Milton Keynes, UK 13 - 14 May 2019
Investigation of acoustical and structural parameters of recycled glass bead composite panels
Aygun, H and McCann, F (2019). Investigation of acoustical and structural parameters of recycled glass bead composite panels. Inter.Noise 2019 - the 48th International Congress and Exhibition on Noise Control Engineering. Madrid, Spain 17 - 21 Jun 2019
Experimental validation of deep-subwavelength by diffsuion by acoustic metadiiffusers
Dance, S., Ballestero, E., Aygun, H., Jimenez, N., Groby, J-P. and Romero-Garcia, V. (2019). Experimental validation of deep-subwavelength by diffsuion by acoustic metadiiffusers. Applied Physics Letters. 115 (8).
A viscoelastic system for determining acoustical and mechanical parameters of the bone
Aygun, H. (2019). A viscoelastic system for determining acoustical and mechanical parameters of the bone. Applied Acoustics. 150, pp. 70-75.
Tracheal Sound Acquisition Using Laser Doppler Vibrometer
Aygun, H. and Apolskis, A (2018). Tracheal Sound Acquisition Using Laser Doppler Vibrometer. ACOUSTICS 2018 - ACWSTEG 2018. City Hall, Cathay's Park, Cardiff 23 - 24 Apr 2018 London South Bank University.
Characterization of Acoustical Properties of Felt and Carpet Made of Natural and Environmentally Friendly Materials
Aygun, H. (2017). Characterization of Acoustical Properties of Felt and Carpet Made of Natural and Environmentally Friendly Materials. Open Journal of Acoustics. 7 (2), pp. 27-38.
Investigation of acoustic performance of compressed wool carpets
Aygun, H. (2016). Investigation of acoustic performance of compressed wool carpets. 23rd International Congress on Sound and Vibration. Athens, Greece 10 - 14 Jul 2016 London South Bank University.
Behaviour of ultrasonic waves in porous rigid materials: an anisotropic Biot-Attenborough model
Aygun, H. and Barlow, C (2015). Behaviour of ultrasonic waves in porous rigid materials: an anisotropic Biot-Attenborough model. Journal of Physics: Conference Series. 581, pp. 1-12.
Ultrasonic wave propagation through porous ceramics at different angles of propagation
Aygun, H. and Barlow, C (2014). Ultrasonic wave propagation through porous ceramics at different angles of propagation. Applied Acoustics. 88 (0), pp. 6-11.
Behaviour of acoustic waves in a duct with Helmholtz resonator in presence of a temperature gradient
Aygun, H. and Rubini, P (2014). Behaviour of acoustic waves in a duct with Helmholtz resonator in presence of a temperature gradient. Institute of Acoustics 40th Anniversary Conference. NEC, Birmingham, UK 15 - 16 Oct 2014 http://toc.proceedings.com/24268webtoc.pdf Proceedings of the Institute of Acoustics Volume 36 Pt.3.
A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone
Aygun, H., Attenborough, K and Postema, M (2014). A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone. Open Access Library Journal. 1 (9), pp. 1-12.