Metadiffusers for quasi-perfect and broadband sound diffusion

Journal article


Ballestero, E., Jiménez, N., Groby, J., Aygun, H., Dance, S. and Romero-García, V. (2021). Metadiffusers for quasi-perfect and broadband sound diffusion. Applied Physics Letters. 119 (4), p. 044101. https://doi.org/10.1063/5.0053413
AuthorsBallestero, E., Jiménez, N., Groby, J., Aygun, H., Dance, S. and Romero-García, V.
Abstract

Sound diffusion refers to the ability of a surface to evenly scatter sound energy in both time and space. However, omnidirectional radiation of sound, or perfect diffusion, can be impractical or difficult to reach under traditional means.
This is due to the considerable size required by, and the lack of tunability, of typical quarter-wavelength scattering
strategies necessary for producing the required complexity of the surface acoustic impedance. As such, it can be a
challenge to design sound diffusing structures that can display near perfect diffusion performance within slim dimensions.
In this work, we propose a method for obtaining quasi-perfect and broadband sound diffusion coefficients using
deep-subwavelength acoustic diffusers, i.e., metadiffusers. The relation between the geometry of the metasurface, the
bandwidth and the diffusion performance is analytically and numerically studied. For moderate bandwidths, around
1/3 of an octave, the method results in nearly perfect sound diffusion, while for a bandwidth of 2.5 octaves a normalized
diffusion coefficient of 0.8 was obtained using panels 1/30th thinner than traditional phase-grating designs. The
ratio between the wavelength and the size of the unit cell was identified as a limitation of the performance. This work
demonstrates the versatility and effectiveness of metadiffusers to generate diffuse reflections outperforming those of classical sound diffusers

KeywordsPhysics and Astronomy (miscellaneous)
Year2021
JournalApplied Physics Letters
Journal citation119 (4), p. 044101
PublisherAIP
ISSN0003-6951
1077-3118
Digital Object Identifier (DOI)https://doi.org/10.1063/5.0053413
Funder/ClientGeneralitat Valenciana
European Cooperation in Science and Technology
The Royal Opera House
United Kingdom Acoustics Network
ANR-RGC METARoom
HYPERMETA
Publication dates
Online26 Jul 2021
Print26 Jul 2021
Publication process dates
Accepted02 Jul 2021
Deposited27 Jul 2021
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File description
Accepted version
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/8x44z

Download files


Publisher's version
5.0053413.pdf
License: CC BY 4.0
File access level: Open

  • 105
    total views
  • 132
    total downloads
  • 1
    views this month
  • 6
    downloads this month

Export as

Related outputs

Computational and theoretical investigation of acoustical and vibrational properties of rigid thin material
Aygun, H. (2024). Computational and theoretical investigation of acoustical and vibrational properties of rigid thin material. Acoustics. 6 (83-96). https://doi.org/10.3390/acoustics6010005
Spatial Fourier transform method to determine reflection and absorption coefficient of porous rigid materials applying Johnson-Champoux-Allard model
Aygun, H. (2023). Spatial Fourier transform method to determine reflection and absorption coefficient of porous rigid materials applying Johnson-Champoux-Allard model. https://www.ioa.org.uk/civicrm/event/info?reset=1&id=750. Winchester UK 16 - 17 Oct 2023 Institute of Acoustics.
Acoustic wave propagation through eco-friendly porous panels at normal incidence
Aygun, H., Gomez-Agustina, L. and Mundula, S. (2023). Acoustic wave propagation through eco-friendly porous panels at normal incidence. Building Acoustics. 30 (4), pp. 359-372. https://doi.org/10.1177/1351010X231202014
Non-Special Loudspeakers as Speech Test Sources in Natural Acoustics Speech Intelligibility Investigations
Gomez-Agustina, L., Aygun, H. and Mohan, L. (2023). Non-Special Loudspeakers as Speech Test Sources in Natural Acoustics Speech Intelligibility Investigations. Acoustics. 5 (3), pp. 619-630. https://doi.org/10.3390/acoustics5030038
Acoustic wave propagation through panels that are made of used tea bags
Mundula, S. and Aygun, H. (2023). Acoustic wave propagation through panels that are made of used tea bags. Inter-Noise 2022. Glasgow 21 - 24 Aug 2022 Institute of Noise Control Engineering (INCE). https://doi.org/10.3397/in_2022_0203
Acoustic and aesthetics: The effect of paint on fabric backed by a sound absorber
Diaz Mena, A.M. and Aygun, H. (2023). Acoustic and aesthetics: The effect of paint on fabric backed by a sound absorber. Inter-Noise 2022. Glasgow 21 - 24 Aug 2022 Institute of Noise Control Engineering (INCE). https://doi.org/10.3397/in_2022_0277
An audio-based vehicle classifier using convolutional neural network
Bakirci, E. and Aygun, H. (2023). An audio-based vehicle classifier using convolutional neural network. Inter-Noise 2022. Glasgow 21 - 24 Aug 2022 Institute of Noise Control Engineering (INCE). https://doi.org/10.3397/in_2022_0766
Experimental acoustic testing of alternative ventilation ducts
Zekic, S., Gomez-Agustina, L., Aygun, H. and Chaer, I. (2023). Experimental acoustic testing of alternative ventilation ducts. Institute of Noise Control Engineering (INCE). https://doi.org/10.3397/in_2022_0390
Vibroacoustic analysis of composite thin fiberglass plate
Aygun, H. (2021). Vibroacoustic analysis of composite thin fiberglass plate. http://www.spacustica.pt/euronoise2021/. Madeire Portugal 25 - 27 Oct 2021
Sound radiation from composite plates
Aygun, H. (2021). Sound radiation from composite plates. Acoustics 2021. Institute of Acoustics, Silbury Court, 406 Silbury Boulevard, Milton Keynes MK9 2AF 11 - 12 Oct 2021 The Institute of Acoustics.
Scattering Evaluation of Equivalent Surface Impedances of Acoustic Metamaterials in Large FDTD Volumes Using RLC Circuit Modelling
Ballestero, E., Hamilton, B., Jiménez, N., Romero-García, V., Groby, J., Aygun, H. and Dance, S. (2021). Scattering Evaluation of Equivalent Surface Impedances of Acoustic Metamaterials in Large FDTD Volumes Using RLC Circuit Modelling. Applied Sciences. 11 (17), p. e8084. https://doi.org/10.3390/app11178084
Scattering of acoustic waves in air and water filled 3D stereo-lithographical (STL) porous rigid materials
Aygun, H (2020). Scattering of acoustic waves in air and water filled 3D stereo-lithographical (STL) porous rigid materials. Inter-Noise 2020, Seoul. Seoul 23 - 26 Aug 2020
Measurement methods of acoustics properties for alternative ventilation ducts
Zekic, S, Gomez-Agustina, L, Aygun, H and Chaer, I (2020). Measurement methods of acoustics properties for alternative ventilation ducts. Inter Noise 2020. Seoul 23 - 26 Aug 2020 International Institute of Noise Control Engineering .
Structural and acoustical performance of recycled glass bead panels
Aygun, H. and McCann, F (2020). Structural and acoustical performance of recycled glass bead panels. Construction and Building Materials. 258, pp. 119581-119581. https://doi.org/10.1016/j.conbuildmat.2020.119581
The quality and reliability of the mechanical stethoscopes and Laser Doppler Vibrometer (LDV) to record tracheal sounds
Aygun, H. and Apolskis, A. (2020). The quality and reliability of the mechanical stethoscopes and Laser Doppler Vibrometer (LDV) to record tracheal sounds. Applied Acoustics. 161, p. 107159. https://doi.org/10.1016/j.apacoust.2019.107159
Experimental validation of deep-subwavelength by diffusion by acoustic metadiffusers
Dance, S., Ballestero, E., Aygun, H., Jimenez, N., Groby, J-P. and Romero-Garcia, V. (2019). Experimental validation of deep-subwavelength by diffusion by acoustic metadiffusers. Applied Physics Letters. 115 (8). https://doi.org/10.1063/1.5114877
A viscoelastic system for determining acoustical and mechanical parameters of the bone
Aygun, H. (2019). A viscoelastic system for determining acoustical and mechanical parameters of the bone. Applied Acoustics. 150, pp. 70-75. https://doi.org/10.1016/j.apacoust.2019.01.034
Determining mechanical parameters of the bone using a vibro-acoustic method
Aygun, H (2019). Determining mechanical parameters of the bone using a vibro-acoustic method. Acoustics 2019. Milton Keynes, UK 13 - 14 May 2019
Investigation of acoustical and structural parameters of recycled glass bead composite panels
Aygun, H and McCann, F (2019). Investigation of acoustical and structural parameters of recycled glass bead composite panels. Inter.Noise 2019 - the 48th International Congress and Exhibition on Noise Control Engineering. Madrid, Spain 17 - 21 Jun 2019
Tracheal Sound Acquisition Using Laser Doppler Vibrometer
Aygun, H. and Apolskis, A (2018). Tracheal Sound Acquisition Using Laser Doppler Vibrometer. ACOUSTICS 2018 - ACWSTEG 2018. City Hall, Cathay's Park, Cardiff 23 - 24 Apr 2018 London South Bank University.
Characterization of Acoustical Properties of Felt and Carpet Made of Natural and Environmentally Friendly Materials
Aygun, H. (2017). Characterization of Acoustical Properties of Felt and Carpet Made of Natural and Environmentally Friendly Materials. Open Journal of Acoustics. 7 (2), pp. 27-38. https://doi.org/10.4236/oja.2017.72004
Why research informed teaching (RIT) in acoustics education: How can we embed research in acoustics education to improve students' learning?
Aygun, H. (2017). Why research informed teaching (RIT) in acoustics education: How can we embed research in acoustics education to improve students' learning? 24th International Congress on Sound and Vibration. London, UK 23 - 27 Jul 2017 London South Bank University.
Investigation of acoustic performance of compressed wool carpets
Aygun, H. (2016). Investigation of acoustic performance of compressed wool carpets. 23rd International Congress on Sound and Vibration. Athens, Greece 10 - 14 Jul 2016 London South Bank University.
Sound propagation through bone tissue
Aygün, H., Barlow, C., Yule, L. and Liu, S.Y. (2015). Sound propagation through bone tissue. ACOUSTICS 2015. Harrogate, UK 15 - 15 Oct 2015 Institute of Acoustics.
Behaviour of ultrasonic waves in porous rigid materials: an anisotropic Biot-Attenborough model
Aygun, H. and Barlow, C (2015). Behaviour of ultrasonic waves in porous rigid materials: an anisotropic Biot-Attenborough model. Journal of Physics: Conference Series. 581, pp. 1-12. https://doi.org/10.1088/1742-6596/581/1/012006
Ultrasonic wave propagation through porous ceramics at different angles of propagation
Aygun, H. and Barlow, C (2014). Ultrasonic wave propagation through porous ceramics at different angles of propagation. Applied Acoustics. 88 (0), pp. 6-11. https://doi.org/10.1016/j.apacoust.2014.07.011
Behaviour of acoustic waves in a duct with Helmholtz resonator in presence of a temperature gradient
Aygun, H. and Rubini, P (2014). Behaviour of acoustic waves in a duct with Helmholtz resonator in presence of a temperature gradient. Institute of Acoustics 40th Anniversary Conference. NEC, Birmingham, UK 15 - 16 Oct 2014 http://toc.proceedings.com/24268webtoc.pdf Proceedings of the Institute of Acoustics Volume 36 Pt.3.
A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone
Aygun, H., Attenborough, K and Postema, M (2014). A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone. Open Access Library Journal. 1 (9), pp. 1-12. https://doi.org/10.4236/oalib.1100994.