A Mechanistic Model on Catalyst Deactivation by Coke Formation in a CSTR Reactor

Journal article


Zhao, D., Muhammad, I, Makwashi, N., Ahmed, T and Manos, G. (2023). A Mechanistic Model on Catalyst Deactivation by Coke Formation in a CSTR Reactor. Processes. 11 (3), pp. 944-962. https://doi.org/10.3390/pr11030944
AuthorsZhao, D., Muhammad, I, Makwashi, N., Ahmed, T and Manos, G.
Abstract

A mechanistic model on catalyst deactivation by coke formation in a continuous stirred tank reactor (CSTR) has been developed in the paper. Catalyst deactivation by coke formation was treated as a surface reaction. Four reaction mechanisms representing coke formation through different routes were proposed. The evolved system of ordinary differential equations (ODEs) was solved numerically using MATLAB. This approach was validated by applying it to the skeletal isomerization of 1-pentene over ferrierite. Simulation results were compared qualitatively to those
obtained from the literature. Simulation results indicated that coke formation is an extremely rapid process with fast formation of coke components on the strongest acid sites leading to final coke. The coke deposition is slower at higher residence times resulting in more stable product formation and weaker deactivation. The results obtained from this work revealed that the developed model is indeed able to successfully demonstrate the most essential features of catalyst deactivation by coke formation and are in agreement with the findings in the literature. Future work is aimed to extend the study to different reactors such as a plug flow reactor, in addition to analysis of the reaction system’s
sensitivity to variables such as temperature and pressure.

Keywordsmechanistic modelling; catalyst deactivation; coke formation; CSTR; catalytic cracking
Year2023
JournalProcesses
Journal citation11 (3), pp. 944-962
PublisherMDPI
ISSN2227-9717
Digital Object Identifier (DOI)https://doi.org/10.3390/pr11030944
Web address (URL)https://www.mdpi.com/journal/processes
Publication dates
Print20 Mar 2023
Publication process dates
Accepted13 Mar 2023
Deposited29 Mar 2023
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/9381x

Download files


Publisher's version
Processes-2269628-accepted clean copy.pdf
License: CC BY 4.0
File access level: Open

  • 52
    total views
  • 39
    total downloads
  • 4
    views this month
  • 3
    downloads this month

Export as

Related outputs

Repetitive Deformation of Ga-Based Liquid Metal in Acidified CuCl2 or FeCl3 Solution
Wang, B., Zhang, Y., Wang, S., Jiang, X, Liu, L. and Zhao, D. Repetitive Deformation of Ga-Based Liquid Metal in Acidified CuCl2 or FeCl3 Solution. Journal of Chemical Education.
From Soybeans to Tofu: The Underlying Chemistry
Wang, B., Wang, Qi, Wang, B., Wang, S., Zhang, Y. and Zhao, D. (2023). From Soybeans to Tofu: The Underlying Chemistry. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.3c00096
Directional motion of Gallium-based liquid metal induced by asymmetric chemical surrounding
Wang, B., Wang, Q., Zhang Y.W, Zhang Y.C., Li Y. and Zhao, D. (2023). Directional motion of Gallium-based liquid metal induced by asymmetric chemical surrounding. Journal of Chemical Education. 100 (8), pp. 3156-3161. https://doi.org/10.1021/acs.jchemed.3c00311
Experimental investigation of liquid viscosity's effect on the flow behaviour and void fraction in a small diameter bubble column: How much do we know?
Abdulkadir, M., Kajero, O., Zhao, D., Al–Sarkhi, A. and Hunt, A. (2021). Experimental investigation of liquid viscosity's effect on the flow behaviour and void fraction in a small diameter bubble column: How much do we know? Journal of Petroleum Science and Engineering. 207, p. 109182. https://doi.org/10.1016/j.petrol.2021.109182
Investigating the Behaviour of Air–Water Upward and Downward Flows: Are You Seeing What I am Seeing?
Zhao, D., Abdulkadir, M., Kajero, O., Olarinoye, F. O., Udebhulu, O. D., Aliyu, A. M. and Al-Sarkhi, A. (2021). Investigating the Behaviour of Air–Water Upward and Downward Flows: Are You Seeing What I am Seeing? Energies. 14 (21), p. 7071. https://doi.org/10.3390/en14217071
Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment
Zhao, D., Makwashi, N., Abdulkadir, M., Ahmed, T. and Muhammad, I. (2021). Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment . Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2021.108734
Experimental investigation of the characteristics of the transition from spherical cap bubble to slug flow in a vertical pipe
Abdulkadir, M., Ugwoke, B., Abdulkareem, L., Zhao, D. and Hernandez-Perez, V. (2021). Experimental investigation of the characteristics of the transition from spherical cap bubble to slug flow in a vertical pipe. Experimental Thermal and Fluid Science. https://doi.org/10.1016/j.expthermflusci.2021.110349
Investigation of Wax Depositional Behaviour in Straight and Curved Pipes – Experiments and Simulation
Makwashi, N. (2020). Investigation of Wax Depositional Behaviour in Straight and Curved Pipes – Experiments and Simulation. PhD Thesis https://doi.org/10.18744/lsbu.8v4yv
Insights into the transition from plug to slug flow in a horizontal pipe: An experimental study
Abdulkadir, M., Zhao, D., Abdulkareem, L.A., Asikolaye, N.O. and Hernandez-Perez, V. (2020). Insights into the transition from plug to slug flow in a horizontal pipe: An experimental study. Chemical Engineering Research and Design. 163, pp. 85-95. https://doi.org/10.1016/j.cherd.2020.08.025
Pressure drop, void fraction and flow pattern of vertical air-silicone oil flows using differential pressure transducer and advanced instrumentation
Zhao, D., Abdulkadir, M, Abdulkareem, LA and Jatto, DG (2020). Pressure drop, void fraction and flow pattern of vertical air-silicone oil flows using differential pressure transducer and advanced instrumentation. Chemical Engineering Research and Design. 159, pp. 262-277. https://doi.org/10.1016/j.cherd.2020.04.009
Depositional Behaviour of Highly Macro-Crystalline Waxy Crude Oil Blended with Polymer Inhibitors in a Pipe with a 45-Degree Bend
Makwashi, Nura, Barros, Delcia Soraia, Sarkodie, Kwame, Zhao, Donglin and Diaz, Pedro A. (2019). Depositional Behaviour of Highly Macro-Crystalline Waxy Crude Oil Blended with Polymer Inhibitors in a Pipe with a 45-Degree Bend. Day 4 Fri, September 06, 2019. https://doi.org/10.2118/195752-ms
Characteristics of churn and annular flows in a large diameter vertical riser
Zhao, D, Abdulkadir, M, Mbalisigwe, UP, Hernandez-Perez, V, Azzopardi, BJ and Tahir, S (2019). Characteristics of churn and annular flows in a large diameter vertical riser. International Journal of Multiphase Flow. 113, pp. 250-263. https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.013
Investigation of the Severity of Wax Deposition in Bend Pipes Under Subcooled Pipelines Conditions
Makwashi, N., Sarkodie, K., Akubo, S., Zhao, D. and Diaz, P. (2019). Investigation of the Severity of Wax Deposition in Bend Pipes Under Subcooled Pipelines Conditions. 81st EAGE Annual Conference & Exhibition. London 04 - 06 Jun 2019 SPE. https://doi.org/10.2118/195559-ms
Annular liquid film thickness prediction in a vertical 180o return bend
Abdulkadir, M, Samson, JN, Zhao, D, Okhiria, DU and Hernandez-Perez, V (2018). Annular liquid film thickness prediction in a vertical 180o return bend. Experimental Thermal and Fluid Science. 96, pp. 205-215. https://doi.org/10.1016/j.expthermflusci.2018.03.006
Characterisation of an analogue liquid for hydrodynamic studies of gas-ionic liquid flows
Zhao, D, Azzopardi, BJ, Agunlejika, E, Kaji, R and Hewakandamby, B (2017). Characterisation of an analogue liquid for hydrodynamic studies of gas-ionic liquid flows. Chemical Engineering Journal. 330, pp. 223-235. https://doi.org/10.1016/j.cej.2017.07.090
The control and maintenance of desired flow patterns in bends of different orientations
Zhao, D, Omar, R., Abdulkadir, M., Abdulkareem, L.A., Azzi, A., Saidj, F., Hernandez Perez, V., Hewakandamby, B.N. and Azzopardi, B.J. (2016). The control and maintenance of desired flow patterns in bends of different orientations. Flow Measurement and Instrumentation. 53 (B), pp. 230-242. https://doi.org/10.1016/j.flowmeasinst.2016.09.003