Characterisation of an analogue liquid for hydrodynamic studies of gas-ionic liquid flows

Journal article


Zhao, D, Azzopardi, BJ, Agunlejika, E, Kaji, R and Hewakandamby, B (2017). Characterisation of an analogue liquid for hydrodynamic studies of gas-ionic liquid flows. Chemical Engineering Journal. 330, pp. 223-235. https://doi.org/10.1016/j.cej.2017.07.090
AuthorsZhao, D, Azzopardi, BJ, Agunlejika, E, Kaji, R and Hewakandamby, B
Abstract

Ionic liquids are liquid salts at low temperatures (normally less than 100°C). They are powerful solvents with very low vapour pressure. They have great potentials in many applications such as gas absorption and chemical synthesis. However, they are expensive. This limits extensive studies towards establishing phenomenological models. To address this limitation, an analogue liquid, with properties similar to an ionic liquid, has been identified which on the grounds of cost and safety appears to be suitable. In this paper, the hydrodynamic behaviour of an ionic liquid in a bubble column is compared with those of water and other liquids with similar physical properties. Average gas holdup, bubble coalescence, bubble size and specific interfacial area with different liquids are examined. Gas hold-up was determined by monitoring the change of conductivity between two flush mounted rings. The differences in bubble size and coalescence are revealed by analysing the stills taken from a high speed video camera. The dominant flow pattern in a small diameter column with ionic liquids or other fluids having similar viscosity is slug flow. The small bubbles in the liquid slugs make a smaller contribution to the specific interfacial area than Taylor bubbles. It is observed that Taylor bubbles can coalesce. The hydrodynamics of an ionic liquid in a bubble column can be estimated from that of a fluid with similar physical properties.

KeywordsBubble columns; Ionic liquids; Viscous liquids; Gas holdup; Bubble size; Flow regimes; 0904 Chemical Engineering; Chemical Engineering
Year2017
JournalChemical Engineering Journal
Journal citation330, pp. 223-235
PublisherElsevier BV
ISSN1385-8947
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cej.2017.07.090
Publication dates
Print15 Dec 2017
Publication process dates
Deposited15 Aug 2017
Accepted14 Jul 2017
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/86w74

Download files


Accepted author manuscript
accepted manuscript-CEJ.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 126
    total views
  • 148
    total downloads
  • 9
    views this month
  • 1
    downloads this month

Export as

Related outputs

Repetitive Deformation of Ga-Based Liquid Metal in Acidified CuCl2 or FeCl3 Solution
Wang, B., Zhang, Y., Wang, S., Jiang, X, Liu, L. and Zhao, D. Repetitive Deformation of Ga-Based Liquid Metal in Acidified CuCl2 or FeCl3 Solution. Journal of Chemical Education.
From Soybeans to Tofu: The Underlying Chemistry
Wang, B., Wang, Qi, Wang, B., Wang, S., Zhang, Y. and Zhao, D. (2023). From Soybeans to Tofu: The Underlying Chemistry. Journal of Chemical Education. https://doi.org/10.1021/acs.jchemed.3c00096
Directional motion of Gallium-based liquid metal induced by asymmetric chemical surrounding
Wang, B., Wang, Q., Zhang Y.W, Zhang Y.C., Li Y. and Zhao, D. (2023). Directional motion of Gallium-based liquid metal induced by asymmetric chemical surrounding. Journal of Chemical Education. 100 (8), pp. 3156-3161. https://doi.org/10.1021/acs.jchemed.3c00311
A Mechanistic Model on Catalyst Deactivation by Coke Formation in a CSTR Reactor
Zhao, D., Muhammad, I, Makwashi, N., Ahmed, T and Manos, G. (2023). A Mechanistic Model on Catalyst Deactivation by Coke Formation in a CSTR Reactor. Processes. 11 (3), pp. 944-962. https://doi.org/10.3390/pr11030944
Experimental investigation of liquid viscosity's effect on the flow behaviour and void fraction in a small diameter bubble column: How much do we know?
Abdulkadir, M., Kajero, O., Zhao, D., Al–Sarkhi, A. and Hunt, A. (2021). Experimental investigation of liquid viscosity's effect on the flow behaviour and void fraction in a small diameter bubble column: How much do we know? Journal of Petroleum Science and Engineering. 207, p. 109182. https://doi.org/10.1016/j.petrol.2021.109182
Investigating the Behaviour of Air–Water Upward and Downward Flows: Are You Seeing What I am Seeing?
Zhao, D., Abdulkadir, M., Kajero, O., Olarinoye, F. O., Udebhulu, O. D., Aliyu, A. M. and Al-Sarkhi, A. (2021). Investigating the Behaviour of Air–Water Upward and Downward Flows: Are You Seeing What I am Seeing? Energies. 14 (21), p. 7071. https://doi.org/10.3390/en14217071
Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment
Zhao, D., Makwashi, N., Abdulkadir, M., Ahmed, T. and Muhammad, I. (2021). Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment . Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2021.108734
Experimental investigation of the characteristics of the transition from spherical cap bubble to slug flow in a vertical pipe
Abdulkadir, M., Ugwoke, B., Abdulkareem, L., Zhao, D. and Hernandez-Perez, V. (2021). Experimental investigation of the characteristics of the transition from spherical cap bubble to slug flow in a vertical pipe. Experimental Thermal and Fluid Science. https://doi.org/10.1016/j.expthermflusci.2021.110349
Insights into the transition from plug to slug flow in a horizontal pipe: An experimental study
Abdulkadir, M., Zhao, D., Abdulkareem, L.A., Asikolaye, N.O. and Hernandez-Perez, V. (2020). Insights into the transition from plug to slug flow in a horizontal pipe: An experimental study. Chemical Engineering Research and Design. 163, pp. 85-95. https://doi.org/10.1016/j.cherd.2020.08.025
Pressure drop, void fraction and flow pattern of vertical air-silicone oil flows using differential pressure transducer and advanced instrumentation
Zhao, D., Abdulkadir, M, Abdulkareem, LA and Jatto, DG (2020). Pressure drop, void fraction and flow pattern of vertical air-silicone oil flows using differential pressure transducer and advanced instrumentation. Chemical Engineering Research and Design. 159, pp. 262-277. https://doi.org/10.1016/j.cherd.2020.04.009
Depositional Behaviour of Highly Macro-Crystalline Waxy Crude Oil Blended with Polymer Inhibitors in a Pipe with a 45-Degree Bend
Makwashi, Nura, Barros, Delcia Soraia, Sarkodie, Kwame, Zhao, Donglin and Diaz, Pedro A. (2019). Depositional Behaviour of Highly Macro-Crystalline Waxy Crude Oil Blended with Polymer Inhibitors in a Pipe with a 45-Degree Bend. Day 4 Fri, September 06, 2019. https://doi.org/10.2118/195752-ms
Characteristics of churn and annular flows in a large diameter vertical riser
Zhao, D, Abdulkadir, M, Mbalisigwe, UP, Hernandez-Perez, V, Azzopardi, BJ and Tahir, S (2019). Characteristics of churn and annular flows in a large diameter vertical riser. International Journal of Multiphase Flow. 113, pp. 250-263. https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.013
Investigation of the Severity of Wax Deposition in Bend Pipes Under Subcooled Pipelines Conditions
Makwashi, N., Sarkodie, K., Akubo, S., Zhao, D. and Diaz, P. (2019). Investigation of the Severity of Wax Deposition in Bend Pipes Under Subcooled Pipelines Conditions. 81st EAGE Annual Conference & Exhibition. London 04 - 06 Jun 2019 SPE. https://doi.org/10.2118/195559-ms
Annular liquid film thickness prediction in a vertical 180o return bend
Abdulkadir, M, Samson, JN, Zhao, D, Okhiria, DU and Hernandez-Perez, V (2018). Annular liquid film thickness prediction in a vertical 180o return bend. Experimental Thermal and Fluid Science. 96, pp. 205-215. https://doi.org/10.1016/j.expthermflusci.2018.03.006
The control and maintenance of desired flow patterns in bends of different orientations
Zhao, D, Omar, R., Abdulkadir, M., Abdulkareem, L.A., Azzi, A., Saidj, F., Hernandez Perez, V., Hewakandamby, B.N. and Azzopardi, B.J. (2016). The control and maintenance of desired flow patterns in bends of different orientations. Flow Measurement and Instrumentation. 53 (B), pp. 230-242. https://doi.org/10.1016/j.flowmeasinst.2016.09.003