Data driven surrogate signal extraction for dynamic PET using selective PCA: time windows versus the combination of components

Journal article


Whitehead, A.C., Dylan Su, K-H, Emond, E., Biguri, A., Brusaferri, L., Machado, M., Porter, J., Garthwaite, H., Wollenweber, S., McClelland, J.R. and Thielemans, K. (2024). Data driven surrogate signal extraction for dynamic PET using selective PCA: time windows versus the combination of components. Physics in Medicine & Biology. https://doi.org/10.1088/1361-6560/ad5ef1
AuthorsWhitehead, A.C., Dylan Su, K-H, Emond, E., Biguri, A., Brusaferri, L., Machado, M., Porter, J., Garthwaite, H., Wollenweber, S., McClelland, J.R. and Thielemans, K.
Abstract

Respiratory motion correction is beneficial in PET, as it can reduce artefacts caused by motion and improve quantitative accuracy. Methods of motion correction are commonly based on a respiratory trace obtained through an external device (like the Real Time Position Management System) or a data driven method, such as those based on dimensionality reduction techniques (for instance PCA). PCA itself being a linear transformation to the axis of greatest variation. Data driven methods have the advantage of being non-invasive, and can be performed post-acquisition. However, their main downside being that they are adversely affected by the tracer kinetics of the dynamic PET acquisition. Therefore, they are mostly limited to static PET acquisitions. This work seeks to extend on existing PCA-based data-driven motion correction methods, to allow for their applicability to dynamic PET imaging. The methods explored in this work include; a moving window approach (similar to the Kinetic Respiratory Gating method from Schleyer et al.), extrapolation of the principal component from later time points to earlier time points, and a method to score, select, and combine multiple respiratory components. The resulting respiratory traces were evaluated on 22 data sets from a dynamic 18FFDG study on patients with Idiopathic Pulmonary Fibrosis. This was achieved by calculating their correlation with a surrogate signal acquired using a Real Time Position Management System. The results indicate that all methods produce better surrogate signals than when applying conventional PCA to dynamic data (for instance, a higher correlation with a gold standard respiratory trace). Extrapolating a late time point principal component produced more promising results than using a moving window. Scoring, selecting, and combining components held benefits over all other methods. This work allows for the extraction of a surrogate signal from dynamic PET data earlier in the acquisition and with a greater accuracy than previous work. This potentially allows for numerous other methods (for instance, respiratory motion correction) to be applied to this data (when they otherwise could not be previously used).

KeywordsPET, Dynamic PET, Surrogate Signal Extraction, PCA, Data Driven Gating
Year2024
JournalPhysics in Medicine & Biology
PublisherIOP Publishing
ISSN1361-6560
Digital Object Identifier (DOI)https://doi.org/10.1088/1361-6560/ad5ef1
Web address (URL)https://iopscience.iop.org/article/10.1088/1361-6560/ad5ef1/meta
Publication dates
Online03 Jul 2024
Publication process dates
Accepted03 Jul 2024
Deposited09 Jul 2024
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/979w3

  • 23
    total views
  • 9
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging
Maccioni, L., Michelle, C.M., Brusaferri, L., Silvestri, E., Bertoldo, A., Schubert, J.J., Nettis, M.A., Mondelli, V., Howes, O., Turkheimer, F.E., Bottlaender, M., Bodini, B., Stankoff, B., Loggia, M.L. and Veronese, M. (2024). A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging. Frontiers in Neuroscience. 18, p. 1395769. https://doi.org/10.3389/fnins.2024.1395769
Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures
VanElzakker, M.B., Bues, H. F., Brusaferri, L., Kim, M., Saadi, D., Ratai, E.M., Dougherty, D.D. and Loggia, M.L. (2024). Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures. Brain, Behavior and Immunity. 119, pp. 713-723. https://doi.org/10.1016/j.bbi.2024.04.015
An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction
Twyman, R., Arridge, S., Kereta, Z., Jin, B., Brusaferri, L., Ahn, S., Stearns, C.W., Hutton, B., Burger, I.A., Kotasidis, F. and Thielemans, K. (2023). An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction. IEEE Transactions on Medical Imaging. pp. 29 - 41. https://doi.org/10.1109/tmi.2022.3203237
Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset
Brusaferri, L., Alshelh, Z., Schnieders, J.H., Sandström, A., Mohammadian, M., Morrissey, E.J., Kim, M., Chane, C.A., Grmek, G.C., Murphy, J.P., Bialobrzewski, J., DiPietro, A., Klinke, J., Zhang, Y., Torrado-Carvajal, A., Mercaldo, N., Akeju, O., Wu, O., Rosen, B.R., Napadow, V., Hadjikhani, N. and Loggia, M.L. (2023). Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset. Brain, Behavior and Immunity. 116, pp. 259-266. https://doi.org/10.1016/j.bbi.2023.12.016
The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic
Brusaferri, L., Alshelh, Z., Martins, D., Kim, M., Weerasekera, A., Housman, H., Morrissey, E.J., Knight, P.C., Castro-Blanco, K.A., Albrecht, D.S., Tseng, C-E., Zürcher, N.R., Ratai, E-M., Akeju, O., Makary, M.M., Catana, C., Mercaldo, N.D., Hadjikhani, N., Veronese, M., Turkheimer, F., Rosen, B.R., Hooker, J.M. and Loggia, M.L. (2022). The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic. Brain, behavior, and immunity. 102, pp. 89-87. https://doi.org/10.1016/j.bbi.2022.02.018
Improved PET/CT Respiratory Motion Compensation by Incorporating Changes in Lung Density
Emond, E.C., Bousse, A., Brusaferri, L., Hutton, B.F. and Thielemans, K. (2020). Improved PET/CT Respiratory Motion Compensation by Incorporating Changes in Lung Density. IEEE Transactions on Radiation and Plasma Medical Sciences. pp. 594 - 602. https://doi.org/10.1109/trpms.2020.3001094
Joint Activity and Attenuation Reconstruction From Multiple Energy Window Data With Photopeak Scatter Re-Estimation in Non-TOF 3-D PET
Brusaferri, L., Bousse, A., Emond, E.C., Brown, R., Tsai, Y-J., Atkinson, D., Ourselin, S., Watson, C.C., Hutton, B.F., Arridge, S. and Thielemans, K. (2020). Joint Activity and Attenuation Reconstruction From Multiple Energy Window Data With Photopeak Scatter Re-Estimation in Non-TOF 3-D PET. IEEE Transactions on Radiation and Plasma Medical Sciences. pp. 410 - 421. https://doi.org/10.1109/trpms.2020.2978449
PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques
Lillington, J., Brusaferri, L., Klaser, K., Shmueli, K., Neji, R., Hutton, B.F., Fraioli, F., Arridge, S., Cardoso, M.J., Ourselin, S., Thielemans, K. and Atkinson, D. (2019). PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques. Medical Physics. 47 (2), pp. 790-811. https://doi.org/10.1002/mp.13943