An investigation into the efficacy of the pulse method of airtightness testing in new build and Passivhaus properties

Journal article


Seddon, H. and Zhong, H. (2023). An investigation into the efficacy of the pulse method of airtightness testing in new build and Passivhaus properties. Energy and Buildings. 295, p. 113270. https://doi.org/10.1016/j.enbuild.2023.113270
AuthorsSeddon, H. and Zhong, H.
Abstract

The latest edition of the UK government’s Approved Document L of the Building Regulations, which came into effect on the 15th of June 2022, for the first time included an alternative method of airtightness testing to the traditional fan pressurisation method (DLUHC & MHCLG, 2021). Unlike the fan pressurisation method, the pulse method operates at low pressures that are thought to be representative of natural infiltration. Despite government approval, responses to the Future Homes Standard consultation revealed that respondents did not have confidence in the method, particularly with very airtight properties, and others were concerned with the comparison between testing methods (MHCLG, 2021). In this paper, experimental investigations were performed involving the pulse method to assess its repeatability and accuracy. The results indicated an average repeatability of 4.96% from the mean for consecutive tests, and the pulse results extrapolated up to 50 Pa all fell within the fan pressurisation’s 10% uncertainty range. In addition, two empirical models were applied to the data set to explore the conversion of air permeabilities between high and low pressures. The data showed strong agreement with the power law model and even stronger correlation with the conversion formula suggested in CIBSE TS23:2022 (Godefroy, 2021).

Year2023
JournalEnergy and Buildings
Journal citation295, p. 113270
PublisherElsevier
ISSN1872-6178
Digital Object Identifier (DOI)https://doi.org/10.1016/j.enbuild.2023.113270
Web address (URL)https://doi.org/10.1016/j.enbuild.2023.113270
Publication dates
Online19 Jun 2023
Publication process dates
Accepted14 Jun 2023
Deposited26 Feb 2024
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/967x6

Download files


Publisher's version
1-s2.0-S0378778823005005-main.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 100
    total views
  • 52
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Theoretical models for predicting ventilation performance of vertical solar chimneys in tunnels
Huang, Y., Wang, B., Luo, C., Shi, L., Lu, N., Dong, B. and Zhong, H. (2024). Theoretical models for predicting ventilation performance of vertical solar chimneys in tunnels. Renewable Energy. 232, p. 121023. https://doi.org/10.1016/j.renene.2024.121023
How to promote carbon emission reduction in buildings? Evolutionary analysis of government regulation and financial investment
Wang, W., Hao, S., Zhong, H. and Sun, Z. (2024). How to promote carbon emission reduction in buildings? Evolutionary analysis of government regulation and financial investment. Journal of Building Engineering. 89, p. 109279. https://doi.org/10.1016/j.jobe.2024.109279
Advancements in smoke control strategies for metro tunnel cross-passage: A theoretical and numerical study on critical velocity and driving force
Su, Z., Li, Y., Zhong, H., Li, J., Guo, Z., Yang, X. and Yang, S. (2024). Advancements in smoke control strategies for metro tunnel cross-passage: A theoretical and numerical study on critical velocity and driving force. Tunnelling and Underground Space Technology. 147, p. 105734. https://doi.org/10.1016/j.tust.2024.105734
An investigation on shell-side thermal–hydraulic performance of helically coiled tube heat exchanger for deep underground space
Wang, Y., Wang, Y., Sun, L., Yang, J. and Zhong, H. (2024). An investigation on shell-side thermal–hydraulic performance of helically coiled tube heat exchanger for deep underground space. Applied Thermal Engineering. 248 Part A, p. 123157. https://doi.org/10.1016/j.applthermaleng.2024.123157
Numerical simulation and optimisation design for ventilation and heat dissipation in high-temperature and high-load indoor substations
Chen, H., Zhang, H., Wu, S., Liu, Y. and Zhong, H. (2024). Numerical simulation and optimisation design for ventilation and heat dissipation in high-temperature and high-load indoor substations. Case Studies in Thermal Engineering. 59, p. 104502. https://doi.org/10.1016/j.csite.2024.104502
Numerical investigation of evaporative cooling strategies on the aero-thermal performance of courtyard buildings in hot-dry climates
Sun, H., Zhong, H., Dik, A., Ding, K., Jimenez-Bescos, C. and Calautit, J.K. (2024). Numerical investigation of evaporative cooling strategies on the aero-thermal performance of courtyard buildings in hot-dry climates. Building and Environment. 258, p. 111588. https://doi.org/10.1016/j.buildenv.2024.111588
Optimizing air inlet designs for enhanced natural ventilation in indoor substations: A numerical modelling and CFD simulation study
Zhang, H., Wang, L., Yang, P., Liu, Y., Zhu, C., Wang, L. and Zhong, H. (2024). Optimizing air inlet designs for enhanced natural ventilation in indoor substations: A numerical modelling and CFD simulation study. Case Studies in Thermal Engineering. 59, p. 104408. https://doi.org/10.1016/j.csite.2024.104408
Numerical simulation for optimising of inlet and outlet positions for mechanical ventilation and heat dissipation: A case study to improve ventilation in an indoor 110kV substation
Zhang, H., Wang, L., Yang, P., Liu, Y., Zhu, C., Wang, L. and Zhong, H. (2024). Numerical simulation for optimising of inlet and outlet positions for mechanical ventilation and heat dissipation: A case study to improve ventilation in an indoor 110kV substation. Thermal Science. https://doi.org/10.2298/tsci240206119z
Prioritising Actions for Improving Classroom Air Quality Based on the Analytic Hierarchy Process: Case Studies in China and the UK
Shu, Z., Yuan, F., Wang, J., Li, B., Shahrestani, M., Essah, E., Awbi, H., Holland, M., Fang, F., Pain, C., Kumar, P., Zhong, H., Short, A., Linden, P. and Yao, R. (2024). Prioritising Actions for Improving Classroom Air Quality Based on the Analytic Hierarchy Process: Case Studies in China and the UK. Indoor Air. 2024, pp. 1-18. https://doi.org/10.1155/2024/5531325
Toward Sustainable Construction: Optimizing Carbon Emission Reduction in the Building Supply Chain through Game-Theoretic Strategies, Government Subsidies, and Cost-Sharing Contract
Wang, W., Hao, S., Zhong, H. and Sun, Z. (2024). Toward Sustainable Construction: Optimizing Carbon Emission Reduction in the Building Supply Chain through Game-Theoretic Strategies, Government Subsidies, and Cost-Sharing Contract. Journal of Construction Engineering and Management. 150 (6). https://doi.org/10.1061/jcemd4.coeng-13279
Investigation of the fire hazard of underground space fire scenarios in urban metro tunnels under natural ventilation: Analysis of the impact of tunnel slope on smoke back-layering length
Su, Z., Li, Y., Zhong, H., Li, J., Yang, S., Du, T. and Huang, Y. (2024). Investigation of the fire hazard of underground space fire scenarios in urban metro tunnels under natural ventilation: Analysis of the impact of tunnel slope on smoke back-layering length. Building Services Engineering Research and Technology. 45 (2), pp. 161-184. https://doi.org/10.1177/01436244231223045
Performance evaluation of solar chimney in tunnel for passive ventilation and smoke exhaustion: A numerical approach
Huang, Y., Wang, B., Shi, L., Zhong, H. and Dong, B. (2024). Performance evaluation of solar chimney in tunnel for passive ventilation and smoke exhaustion: A numerical approach. Applied Thermal Engineering. 238, p. 122227. https://doi.org/10.1016/j.applthermaleng.2023.122227
Conceptualising nature-based solutions: addressing environmental challenges in the city of Amman, Jordan
Lemes de Oliveira, F., Mare’e, S., Khattab, R., Alqatamin, H., Younis, A., Crinion, K., Zhong, H., Kaddour, I.K. and Sharmin, T. (2024). Conceptualising nature-based solutions: addressing environmental challenges in the city of Amman, Jordan. Urban Research & Practice. https://doi.org/10.1080/17535069.2024.2313211
Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems
Xu, D., Li, Y., Du, T., Zhong, H., Huang, Y., Li, L. and Xiangling, D. (2024). Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems. Energy. 287, p. 129570. https://doi.org/10.1016/j.energy.2023.129570
Effect of inclined mainline on smoke backlayering length in a naturally branched tunnel fire
Huang, Y., Liu, X., Dong, B., Zhong, H., Wang, B. and Dong, Q. (2023). Effect of inclined mainline on smoke backlayering length in a naturally branched tunnel fire. Tunnelling and Underground Space Technology. 134, p. 104985. https://doi.org/10.1016/j.tust.2023.104985
The impact of urban morphology on the building energy consumption and solar energy generation potential of university dormitory blocks
Xie, M., Wang, M., Zhong, H., Li, X., Li, B., Mendis, T. and Xu, S. (2023). The impact of urban morphology on the building energy consumption and solar energy generation potential of university dormitory blocks. Sustainable Cities and Society. 96, p. 104644. https://doi.org/10.1016/j.scs.2023.104644
Evaluating the combustion and flame extension characteristics of cable fire in utility tunnels with spontaneous combustion scenarios: An experimental study
Xu, D., Li, Y., Li, J., Zhong, H., Li, J., Tu, D. and Huang, Y. (2023). Evaluating the combustion and flame extension characteristics of cable fire in utility tunnels with spontaneous combustion scenarios: An experimental study. Tunnelling and Underground Space Technology. 140, p. 105244. https://doi.org/10.1016/j.tust.2023.105244
Experimental analysis of the effect of the ramp slopes on the maximum exceedance temperature in a branched tunnel fire
Li, J., Li, Y., Li, J., Zhong, H., Zhao, J. and Xu, D. (2023). Experimental analysis of the effect of the ramp slopes on the maximum exceedance temperature in a branched tunnel fire. Tunnelling and Underground Space Technology. 131, p. 104829. https://doi.org/10.1016/j.tust.2022.104829
Enhancing solar chimney performance in urban tunnels: Investigating the impact factors through experimental and theoretical model analysis
Huang, Y., Liu, X., Shi, L., Dong, B. and Zhong, H. (2023). Enhancing solar chimney performance in urban tunnels: Investigating the impact factors through experimental and theoretical model analysis. Energy. 282, p. 128329. https://doi.org/10.1016/j.energy.2023.128329
Integrating blockchain with building information modelling (BIM): a systematic review based on a sociotechnical system perspective
Yu, J., Zhong, H. and Bolpagni, M. (2023). Integrating blockchain with building information modelling (BIM): a systematic review based on a sociotechnical system perspective. Construction Innovation. 24 (1). https://doi.org/10.1108/ci-04-2023-0082
A study of the critical velocity and the confinement velocity of fire accident in a longitudinally ventilated underground train with different door opening scenarios
Su, J., Li, Y., Feng, S., Zhong, H., Li, J., Liu. W., Chen, C. and Li, J. (2022). A study of the critical velocity and the confinement velocity of fire accident in a longitudinally ventilated underground train with different door opening scenarios. Tunnelling and Underground Space Technology. 131, p. 104776. https://doi.org/10.1016/j.tust.2022.104776
Study on the construction workforce management based on lean construction in the context of COVID-19
Jiang, L., Zhong, H., Chen, J., Cheng, J., Chen, S., Gong, Z., Lun, Z., Zhang, J. and Su, Z. (2022). Study on the construction workforce management based on lean construction in the context of COVID-19. Engineering, Construction and Architectural Management. 30 (8), pp. 3310-3329. https://doi.org/10.1108/ecam-10-2021-0948
Research on the design and application of capillary heat exchangers for heat pumps in coastal areas
Bai, Z., Li, Y., Zhang, J., Fewkes, A. and Zhong, H. (2021). Research on the design and application of capillary heat exchangers for heat pumps in coastal areas. Building Services Engineering Research and Technology. 42 (3), pp. 333-348. https://doi.org/10.1177/01436244211001497