Experimental investigation on environmental control of a 50-person mine refuge chamber

Journal article


Zhang, Z., Jin, T., Wu, H., Day, R., Gao, X., Wang, K. and Mao, R. (2021). Experimental investigation on environmental control of a 50-person mine refuge chamber. Building and Environment. 21, p. 108667. https://doi.org/10.1016/j.buildenv.2021.108667
AuthorsZhang, Z., Jin, T., Wu, H., Day, R., Gao, X., Wang, K. and Mao, R.
Abstract

Air quality and thermal environment of mine refuge chamber (MRC) are very important to determine the physical safety of refugees. Accurately assessing the environmental load and taking reasonable measures are critical to achieve the environmental control goals of MRC. In order to evaluate the metabolic parameters of occupants and the effectiveness of environmental control measures in a MRC, in this research, 50 adult men entered a MRC laboratory for an 8-h test. During the test, the compressed O 2 cylinders and air purification devices were used to ensure the indoor air quality. The possibility of using chemical adsorbents to passively scrub CO 2 and the performance of dehumidification by mine compressed air (MCA) were also investigated by simulation experiments. The results indicated that: (1) The per capita metabolic rates of O 2, CO 2 and heat during the refuge process are 0.34–0.37 L/min, 0.34 L/min and 117–128 W, respectively. (2) When Ca(OH) 2 particles are used as CO 2 adsorbent, the air purification device has both dehumidification and CO 2 scrubbing functions, and three air purification devices could make the CO 2 concentration below 0.8% with the relative humidity below 76%. When Ca(OH) 2 particles are packaged to passively scrub CO 2, the amount of adsorbent may increase significantly. (3) When MCA is used for dehumidification in a MRC, the air volume of 0.15 m 3/min per capita could maintain the relative humidity close to 60%. (4) In the early stage of disaster avoidance, the indoor ambient temperature rises rapidly within 1 h followed by a slight increase.

Year2021
JournalBuilding and Environment
Journal citation21, p. 108667
PublisherElsevier
ISSN0360-1323
Digital Object Identifier (DOI)https://doi.org/10.1016/j.buildenv.2021.108667
Publication dates
Online22 Dec 2021
Publication process dates
Accepted07 Dec 2021
Deposited24 Jan 2024
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/962xq

Download files


Accepted author manuscript
Accepted_Manuscript (2).pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 33
    total views
  • 18
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review
Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R. and Jiang, W. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews. 159, p. 112207. https://doi.org/10.1016/j.rser.2022.112207
Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions
Lv, X., Xie, Y., Zhang, H., Xu, Y., Wu, H., Day, R. and Ren, J. (2021). Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions. Applied Thermal Engineering. 198, p. 117450. https://doi.org/10.1016/j.applthermaleng.2021.117450
A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity
Liang, X., Xie, Y., Day, R., Meng, X. and Wu, H. (2020). A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity. International Journal of Heat and Mass Transfer . 166, p. 120743. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120743
Energy Separation for Ranque-Hilsch Vortex Tube: A short review
Hu, Z., Li, R., Yang, X., Yang, M, Day, R. and Wu, H. (2020). Energy Separation for Ranque-Hilsch Vortex Tube: A short review. Thermal Science and Engineering Progress. 19, p. 100559. https://doi.org/10.1016/j.tsep.2020.100559
Air Quality Control in Mine Refuge Chamber with Ventilation through Pressure Air Pipeline
Zhang, Z., Wu, H., Wang, K., Day, R. and Yuan, Y. (2020). Air Quality Control in Mine Refuge Chamber with Ventilation through Pressure Air Pipeline. Process Safety and Environmental Protection. 135, pp. 46-58. https://doi.org/10.1016/j.psep.2019.12.014
Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension
Liu, S., Xie, Y., Chen, M., Zhu, J., Day, R., Wu, H. and Yu, J. (2020). Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension. Journal of Thermal Analysis and Calorimetry. 145, pp. 185-199. https://doi.org/10.1007/s10973-020-10040-2
Thermal performance of a mine refuge chamber with human body heat sources under ventilation
Zhang, Z., Wu, H., Wang, K., Day, R. and Yuan, Y. (2019). Thermal performance of a mine refuge chamber with human body heat sources under ventilation. Applied Thermal Engineering. 162, p. 114243. https://doi.org/10.1016/j.applthermaleng.2019.114243
Thermal Performance Analysis of an Underground Closed Chamber with Human Body Heat Sources under Natural Convection
Zhang, Z., Day, R., Wang, K., Wu, H. and Yuan, Y. (2018). Thermal Performance Analysis of an Underground Closed Chamber with Human Body Heat Sources under Natural Convection. Applied Thermal Engineering. 145 (145), pp. 453-463. https://doi.org/10.1016/j.applthermaleng.2018.09.068
Powering lights with piezoelectric energy harvesting floors
Puscasu,O., Counsell, N., Herfatmanesh, M., Peace, R., Patsavellas, J. and Day, R. (2018). Powering lights with piezoelectric energy harvesting floors. Energy Technology. 6 (5), pp. 906-916. https://doi.org/10.1002/ente.201700629
Development of an automated smart trap for wheat pathogens
Kaye, R., Johnston, I., Baxter, R., Munro, I., Tracey, M., Day, R. and McCluskey, D. (2017). Development of an automated smart trap for wheat pathogens. Innovation in plant biosecurity 2017. 16 Mar 2017 Fera.
Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems
Abdul Latip, E.N., Coudron, L., McDonnell, M.B., Johnston, I., McCluskey, D., Day, R. and Tracey, M. (2017). Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems. RSC Advances. 78, p. 49633–49648. https://doi.org/10.1039/c7ra10920b
Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens
Baxter, R., Johnston, I., Kaye, R., Munro, I., Tracey, M., Day, R. and McCluskey, D. (2017). Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens. Innovation in plant biosecurity 2017. 16 Mar 2017
Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors
R. Wilkinson, R. Day, K. Hart and Day, R. (2010). Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors. Joint Propulsion Conf & Exhibit. 2010
Design considerations of scheduling systems suitable for PCB manufacturing
Fernandez-Flores, O., Speer, T. and Day, R. (2009). Design considerations of scheduling systems suitable for PCB manufacturing. Engineering and Technology. 58 (157), p. 794.
Business process re-engineering using a customised mapping model: a case study in a SME
L. Zong, R. Day and Day, R. (2007). Business process re-engineering using a customised mapping model: a case study in a SME. 24th International Manufacturing Conference. 2007
Experimental observations of obstructions on floodplains
Liriano,S.L., Marriott, M.J. and Day, R. (2001). Experimental observations of obstructions on floodplains. 29th IAHR World Congress. Beijing 2001