Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension

Journal article


Liu, S., Xie, Y., Chen, M., Zhu, J., Day, R., Wu, H. and Yu, J. (2020). Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension. Journal of Thermal Analysis and Calorimetry. 145, pp. 185-199. https://doi.org/10.1007/s10973-020-10040-2
AuthorsLiu, S., Xie, Y., Chen, M., Zhu, J., Day, R., Wu, H. and Yu, J.
Abstract

Nitrogen used for pressurization in the extinguisher can be partially dissolved in the fire extinguishing agent. Consequently, the evolution of the dissolved nitrogen has a significant effect on the release behavior of the fire extinguishing agent in a rapid process. In this article, a new model was developed to predict the critical pressure of the nitrogen evolution and the release process of the fire extinguishing agent was described in detail. According to the Peng-Robinson (PR) equation of state and van der Waals mixing rule, the effect of the dissolved nitrogen on the surface tension of the fire extinguishant was analyzed by considering surface phase and fugacity coefficient. A method to calculate the surface tension of the liquid agent dissolved with nitrogen was proposed. The results showed that the proposed model can determine the accurate critical pressure of the evolution of the dissolved nitrogen and further evaluated whether nitrogen escapes. At different initial filling pressure, in addition, the release process of the nitrogen-extinguishant such as CF3I, FC218 (C3F8), HFC125 (C2HF5), and Halon1301 (CF3Br) was well predicted by the fluid release model when taking the surface tension and adiabatic index of the mixture into account. Compared with the previously obtained experimental data, the predictions obtained indicated that the present model can adequately describe the liquid and the gas mixture release stage in the release process of the nitrogen-extinguishant.

Year2020
JournalJournal of Thermal Analysis and Calorimetry
Journal citation145, pp. 185-199
PublisherSpringer
ISSN1588-2926
Digital Object Identifier (DOI)https://doi.org/10.1007/s10973-020-10040-2
Publication dates
Online21 Jul 2020
Publication process dates
Deposited24 Jan 2024
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/962qw

Download files

  • 26
    total views
  • 14
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review
Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R. and Jiang, W. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews. 159, p. 112207. https://doi.org/10.1016/j.rser.2022.112207
Experimental investigation on environmental control of a 50-person mine refuge chamber
Zhang, Z., Jin, T., Wu, H., Day, R., Gao, X., Wang, K. and Mao, R. (2021). Experimental investigation on environmental control of a 50-person mine refuge chamber. Building and Environment. 21, p. 108667. https://doi.org/10.1016/j.buildenv.2021.108667
Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions
Lv, X., Xie, Y., Zhang, H., Xu, Y., Wu, H., Day, R. and Ren, J. (2021). Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions. Applied Thermal Engineering. 198, p. 117450. https://doi.org/10.1016/j.applthermaleng.2021.117450
A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity
Liang, X., Xie, Y., Day, R., Meng, X. and Wu, H. (2020). A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity. International Journal of Heat and Mass Transfer . 166, p. 120743. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120743
Energy Separation for Ranque-Hilsch Vortex Tube: A short review
Hu, Z., Li, R., Yang, X., Yang, M, Day, R. and Wu, H. (2020). Energy Separation for Ranque-Hilsch Vortex Tube: A short review. Thermal Science and Engineering Progress. 19, p. 100559. https://doi.org/10.1016/j.tsep.2020.100559
Air Quality Control in Mine Refuge Chamber with Ventilation through Pressure Air Pipeline
Zhang, Z., Wu, H., Wang, K., Day, R. and Yuan, Y. (2020). Air Quality Control in Mine Refuge Chamber with Ventilation through Pressure Air Pipeline. Process Safety and Environmental Protection. 135, pp. 46-58. https://doi.org/10.1016/j.psep.2019.12.014
Thermal performance of a mine refuge chamber with human body heat sources under ventilation
Zhang, Z., Wu, H., Wang, K., Day, R. and Yuan, Y. (2019). Thermal performance of a mine refuge chamber with human body heat sources under ventilation. Applied Thermal Engineering. 162, p. 114243. https://doi.org/10.1016/j.applthermaleng.2019.114243
Thermal Performance Analysis of an Underground Closed Chamber with Human Body Heat Sources under Natural Convection
Zhang, Z., Day, R., Wang, K., Wu, H. and Yuan, Y. (2018). Thermal Performance Analysis of an Underground Closed Chamber with Human Body Heat Sources under Natural Convection. Applied Thermal Engineering. 145 (145), pp. 453-463. https://doi.org/10.1016/j.applthermaleng.2018.09.068
Powering lights with piezoelectric energy harvesting floors
Puscasu,O., Counsell, N., Herfatmanesh, M., Peace, R., Patsavellas, J. and Day, R. (2018). Powering lights with piezoelectric energy harvesting floors. Energy Technology. 6 (5), pp. 906-916. https://doi.org/10.1002/ente.201700629
Development of an automated smart trap for wheat pathogens
Kaye, R., Johnston, I., Baxter, R., Munro, I., Tracey, M., Day, R. and McCluskey, D. (2017). Development of an automated smart trap for wheat pathogens. Innovation in plant biosecurity 2017. 16 Mar 2017 Fera.
Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems
Abdul Latip, E.N., Coudron, L., McDonnell, M.B., Johnston, I., McCluskey, D., Day, R. and Tracey, M. (2017). Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems. RSC Advances. 78, p. 49633–49648. https://doi.org/10.1039/c7ra10920b
Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens
Baxter, R., Johnston, I., Kaye, R., Munro, I., Tracey, M., Day, R. and McCluskey, D. (2017). Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens. Innovation in plant biosecurity 2017. 16 Mar 2017
Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors
R. Wilkinson, R. Day, K. Hart and Day, R. (2010). Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors. Joint Propulsion Conf & Exhibit. 2010
Design considerations of scheduling systems suitable for PCB manufacturing
Fernandez-Flores, O., Speer, T. and Day, R. (2009). Design considerations of scheduling systems suitable for PCB manufacturing. Engineering and Technology. 58 (157), p. 794.
Business process re-engineering using a customised mapping model: a case study in a SME
L. Zong, R. Day and Day, R. (2007). Business process re-engineering using a customised mapping model: a case study in a SME. 24th International Manufacturing Conference. 2007
Experimental observations of obstructions on floodplains
Liriano,S.L., Marriott, M.J. and Day, R. (2001). Experimental observations of obstructions on floodplains. 29th IAHR World Congress. Beijing 2001