Powering lights with piezoelectric energy harvesting floors

Journal article


Puscasu,O., Counsell, N., Herfatmanesh, M., Peace, R., Patsavellas, J. and Day, R. (2018). Powering lights with piezoelectric energy harvesting floors. Energy Technology. 6 (5), pp. 906-916. https://doi.org/10.1002/ente.201700629
AuthorsPuscasu,O., Counsell, N., Herfatmanesh, M., Peace, R., Patsavellas, J. and Day, R.
Abstract

The present work introduces a new technology for converting energy from steps into electricity. It starts with a study of the mechanical energy available from steps in a busy corridor. The subsequent development efforts and devices are presented, with an iterative approach to prototyping. Methods for enhancing the piezoelectric conversion efficiency have been determined as a part of the process and are introduced in the present article. Capitalizing on these findings, we have fabricated energy-harvesting devices for stairs that power embedded emergency lighting. The typical working unit comprises an energy-harvesting stair nosing, a power management circuit, and an embedded light-emitting diode that lights the tread in front of the user with an illuminance corresponding to emergency standards. The stair nosing generates up to 17.7 mJ of useful electrical energy per activation to provide up to 10.6 seconds of light. The corresponding energy density is 0.49 J per meter square and per step, with an 8.5 mm thick active layer.

Year2018
JournalEnergy Technology
Journal citation6 (5), pp. 906-916
PublisherTaylor & Francis
ISSN2194-4296
Digital Object Identifier (DOI)https://doi.org/10.1002/ente.201700629
Publication dates
Online06 May 2018
Publication process dates
Deposited24 Jan 2024
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/962v1

Download files


Accepted author manuscript
  • 12
    total views
  • 1
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review
Zhang, J., Shao, D., Jiang, L., Zhang, G., Wu, H., Day, R. and Jiang, W. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews. 159, p. 112207. https://doi.org/10.1016/j.rser.2022.112207
Experimental investigation on environmental control of a 50-person mine refuge chamber
Zhang, Z., Jin, T., Wu, H., Day, R., Gao, X., Wang, K. and Mao, R. (2021). Experimental investigation on environmental control of a 50-person mine refuge chamber. Building and Environment. 21, p. 108667. https://doi.org/10.1016/j.buildenv.2021.108667
Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions
Lv, X., Xie, Y., Zhang, H., Xu, Y., Wu, H., Day, R. and Ren, J. (2021). Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions. Applied Thermal Engineering. 198, p. 117450. https://doi.org/10.1016/j.applthermaleng.2021.117450
A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity
Liang, X., Xie, Y., Day, R., Meng, X. and Wu, H. (2020). A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity. International Journal of Heat and Mass Transfer . 166, p. 120743. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120743
Energy Separation for Ranque-Hilsch Vortex Tube: A short review
Hu, Z., Li, R., Yang, X., Yang, M, Day, R. and Wu, H. (2020). Energy Separation for Ranque-Hilsch Vortex Tube: A short review. Thermal Science and Engineering Progress. 19, p. 100559. https://doi.org/10.1016/j.tsep.2020.100559
Air Quality Control in Mine Refuge Chamber with Ventilation through Pressure Air Pipeline
Zhang, Z., Wu, H., Wang, K., Day, R. and Yuan, Y. (2020). Air Quality Control in Mine Refuge Chamber with Ventilation through Pressure Air Pipeline. Process Safety and Environmental Protection. 135, pp. 46-58. https://doi.org/10.1016/j.psep.2019.12.014
Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension
Liu, S., Xie, Y., Chen, M., Zhu, J., Day, R., Wu, H. and Yu, J. (2020). Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension. Journal of Thermal Analysis and Calorimetry. 145, pp. 185-199. https://doi.org/10.1007/s10973-020-10040-2
Thermal performance of a mine refuge chamber with human body heat sources under ventilation
Zhang, Z., Wu, H., Wang, K., Day, R. and Yuan, Y. (2019). Thermal performance of a mine refuge chamber with human body heat sources under ventilation. Applied Thermal Engineering. 162, p. 114243. https://doi.org/10.1016/j.applthermaleng.2019.114243
Thermal Performance Analysis of an Underground Closed Chamber with Human Body Heat Sources under Natural Convection
Zhang, Z., Day, R., Wang, K., Wu, H. and Yuan, Y. (2018). Thermal Performance Analysis of an Underground Closed Chamber with Human Body Heat Sources under Natural Convection. Applied Thermal Engineering. 145 (145), pp. 453-463. https://doi.org/10.1016/j.applthermaleng.2018.09.068
Development of an automated smart trap for wheat pathogens
Kaye, R., Johnston, I., Baxter, R., Munro, I., Tracey, M., Day, R. and McCluskey, D. (2017). Development of an automated smart trap for wheat pathogens. Innovation in plant biosecurity 2017. 16 Mar 2017 Fera.
Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems
Abdul Latip, E.N., Coudron, L., McDonnell, M.B., Johnston, I., McCluskey, D., Day, R. and Tracey, M. (2017). Protein droplet actuation on superhydrophobic surfaces: A new approach toward anti-biofouling electrowetting systems. RSC Advances. 78, p. 49633–49648. https://doi.org/10.1039/c7ra10920b
Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens
Baxter, R., Johnston, I., Kaye, R., Munro, I., Tracey, M., Day, R. and McCluskey, D. (2017). Design of a high efficiency cyclone for collection of rare and low concentration airborne pathogens. Innovation in plant biosecurity 2017. 16 Mar 2017
Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors
R. Wilkinson, R. Day, K. Hart and Day, R. (2010). Proof-of-Concept Testing of a Sustained Vortex-Flow Configuration for Hybrid Rocket Motors. Joint Propulsion Conf & Exhibit. 2010
Design considerations of scheduling systems suitable for PCB manufacturing
Fernandez-Flores, O., Speer, T. and Day, R. (2009). Design considerations of scheduling systems suitable for PCB manufacturing. Engineering and Technology. 58 (157), p. 794.
Business process re-engineering using a customised mapping model: a case study in a SME
L. Zong, R. Day and Day, R. (2007). Business process re-engineering using a customised mapping model: a case study in a SME. 24th International Manufacturing Conference. 2007
Experimental observations of obstructions on floodplains
Liriano,S.L., Marriott, M.J. and Day, R. (2001). Experimental observations of obstructions on floodplains. 29th IAHR World Congress. Beijing 2001