Machine learning-driven web-post buckling resistance prediction for high-strength steel beams with elliptically-based web openings

Journal article


Rabi, M, Jweihan, Y, Abarkan, I, Ferreira, F, Shamass, R, Limbachiya, V., Tsavaridis, K and Pinho Santos, L. (2024). Machine learning-driven web-post buckling resistance prediction for high-strength steel beams with elliptically-based web openings. Results in Engineering. 21, p. 101749. https://doi.org/10.1016/j.rineng.2024.101749
AuthorsRabi, M, Jweihan, Y, Abarkan, I, Ferreira, F, Shamass, R, Limbachiya, V., Tsavaridis, K and Pinho Santos, L.
Abstract

The use of periodical elliptically-based web (EBW) openings in high strength steel (HSS) beams has been increasingly popular in recent years mainly because of the high strength-to-weight ratio and the reduction in the floor height as a result of allowing different utility services to pass through the web openings. However, these sections are susceptible to web-post buckling (WPB) failure mode and therefore it is imperative that an accurate design tool is made available for prediction of the web-post buckling capacity. Therefore, the present paper aims to implement the power of various machine learning (ML) methods for prediction of the WPB capacity in HSS beams with (EBW) openings and to assess the performance of existing analytical design model. For this purpose, a numerical model is developed and validated with the aim of conducting a total of 10,764 web-post finite element models, considering S460, S690 and S960 steel grades. This data is employed to train and validate different ML algorithms including Artificial Neural Networks (ANN), Support Vector Machine Regression (SVR) and Gene Expression Programming (GEP). Finally, the paper proposes new design models for WPB resistance prediction. The results are discussed in detail, and they are compared with the numerical models and the existing analytical design method. The proposed design models based on the machine learning predictions are shown to be powerful, reliable and efficient design tools for capacity predictions of the WPB resistance of HSS beams with periodical (EBW) openings.

KeywordsFinite element modellingWeb-post buckling resistanceElliptically-based web openingsHigh strength steel beamsArtificial neural networkGene expression programmingSupport vector machine regression
Year2024
JournalResults in Engineering
Journal citation21, p. 101749
PublisherElsevier
ISSN2590-1230
Digital Object Identifier (DOI)https://doi.org/10.1016/j.rineng.2024.101749
Web address (URL)https://www.sciencedirect.com/science/article/pii/S2590123024000021?via%3Dihub
Publication dates
Print07 Jan 2024
Publication process dates
Accepted01 Jan 2024
Deposited16 Feb 2024
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/96286

Download files


Publisher's version
1-s2.0-S2590123024000021-main.pdf
License: CC BY 4.0
File access level: Open

  • 13
    total views
  • 5
    total downloads
  • 6
    views this month
  • 2
    downloads this month

Export as

Related outputs

Machine learning for optimal design of circular hollow section stainless steel stub columns: A comparative analysis with Eurocode 3 predictions
Abarkan, I, Rabi, M., Ferreira, F., Shamass, R., Limbachiya, V., Jweihan, Y. and Pinho Santos, L. (2024). Machine learning for optimal design of circular hollow section stainless steel stub columns: A comparative analysis with Eurocode 3 predictions. Engineering Applications of Artificial Intelligence. 132 (107952). https://doi.org/10.1016/j.engappai.2024.107952
Web-post buckling resistance calculation of perforated high-strength steel beams with elliptically-based web openings for EC3
Ferreira, F., Shamass, R., Santos, L., Tsavdaridis, K. and Limbachiya, V. (2023). Web-post buckling resistance calculation of perforated high-strength steel beams with elliptically-based web openings for EC3. Structures. https://doi.org/10.1016/j.istruc.2023.05.139
Mechanical and GWP Assessment of Concrete Using Blast Furnace Slag, Silica Fume and Recycled Aggregate
Shamass, R., Rispoli, O., Limbachiya, V. and Kovacs, R. (2023). Mechanical and GWP Assessment of Concrete Using Blast Furnace Slag, Silica Fume and Recycled Aggregate. Case Studies in Construction Materials. 18. https://doi.org/10.1016/j.cscm.2023.e02164
Prediction of the cross-sectional capacity of cold-formed CHS using numerical modelling and machine learning
Musab,R., Ferreira, F., Abarkan, A., Limbachiya, V. and Shamass, R. (2023). Prediction of the cross-sectional capacity of cold-formed CHS using numerical modelling and machine learning. Results in Engineering. 17 (100902). https://doi.org/10.1016/j.rineng.2023.100902
A Numerical Study of Shape Memory Alloy (SMA) Reinforced Beam Subjected to Seismic Loading
Bloy, J., Shamass, R., Limbachiya, V. and El-Desoqi, M. (2022). A Numerical Study of Shape Memory Alloy (SMA) Reinforced Beam Subjected to Seismic Loading. 4th Conference on Sustainability in Civil Engineering (CSCE’22) . Department of Civil Engineering Capital University of Science and Technology, Islamabad Pakistan 31 - 31 Aug 2022
Web-Post Buckling Prediction Resistance of Steel Beams with Elliptically-Based Web Openings using Artificial Neural Networks (ANN)
Shamass, R., Ferreira, F., Limbachiya, V., Pinho Santos, L. and Tsavdaridis, K.D. (2022). Web-Post Buckling Prediction Resistance of Steel Beams with Elliptically-Based Web Openings using Artificial Neural Networks (ANN). Thin-Walled Structures. 180 (109959). https://doi.org/10.1016/j.tws.2022.109959
Mechanical Properties of Bamboo Core Sandwich Panels
Limbachiya, V., Shamass, R. and Perera, J (2022). Mechanical Properties of Bamboo Core Sandwich Panels. 4th Conference on Sustainability in Civil Engineering. Pakistan 31 - 31 Aug 2022
Gradient-based optimisation of rectangular honeycomb core sandwich panels
Luis Santos, Bassam A. Izzuddin, Lorenzo Macorini and Pinho Santos, L. (2022). Gradient-based optimisation of rectangular honeycomb core sandwich panels. Structural and Multidisciplinary Optimization. 65 (242). https://doi.org/10.1007/s00158-022-03341-7
EC3 design of web-post buckling resistance for perforated steel beams with elliptically-based web openings
Ferreira, F., Shamass, R., Pinho Santos, L., Limbachiya, V. and Tsavdaridis, K. (2022). EC3 design of web-post buckling resistance for perforated steel beams with elliptically-based web openings. Thin-Walled Structures. 175, p. 109196. https://doi.org/10.1016/j.tws.2022.109196
Lateral–torsional buckling resistance prediction model for steel cellular beams generated by Artificial Neural Networks (ANN)
Ferreira, F., Shamass, R., Limbachiya, V., Tsavdarisdis, K. and Martins, C. (2021). Lateral–torsional buckling resistance prediction model for steel cellular beams generated by Artificial Neural Networks (ANN). Thin-Walled Structures. 170, p. 108592. https://doi.org/10.1016/j.tws.2021.108592
Predicting the Impact of Chemical and Physical Variability in Binary and Ternary Cementitious Blends
Limbachiya, V. and Shamass, R. (2021). Predicting the Impact of Chemical and Physical Variability in Binary and Ternary Cementitious Blends. 3rd Conference on Sustainability in Civil Engineering (CSCE’21). Capital University of Science & Technology, . Islamabad Expressway, Kahuta Road, Zone-V Islamabad 11 - 11 Aug 2021 Department of Civil Engineering at Capital University of Science and Technology.
Impact of chopped basalt fibres on the mechanical proper- ties of concrete
Shamass, R. and Limbachiya, V. (2021). Impact of chopped basalt fibres on the mechanical proper- ties of concrete. 3rd Conference on Sustainability in Civil Engineering (CSCE’21). Capital University of Science & Technology, . Islamabad Expressway, Kahuta Road, Zone-V Islamabad 11 - 11 Aug 2021 Department of Civil Engineering at Capital University of Science and Technology.
Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams
Limbachiya, V. and Shamass, R. (2021). Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams. Thin-Walled Structures. 161, pp. 107414-107414. https://doi.org/10.1016/j.tws.2020.107414
Experimental Investigation on the Behaviour of Recycled Aggregate Concrete
Kovacs, R, Shamass, R, Limbachiya, V and Datoo, M (2019). Experimental Investigation on the Behaviour of Recycled Aggregate Concrete. 5th International Conference on Sustainable Construction Materials & Technologies. Surrey 14 - 17 Jul 2019
High-fidelity non-linear analysis of metal sandwich panels
Nordas, A.N., Pinho Santos, L., Izzuddin, B. and Macorini, L. (2018). High-fidelity non-linear analysis of metal sandwich panels. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics. 171 (2), pp. 79-96. https://doi.org/10.1680/jencm.18.00022
Mechanical models for local buckling of metal sandwich panels
Pinho Santos, L., Nordas, A.N., Izzuddin, B. and Macorini, L. (2018). Mechanical models for local buckling of metal sandwich panels. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics. 171 (2), pp. 65-78. https://doi.org/10.1680/jencm.18.00021
Improved Seismic Design of Concentrically X-Braced Steel Frames to Eurocode 8
Silva, A., Pinho Santos, L., Pinto Ribeiro, T. and Castro, J.M. (2018). Improved Seismic Design of Concentrically X-Braced Steel Frames to Eurocode 8. Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2018.1528912
The impact of variation in chemical and physical properties of PFA and BPD semi-dry cement paste on strength properties
Limbachiya, V, Ganjian, E and Claisse, P (2015). The impact of variation in chemical and physical properties of PFA and BPD semi-dry cement paste on strength properties. Construction and Building Materials. 96, pp. 248-255. https://doi.org/10.1016/j.conbuildmat.2015.08.002
Strength, durability and leaching properties of concrete paving blocks incorporating GGBS and SF
Limbachiya, V (2016). Strength, durability and leaching properties of concrete paving blocks incorporating GGBS and SF. Construction and Building Materials. 113, pp. 273-279. https://doi.org/10.1016/j.conbuildmat.2016.02.152
The impact of variation in chemical and physical properties of PFA and BPD semi dry cement paste on strength properties
Limbachiya, V (2015). The impact of variation in chemical and physical properties of PFA and BPD semi dry cement paste on strength properties. Construction and Building Materials. 96, pp. 248-255. https://doi.org/10.1016/j.conbuildmat.2015.08.002