Mechanical models for local buckling of metal sandwich panels

Journal article


Pinho Santos, L., Nordas, A.N., Izzuddin, B. and Macorini, L. (2018). Mechanical models for local buckling of metal sandwich panels. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics. 171 (2), pp. 65-78. https://doi.org/10.1680/jencm.18.00021
AuthorsPinho Santos, L., Nordas, A.N., Izzuddin, B. and Macorini, L.
Abstract

Modern design methods for sandwich panels must attempt to maximise the potential of such systems for weight reduction, thus achieving highly optimised structural components. A successful design method for large-scale sandwich panels requires the consideration of every possible failure mode. An accurate prediction of the various failure modes is not only necessary but it should also utilise a simple approach that is suitable for practical application. To fulfil these requirements, a mechanics-based approach is proposed in this paper to assess local buckling phenomena in sandwich panels with metal cores. This approach employs a rotational spring analogy for evaluating the geometric stiffness in plated structures, which is considered with realistic assumed modes for plate buckling leading to accurate predictions of local buckling. In developing this approach for sandwich panels with metal cores, such as rectangular honeycomb cores, due account is taken of the stiffness of adjacent co-planar and orthogonal plates and its influence on local buckling. In this respect, design-oriented models are proposed for core shear buckling, intercellular buckling of the faceplates and buckling of slotted cores under compressive patch loading. Finally, the proposed design-oriented models are verified against detailed non-linear finite-element analysis, highlighting the accuracy of buckling predictions.

Year2018
JournalProceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics
Journal citation171 (2), pp. 65-78
PublisherICE Publishing
ISSN1755-0777
Digital Object Identifier (DOI)https://doi.org/10.1680/jencm.18.00021
Publication dates
PrintNov 2018
Publication process dates
Accepted26 Jul 2018
Deposited13 Nov 2019
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/886w8

Download files


Accepted author manuscript
ICE-UKACM - LSS_ANN_BAI_LM_Revised_v0.docx
License: CC BY-NC 4.0
File access level: Open

  • 79
    total views
  • 54
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

Machine learning for optimal design of circular hollow section stainless steel stub columns: A comparative analysis with Eurocode 3 predictions
Abarkan, I, Rabi, M., Ferreira, F., Shamass, R., Limbachiya, V., Jweihan, Y. and Pinho Santos, L. (2024). Machine learning for optimal design of circular hollow section stainless steel stub columns: A comparative analysis with Eurocode 3 predictions. Engineering Applications of Artificial Intelligence. 132 (107952). https://doi.org/10.1016/j.engappai.2024.107952
Machine learning-driven web-post buckling resistance prediction for high-strength steel beams with elliptically-based web openings
Rabi, M, Jweihan, Y, Abarkan, I, Ferreira, F, Shamass, R, Limbachiya, V., Tsavaridis, K and Pinho Santos, L. (2024). Machine learning-driven web-post buckling resistance prediction for high-strength steel beams with elliptically-based web openings. Results in Engineering. 21, p. 101749. https://doi.org/10.1016/j.rineng.2024.101749
Web-Post Buckling Prediction Resistance of Steel Beams with Elliptically-Based Web Openings using Artificial Neural Networks (ANN)
Shamass, R., Ferreira, F., Limbachiya, V., Pinho Santos, L. and Tsavdaridis, K.D. (2022). Web-Post Buckling Prediction Resistance of Steel Beams with Elliptically-Based Web Openings using Artificial Neural Networks (ANN). Thin-Walled Structures. 180 (109959). https://doi.org/10.1016/j.tws.2022.109959
Gradient-based optimisation of rectangular honeycomb core sandwich panels
Luis Santos, Bassam A. Izzuddin, Lorenzo Macorini and Pinho Santos, L. (2022). Gradient-based optimisation of rectangular honeycomb core sandwich panels. Structural and Multidisciplinary Optimization. 65 (242). https://doi.org/10.1007/s00158-022-03341-7
EC3 design of web-post buckling resistance for perforated steel beams with elliptically-based web openings
Ferreira, F., Shamass, R., Pinho Santos, L., Limbachiya, V. and Tsavdaridis, K. (2022). EC3 design of web-post buckling resistance for perforated steel beams with elliptically-based web openings. Thin-Walled Structures. 175, p. 109196. https://doi.org/10.1016/j.tws.2022.109196
High-fidelity non-linear analysis of metal sandwich panels
Nordas, A.N., Pinho Santos, L., Izzuddin, B. and Macorini, L. (2018). High-fidelity non-linear analysis of metal sandwich panels. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics. 171 (2), pp. 79-96. https://doi.org/10.1680/jencm.18.00022
Improved Seismic Design of Concentrically X-Braced Steel Frames to Eurocode 8
Silva, A., Pinho Santos, L., Pinto Ribeiro, T. and Castro, J.M. (2018). Improved Seismic Design of Concentrically X-Braced Steel Frames to Eurocode 8. Journal of Earthquake Engineering. https://doi.org/10.1080/13632469.2018.1528912