Experimental data on Helically Coiled Oscillating Heat Pipe (HCOHP) design and thermal performance

Journal article


Yeboah, S. K. and Darkwa, J. (2020). Experimental data on Helically Coiled Oscillating Heat Pipe (HCOHP) design and thermal performance. Data in Brief. 33, p. 106505. https://doi.org/10.1016/j.dib.2020.106505
AuthorsYeboah, S. K. and Darkwa, J.
Abstract

Experimental and derived data from three Helically Coiled Oscillating Heat Pipes (HCOHPs) charged with ethanol, methanol and deionized water working fluids respectively are presented. The data was obtained from prototypes of the HCOHPs fabricated out of copper and tested under laboratory conditions. The primary data presented covers the HCOHP aspects, charging of the working fluid and temperature measurements from Omega K-type Thermocouples installed on the evaporators, condensers, adiabatic sections, and on the cylindrical copper vessel integrated with it. The derived data covers the HCOHPs performances and thermal contact resistance experienced during laboratory testing. The data on the aspects and charging of the working fluid provides useful information for the validation of design parameters of other heat pipes. The measured temperature data and the derived performance data can used to validate the performance of heat pipes in other studies and to depict performance profiles in standard text and reference books. The nature of the data presented as a whole would be useful for comparative analysis involving heat pipes and other passive heat transfer devices.

KeywordsDesign Parameters; Experimental Heat Transfer Data; Oscillating Heat Pipe; Thermal Management; Thermal Resistance; Working Fluids
Year2020
JournalData in Brief
Journal citation33, p. 106505
PublisherElsevier
ISSN2352-3409
Digital Object Identifier (DOI)https://doi.org/10.1016/j.dib.2020.106505
Web address (URL)https://www.sciencedirect.com/science/article/pii/S2352340920313871?via%3Dihub
Publication dates
Online05 Nov 2020
Publication process dates
Accepted02 Nov 2020
Deposited23 Mar 2022
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8z856

Download files


Publisher's version
1-s2.0-S2352340920313871-main.pdf
License: CC BY 4.0
File access level: Open

  • 14
    total views
  • 4
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

Dataset on Helically Coiled Oscillating Heat Pipe (HCOHP)
Yeboah, S. Dataset on Helically Coiled Oscillating Heat Pipe (HCOHP). https://doi.org/10.17632/wnf5jwzp3c.3
Investigation of a Thermoelectric Generator with PCM for Harvesting Solar Energy
Guo, Y., Ren, Y., Yan, Y. and Yeboah, S. (2021). Investigation of a Thermoelectric Generator with PCM for Harvesting Solar Energy. The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow, Qingdao, Sep. 23-26, 2021. Qingdao, P. R. China 23 - 26 Sep 2021 MDPI.
Experimental data on water vapour adsorption on silica gel in fully packed and Z-annulus packed beds
Yeboah, S. K. and Darkwa, Jo. (2021). Experimental data on water vapour adsorption on silica gel in fully packed and Z-annulus packed beds. Data in Brief. 34 (106736). https://doi.org/10.1016/j.dib.2021.106736
Simulation Study on the Spreading of Fire-Induced Smoke in Natural-Ventilated Double-Skin Facade Buildings
Shao, J., Yeboah, S. K., Zhu, T. and Li, Y. (2020). Simulation Study on the Spreading of Fire-Induced Smoke in Natural-Ventilated Double-Skin Facade Buildings. 11th International Symposium on Heating, Ventilation and Air Conditioning. Harbin, China 12 - 15 Jul 2019 Springer. https://doi.org/10.1007/978-981-13-9528-4_102
Dataset on Helically Coiled Oscillating Heat Pipe (HCOHP)
Yeboah, S. K. and Darkwa, J. (2020). Dataset on Helically Coiled Oscillating Heat Pipe (HCOHP). Mendeley Data. https://doi.org/http://dx.doi.org/10.17632/wnf5jwzp3c.2
Experimental investigation into the integration of solid desiccant packed beds with oscillating heat pipes for energy efficient isothermal adsorption processes
Yeboah, S. K. and Darkwa, J. (2020). Experimental investigation into the integration of solid desiccant packed beds with oscillating heat pipes for energy efficient isothermal adsorption processes. Thermal Science and Engineering Progress. 21, p. 100791. https://doi.org/10.1016/j.tsep.2020.100791
Thermal performance of a novel helically coiled oscillating heat pipe (HCOHP) for isothermal adsorption. An experimental study
Yeboah, S. and Darkwa, J. (2018). Thermal performance of a novel helically coiled oscillating heat pipe (HCOHP) for isothermal adsorption. An experimental study. International Journal of Thermal Sciences. 128, pp. 49-58. https://doi.org/10.1016/j.ijthermalsci.2018.02.014
Experimental investigations into the adsorption enhancement in packed beds using Z-Annular flow configuration
Yeboah, S. and Darkwa, J. (2018). Experimental investigations into the adsorption enhancement in packed beds using Z-Annular flow configuration. International Journal of Thermal Sciences . 136, pp. 121-134. https://doi.org/10.1016/j.ijthermalsci.2018.10.027
A critical review of thermal enhancement of packed beds for water vapour adsorption
Yeboah, S. and Darkwa, J. (2016). A critical review of thermal enhancement of packed beds for water vapour adsorption. Renewable and Sustainable Energy Reviews. 58, pp. 1500-1520. https://doi.org/10.1016/j.rser.2015.12.134
Investigations into the thermal performance of a helically coiled closed loop oscillating heat pipe
Yeboah, S. and Darkwa, J. (2016). Investigations into the thermal performance of a helically coiled closed loop oscillating heat pipe. AIAA 2016-4794- AIAA Propulsion and Energy 2016 - 14th International Energy Conversion Engineering Conference. Salt Lake City, UT 25 - 27 Jul 2016 American Institute of Aeronautics and Astronautics (AIAA). https://doi.org/10.2514/6.2016-4794
Numerical investigation of the thermal performance of water based closed loop oscillating heat pipe (CLOHP)
Yeboah, S. and Darkwa, J. (2015). Numerical investigation of the thermal performance of water based closed loop oscillating heat pipe (CLOHP). 14th International Conference on Sustainable Energy Technologies. Nottingham, UK 25 - 27 Aug 2015 University of Nottingham & WSSET.
Thermal Enhancement of Solid Desiccant Packed Bed Dehumidifier Under Forced Convection in Subsonic Flow Regime
Yeboah, S. and Darkwa, J. (2014). Thermal Enhancement of Solid Desiccant Packed Bed Dehumidifier Under Forced Convection in Subsonic Flow Regime. AIAA 2014-3658 -Propulsion Energy Forum - 12th International Energy Conversion Engineering Conference. Cleveland, OH 28 - 30 Jul 2014 American Institute of Aeronautics and Astronautics (AIAA). https://doi.org/10.2514/6.2014-3658