Experimental investigation into the integration of solid desiccant packed beds with oscillating heat pipes for energy efficient isothermal adsorption processes

Journal article


Yeboah, S. K. and Darkwa, J. (2020). Experimental investigation into the integration of solid desiccant packed beds with oscillating heat pipes for energy efficient isothermal adsorption processes. Thermal Science and Engineering Progress. 21, p. 100791. https://doi.org/10.1016/j.tsep.2020.100791
AuthorsYeboah, S. K. and Darkwa, J.
Abstract

The heat of adsorption released during physical adsorption of water vapour on solid desiccants increases its surface vapour pressure consequently decreasing its adsorption capacity. In packed beds, this raises the bed temperature subsequently increasing the cooling load and energy required for the regeneration of the solid desiccants. In this study, we experimentally investigated helically coiled oscillating heat pipes (HCOHPs) using ethanol, methanol and deionized water respectively as working fluids integrated with packed beds of varying configurations towards isothermal adsorption. The results show average bed temperature reduction varied with heat output from the bed and the thermal performance of the HCOHPs. The fully packed bed (FPB) integrated with the ethanol HCOHP (EOHP) achieved maximum average bed temperature reduction of 14.0 °C. The annulus packed bed (APB) integrated with the water HCOHP (WOHP) achieved a temperature drop of 10.1 °C. Adsorption peak temperature reductions on the other hand were strongly dependent on HCOHP start-up. Maximum adsorption peak temperature reduction of 20.8 °C in Mass Transfer Zone (MTZ) 1 was attained by the FPB-EOHP integrated system. For the APB, maximum adsorption peak temperature reduction of 13.2 °C in MTZ 3 was recorded for Small APB (SAPB)-Methanol HCOHP (MOHP) integrated system. Adsorption rates in the FPB were influenced by the mal-distribution of flow within the bed and increased slightly on integration with the HCOHPs. Maximum adsorption rates of 1.47 × 10−06 kg/s was achieved by the FPB-EOHP. For the APB, the SAPB-WOHP achieved maximum adsorption rates of 1.21 × 10−05kg/s. The adsorption rates in the Medium APB (MAPB) on the other hand did not appear to be influenced on integration with the HCOHPs. Overall, performances of the integrated systems were found to be influenced partly by the packed bed configuration, the HCOHPs’ performance and the heat transfer resistance between the evaporators and the vessel walls. We recommend further optimization of the system parameters and investigation of its regeneration potential for future practical applications.

KeywordsHeat of adsorption; Packed beds; Heat and mass transfer; Oscillating heat pipes; Thermal management; Thermal performance
Year2020
JournalThermal Science and Engineering Progress
Journal citation21, p. 100791
PublisherElsevier
ISSN2451-9049
Digital Object Identifier (DOI)https://doi.org/10.1016/j.tsep.2020.100791
Web address (URL)https://www.sciencedirect.com/science/article/pii/S2451904920303115?via%3Dihub
Publication dates
Online28 Nov 2020
Publication process dates
Accepted17 Nov 2020
Deposited09 May 2022
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8z855

Download files


Accepted author manuscript
Integrated Packed Bed-HCOHP System - Manuscript -Accepted Draft.docx
License: CC BY-NC-ND 4.0
File access level: Open

  • 3
    total views
  • 2
    total downloads
  • 3
    views this month
  • 2
    downloads this month

Export as

Related outputs

A critical review of thermal enhancement of packed beds for water vapour adsorption
Yeboah, S. and Darkwa, J. (2022). A critical review of thermal enhancement of packed beds for water vapour adsorption. Renewable and Sustainable Energy Reviews. 58, pp. 1500-1520. https://doi.org/10.1016/j.rser.2015.12.134
Experimental data on water vapour adsorption on silica gel in fully packed and Z-annulus packed beds
Yeboah, S. K. and Darkwa, Jo. (2021). Experimental data on water vapour adsorption on silica gel in fully packed and Z-annulus packed beds. Data in Brief. 34 (106736). https://doi.org/10.1016/j.dib.2021.106736
Simulation Study on the Spreading of Fire-Induced Smoke in Natural-Ventilated Double-Skin Facade Buildings
Shao, J., Yeboah, S. K., Zhu, T. and Li, Y. (2020). Simulation Study on the Spreading of Fire-Induced Smoke in Natural-Ventilated Double-Skin Facade Buildings. 11th International Symposium on Heating, Ventilation and Air Conditioning. Harbin, China 12 - 15 Jul 2019 Springer. https://doi.org/10.1007/978-981-13-9528-4_102
Experimental data on Helically Coiled Oscillating Heat Pipe (HCOHP) design and thermal performance
Yeboah, S. K. and Darkwa, J. (2020). Experimental data on Helically Coiled Oscillating Heat Pipe (HCOHP) design and thermal performance. Data in Brief. 33, p. 106505. https://doi.org/10.1016/j.dib.2020.106505
Numerical investigation of the thermal performance of water based closed loop oscillating heat pipe (CLOHP)
Yeboah, S. and Darkwa, J. (2015). Numerical investigation of the thermal performance of water based closed loop oscillating heat pipe (CLOHP). 14th International Conference on Sustainable Energy Technologies. Nottingham, UK 25 - 27 Aug 2015 University of Nottingham & WSSET.