Design Optimisation of CO2 Gas Cooler/Condenser in a Refrigeration System

Journal article


Ge, Y., Tassou, S.A., Santosa, I.D. and Tsamos, K. (2015). Design Optimisation of CO2 Gas Cooler/Condenser in a Refrigeration System. Energy Procedia. 61, pp. 2311-2314. https://doi.org/10.1016/j.egypro.2014.11.1191
AuthorsGe, Y., Tassou, S.A., Santosa, I.D. and Tsamos, K.
Abstract

As a natural working fluid, CO2 has been widely applied in refrigeration and heat pump systems where heat is conventionally rereleased to ambient through external airflow. Owing to extraordinary thermophysical properties, especially its low critical temperature, the CO2 heat release through a high-pressure side heat exchanger will inevitably undergo either supercritical or subcritical processes, depending on ambient air temperatures and head pressure controls. Correspondingly, the heat exchanger will act intermittently as either a gas cooler or condenser within the system during an annual operation. Such evidence should therefore be taken into account for an optimal design of the heat exchanger and head pressure controls in order to significantly enhance the performance of both components and the associated system.

To achieve these targets, two CO2 finned-tube gas coolers/condensers with different structural designs and controls have been purposely built, instrumented and connected with an existing test rig of a CO2 booster refrigeration system. Consequently, the performance of the CO2 gas coolers/condensers with different structure designs, controls and system integration at different operating conditions can be thoroughly investigated through experimentation. In the meantime, models of the finned-tube CO2 gas coolers/condensers have been developed using both the distributed (detailed model) and lumped (simple model) methods. The former is employed to give a detailed prediction of the working fluid temperature profiles, localized heat transfer rates and effects of pipe circuitry arrangements, while the latter is suitable for the simulation and optimisation of system integration with less computation time. Both models have been validated with measurements, and moreover the simple model has been integrated with other component models so as to create a system model. The effects of the CO2 gas cooler/condenser sizes and controls on the system performance can thus be compared and analysed.

Year2015
JournalEnergy Procedia
Journal citation61, pp. 2311-2314
PublisherElsevier
Digital Object Identifier (DOI)https://doi.org/10.1016/j.egypro.2014.11.1191
Publication dates
Print12 Jan 2015
Publication process dates
Deposited15 Sep 2020
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8q9qy

Download files


Publisher's version
1-s2.0-S1876610214030215-main.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 4
    total views
  • 7
    total downloads
  • 3
    views this month
  • 3
    downloads this month

Export as

Related outputs

CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes
Youssef, W., Ge, Y. and Tassou, S.A. (2018). CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes. Energy Conversion and Management. 157, pp. 498-510. https://doi.org/10.1016/j.enconman.2017.12.036
Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles
Ge, Y., Li, L., Luo, X. and Tassou, S.A. (2017). Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles. Applied Energy. 227, pp. 220-230. https://doi.org/10.1016/j.apenergy.2017.07.086
Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production
Youssef, W., Ge, Y. and Tassou (2017). Effects of latent heat storage and controls on stability and performance of a solar assisted heat pump system for domestic hot water production. Solar Energy. 150, pp. 394-407. https://doi.org/10.1016/j.solener.2017.04.065