Foot strike alters ground reaction force and knee load when stepping down during ongoing walking

Journal article


Moudy, S., Tillin, N., Sibley, A. and Strike, S. (2020). Foot strike alters ground reaction force and knee load when stepping down during ongoing walking. Gait and Posture. 76, pp. 327-333. https://doi.org/10.1016/j.gaitpost.2019.12.019
AuthorsMoudy, S., Tillin, N., Sibley, A. and Strike, S.
Abstract

Background: When stepping down from a raised surface, either a toe or heel contact strategy is performed. Increased vertical momentum is likely to be experienced during a step descent, yet the extent to which these descent strategies influence the development of load at the ground and knee has not been examined.
Research Question: Does descent strategy influence ground and knee joint loading? Does the contribution from leading and trailing limb joint mechanics differ between descent strategies?
Methods: Twenty-two healthy male participants (age: 34.0 ± 6.5 years, height: 179 ± 6.3 cm, mass: 83.5 ± 13 kg) walked along a raised platform, stepped down from a 14 cm height utilising either a toe (n = 10) or heel (n = 12) initial contact, and continued walking. Vertical ground reaction forces and knee external adduction and flexor moments were extracted for the duration of the braking phase. Joint work was calculated for the ankle, knee, and hip in both the leading and trailing limbs.
Results: Waveform analysis of the loading features indicated that a toe-contact strategy resulted in significantly reduced loading rates during early braking (1-32% of the braking phase) and significantly increased magnitude in late braking (55-96% of the braking phase). Individuals performing toe landings completed 33% greater overall work (p = 0.091) in the lead limb and utilised the lead limb ankle joint as the main shock absorber (79% of total lead limb work). Concurrently, the trailing limb performed 29% and 21% less work when lowering the centre of mass and propulsion, respectively, compared to a heel landing.
Significance: A toe-contact strategy results in reduced limb and knee joint loading rates through greater utilisation of the lead limb ankle joint. A heel-contact strategy, however, can reduce loading during late braking by utilising the functionality of the trailing limb.

Keywordsgait, joint loading, step descent
Year2020
JournalGait and Posture
Journal citation76, pp. 327-333
PublisherElsevier
Digital Object Identifier (DOI)https://doi.org/10.1016/j.gaitpost.2019.12.019
Publication dates
Online24 Dec 2019
PrintFeb 2020
Publication process dates
Accepted14 Dec 2019
Deposited14 Jan 2020
Accepted author manuscript
Permalink -

https://openresearch.lsbu.ac.uk/item/88wv9

  • 87
    total views
  • 58
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

The Associations between Asymmetries in Quadriceps Strength and Gait in Unilateral Transtibial Amputees
Sibley, A., Strike, S., Moudy, S.C. and Tillin, N.A. (2021). The Associations between Asymmetries in Quadriceps Strength and Gait in Unilateral Transtibial Amputees. Gait and Posture. 90, pp. 267-273. https://doi.org/10.1016/j.gaitpost.2021.08.027
Lead limb loading during a single-step descent in persons with and without a transtibial amputation in the trailing limb
Moudy, S.C., Tillin, N.A., Sibley, A. and Strike, S (2021). Lead limb loading during a single-step descent in persons with and without a transtibial amputation in the trailing limb. Clinical Biomechanics. https://doi.org/10.1016/j.clinbiomech.2021.105279
The Effects of Long-Term Muscle Disuse on Neuromuscular Function in Unilateral Transtibial Amputees
Sibley, A., Strike, S., Moudy, S. and Tillin, N. (2019). The Effects of Long-Term Muscle Disuse on Neuromuscular Function in Unilateral Transtibial Amputees. Experimental Physiology. https://doi.org/10.1113/EP088087
Mechanisms to attenuate load in the intact limb of transtibial amputees when performing a unilateral drop landing
Moudy, SC, Tillin, NA, Sibley, AR and Strike, S (2019). Mechanisms to attenuate load in the intact limb of transtibial amputees when performing a unilateral drop landing. Journal of Applied Biomechanics. 36 (1), pp. 1-9. https://doi.org/10.1123/jab.2019-0087