Cloud-based Autonomic Computing Framework for Securing SCADA Systems

Book chapter


Patel, S., Patel, D. and Nazir, S. (2020). Cloud-based Autonomic Computing Framework for Securing SCADA Systems. in: Chui, K.T., Lytras, M.D., Liu, R.W. and Zhao, M. (ed.) Innovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence IGI Global.
AuthorsPatel, S., Patel, D. and Nazir, S.
EditorsChui, K.T., Lytras, M.D., Liu, R.W. and Zhao, M.
Abstract

This chapter proposes an autonomic computing security framework for protecting cloud-based SCADA systems against cyber threats. Autonomic computing paradigm is based on intelligent computing that can autonomously take actions under given conditions. These technologies have been successfully applied to many problem domains requiring autonomous operations. One such area of national interest is SCADA systems that monitor critical infrastructures such as transportation networks, large manufacturing, business and health facilities, power generation, and distribution networks. The SCADA systems have evolved from isolated systems into a complex, highly connected systems requiring constant availability. The migration of such systems from in-house to cloud infrastructures has gradually gained prominence. The deployments over cloud infrastructures have brought new cyber security threats, challenges and mitigation opportunities. SCADA deployment to cloud makes it imperative to adopt newer architectures and measures that can proactively and autonomously react to an impending threat.

KeywordsAutonomic computing framework; cloud SCADA; cyber security; communications; critical infrastructures; hybrid cloud
Year2020
Book titleInnovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence
PublisherIGI Global
File
License
File Access Level
Open
ISBN978-1799830382
Publication dates
Print03 Jan 2020
Publication process dates
Accepted01 Dec 2019
Deposited09 Jan 2020
Digital Object Identifier (DOI)doi:10.4018/978-1-7998-3038-2
Permalink -

https://openresearch.lsbu.ac.uk/item/88w56

Download files

File
Autonomic computing book chapter.pdf
License: CC BY 4.0
File access level: Open

  • 50
    total views
  • 70
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

Assessing Hyper Parameter Optimization and Speedup for Convolutional Neural Networks
Patel, S, Nazir, S and Patel, D (2020). Assessing Hyper Parameter Optimization and Speedup for Convolutional Neural Networks. International Journal of Artificial Intelligence and Machine Learning (IJAIML). 10 (2), pp. 1-17.
A Critical Analysis Of ‘Creativity’ In Sustainable Production And Design
Empson, T., Chance, S. and Patel, S. (2019). A Critical Analysis Of ‘Creativity’ In Sustainable Production And Design. 21st International Conference on Engineering and Product Design Education . University of Strathclyde, Glasgow 12 - 13 Sep 2019 doi:10.35199/epde2019.4
On Autonomous Systems: From Reflexive, Imperative and Adaptive Intelligence to Autonomous and Cognitive Intelligence
Patel, S., Wang, Y., Plataniotis, K.N., Kwong, S., Leung, H., Yanushkevich, S., Karray, F., Hou, M., Howard, N., Fiorini, R.A., Soda, P. and Tunstel, E. (2019). On Autonomous Systems: From Reflexive, Imperative and Adaptive Intelligence to Autonomous and Cognitive Intelligence. IEEE International Conference on Cognitive Informatics & Cognitive Computing 2019. Milan, Italy 23 - 25 Jul 2019 Institute of Electrical and Electronics Engineers (IEEE).
Formal Ontology Generation by Deep Machine Learning
Wang, Y, Valipour, M, Zatarain, O, Gavrilova, M, Hussain, A, Howard, N and Patel, S. (2018). Formal Ontology Generation by Deep Machine Learning. Cognitive Informatics & Cognitive Computing (ICCI*CC), 2017 IEEE 16th International Conference on. Oxford 26 - 28 Jul 2017 Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCI-CC.2017.8109723
Hyper Parameters Selection for Image Classification in Convolutional Neural Networks
Patel, S. (2018). Hyper Parameters Selection for Image Classification in Convolutional Neural Networks. IEEE International Conference on Cognitive Informatics & Cognitive Computing 2018. Berkeley, Califormia, USA 15 - 18 Jul 2018 IEEE.
A Survey and Analysis on Sequence Learning Methodologies and Deep Neural Networks
Patel, S., Wang, Y, Zatarain, O, Graves, D, Gavrilova, M and Howard, N (2018). A Survey and Analysis on Sequence Learning Methodologies and Deep Neural Networks. IEEE International Conferenece on Cognitive Informatics & Cognitive Computing. Berkeley, California, USA 16 - 18 Jul 2018 IEEE.
Towards a Business Model Framework to Increase Collaboration in the Freight Industry
Vargas, A, Patel, S. and Patel, D. (2018). Towards a Business Model Framework to Increase Collaboration in the Freight Industry. Logistics. 2 (4), p. 22.
Abstract intelligence: Embodying and enabling cognitive systems by mathematical engineering
Patel, S. (2017). Abstract intelligence: Embodying and enabling cognitive systems by mathematical engineering. International Journal of Cognitive Informatics and Natural Intelligence. 11 (1), pp. 1-15.
Assessing and Augmenting SCADA Cyber Security-A Survey of Techniques
Patel, S., Nazir, S and Patel, D. (2017). Assessing and Augmenting SCADA Cyber Security-A Survey of Techniques. Computers & Security. 70, pp. 436-454.
Autonomic Computing Architecture for SCADA Cyber Security
Patel, S., Nazir, S and Patel, D. (2017). Autonomic Computing Architecture for SCADA Cyber Security. International Journal of Cognitive Informatics and Natural Intelligence. 11 (4).
Stimulating intellectual activity with adaptive environment (SMILE)
Gusev, M, Patel, S. and Tasic, J (2017). Stimulating intellectual activity with adaptive environment (SMILE). The 8th Balkan Conference in Informatics. Skopje, Macedonia 20 - 23 Sep 2017 London South Bank University. doi:10.1145/3136273.3136283
Autonomic computing meets SCADA security
Nazir, S, Patel, S. and Patel, D. (2017). Autonomic computing meets SCADA security. 16th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2017. Oxford London South Bank University. pp. 498-502 doi:10.1109/ICCI-CC.2017.8109795
Quantum information processes in protein microtubules of brain neurons
Enaki, NA, Koroli, V, Bazgan, S, Nistreanu, A, Palistrant, S, Bogoev, D, Turcan, M, Pislari, T, Boshneaga, Y, Lambropoulos, N, Patel, S., Khrennikov, A, Marinucci, M, Kwok, SC, Pannese, L, Arniani, M, Torrenti, R, Maslobrod, S, Scherbakov, V, Kuznetsov, E, Moldovanu, I, Misic, O, Odobescu, S, Lupusor, A, Cernei, A, Vovc, V, Arnaut, O, Ciobanu, N, Tuzlucov, P, Kernbach, S, Sorli, A and Anisimov, V (2016). Quantum information processes in protein microtubules of brain neurons. IFMBE Proceedings. 55, pp. 245-249.
Inter-enterprise architecture as a tool to empower decision-making in hierarchical collaborative production planning
Vargas, A, Boza, A, Patel, S., Patel, D., Cuenca, L and Ortiz, A (2016). Inter-enterprise architecture as a tool to empower decision-making in hierarchical collaborative production planning. Data and Knowledge Engineering. 105, pp. 5-22.
Risk Management in hierarchical production planning using inter-enterprise architecture
Vargas, A, Boza, A, Patel, S., Patel, D., Cuenca, L and Ortiz, A (2015). Risk Management in hierarchical production planning using inter-enterprise architecture. 16th IFIP Working Conference on Virtual Enterprise (PRO-VE 15). Albi, France 05 - 07 Oct 2015 London South Bank University.