
Cloud-based Autonomic Computing Framework 

for Securing SCADA Systems  
 

Sajid Nazir 

Glasgow Caledonian University, UK 

 

Shushma Patel 

London South Bank University, UK 

 

Dilip Patel 

London South Bank University, UK

ABSTRACT 

This chapter proposes an autonomic computing security framework for protecting cloud-based SCADA 

systems against cyber threats. Autonomic computing paradigm is based on intelligent computing that 

can autonomously take actions under given conditions. These technologies have been successfully 

applied to many problem domains requiring autonomous operations. One such area of national interest 

is SCADA systems that monitor critical infrastructures such as transportation networks, large 

manufacturing, business and health facilities, power generation, and distribution networks. The SCADA 

systems have evolved from isolated systems into a complex, highly connected systems requiring constant 

availability. The migration of such systems from in-house to cloud infrastructures has gradually gained 

prominence. The deployments over cloud infrastructures have brought new cyber security threats, 

challenges and mitigation opportunities. SCADA deployment to cloud makes it imperative to adopt 

newer architectures and measures that can proactively and autonomously react to an impending threat.  
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INTRODUCTION 

Supervisory Control and Data Acquisition (SCADA) systems are used to monitor and control complex 

infrastructures of national importance such as transportation networks, power generation and 

manufacturing plants. SCADA systems can be visualised as a layered architecture, as shown in Figure 1. 

The field devices (sensors, etc.) at the lowest layer interact with the physical processes. At layer 2, the 

Programmable Logic Controllers (PLC), and Remote Terminal Units (RTUs) aggregate data values from 

the lower layer and communicate the commands and their responses through the communications network 

to the SCADA server and Human Machine Interface (HMI). The generation of commands at the top layer 

and collection of responses from the lowest layer results in the monitoring and control of the process. The 

applicability of SCADA systems has become widespread due to industrial automation, cost reduction and 

growth in global economies (Nazir et al., 2017a). 

 Traditionally, SCADA systems were developed as closed systems with security being the overriding 

factor, and no Internet connectivity. Isolation and obscurity as a mechanism for protection is no longer an 

option for critical infrastructures (Mahoney and Gandhi, 2011) because in order to leverage efficiency and 

gain a competitive advantage, the systems are increasingly becoming connected to the Internet and cloud 

technologies. SCADA system security vulnerabilities were first highlighted by the Stuxnet attack 

(Karnouskos, 2011). Subsequently, there has been an increase in the frequency and sophistication, of the 

attacks as evidenced by Constantin (2014). 

 



 

Fig. 1. Layered Architecture of a SCADA system. 

 

The SCADA systems deployment to cloud can be configured in many ways, to suit the application. The 

SCADA application could be split over a hybrid cloud especially where the nature of the application 

dictates physical control over critical records such as in medical or finance applications. Also, it may be 

possible to deploy the complete application to the public cloud but a more likely cloud based deployment 

is where the sensors and control devices send the data over to the cloud, which can then be interpreted in 

real time (Larry, 2011). The HMI (Human Machine Interface) could be made available over the cloud for 

both the operator control and visualisation of the data and reporting. SCADA systems deployed on a cloud 

infrastructure could use the cloud providers’ software and integrated tools for data analytics, reporting, 

dashboards and user interface. There are endless possibilities of integrating SCADA systems with cloud 

infrastructure and software (Sam IT Solutions) that can provide many benefits compared to a system hosted 

on a private cloud.  The SCADA system can thus be accessible from anywhere in the world. However, 

such cloud deployments add many levels of complexities. 

 SCADA systems are getting more complex and it is difficult to develop effective defence strategies, as 

there is a lack of understanding of the complex interactions between the many system entities (Khadraoui 

and Feltus, 2015). The systems complexity and interactions go beyond the capability of system developers 

and integrators as a result of interconnectivity (Kephart and Chess, 2003). Thus, increasingly there is a 

lack of understanding of the whole system, which makes it very difficult to tune a system and to make 

decisions in case of changing requirements. This has led to a realization that conventional and inflexible 

security techniques will not help. What is needed is a new way of looking at the problem of cyber security 

that is robust, manageable and self-realising with a minimum requirement for a human operator to monitor 

systems to make intelligent decisions. 

 The complexity of developing and managing computing systems has become an important challenge 

facing the IT industry. The term ‘Autonomic Computing’ was first used by IBM in 2001 to combat the 

looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human 

biological autonomic nervous system. It relates to intelligent computing platforms that are based on the 

disciplines of artificial intelligence, machine learning, and other innovative technologies. These 

technologies can be used to design systems that mimic the human brain to learn about their environment 

and can autonomously predict an impending anomalous situation. An autonomic system is self-healing, 

self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should 

be able to protect itself against both malicious attacks and unintended mistakes by the operator. What is 



proposed is an entirely new way of thinking about the problem where the system itself is intelligent and 

helps to maintain and extend its behaviour, with the use of autonomic computing (Kephart and Chess, 

2003). Mallouhi (2011) describes a testbed for SCADA system security through autonomic software 

protection system using different attack scenarios. 

The basic principles of autonomic computing are highly relevant for the protection of the increasingly 

complex cloud based SCADA systems because: (i) the boundaries between physical and virtual systems 

have been blurred through virtualisation. It is possible to host a cluster of machines in a virtual 

environment; (ii) even with hardware there are sufficient advances in other domains with self-healing 

materials; (iii) advances in machine learning, artificial intelligence and the knowledge base need to be 

capitalised for protection; (iv) the systems are highly interconnected and the distributed nature of the 

systems pose an exponential complexity. 

Autonomic computing applications have been developed for use within complex SCADA systems. 

Greer and Rodriguez-Martinez (2012) and Amgai et al., (2014) have discussed the application of 

autonomic computing for smart grids, as a solution to manage system complexities. Key components of a 

self-protecting SCADA system have been proposed and a survey of techniques provided for the realisation 

of such systems (Chen and Abdelwahed, 2014). Also, there are a number of dedicated research groups 

focusing research on the applicability of autonomic computing to cyber security (Autonomic Computing 

Lab; Cloud and Autonomic Computing Centre; Fortes et al., 2014). JADE (JADE) provides a framework 

for building autonomic management systems.  A test bed was developed for modelling critical 

infrastructures for testing autonomic technologies (Autonomic Computing Lab; Cox, 2011).  

We propose to apply the autonomic computing paradigm features to SCADA system security, in 

particular focussing on self-protecting cloud based SCADA systems. This chapter incorporates autonomic 

computing paradigm elements to cloud based SCADA systems to safeguard against the emerging cyber 

security challenges and threats facing cloud based SCADA applications.  

 

 

Fig. 2. Multiple pathways and Internet Connectivity to a Production System. 

 

  



2. CLOUD BASED SCADA SYSTEMS   

2.1 Vulnerabilities and Threat Landscape of SCADA Systems 

 SCADA systems were developed to be used as stand-alone systems, which by their very nature made 

it difficult for an outside attacker to exploit the system. However, the many benefits associated with 

interconnecting the system to the Internet have transformed the SCADA systems into a highly 

interconnected system accessible over the Internet (Fig 2) (Taveras, 2013; Nazir et al., 2017a), resulting 

in an increased exposure to threats. The system interactions are complex, opening new threat entry points 

as there are many third party libraries and hardware assembled with components from around the world, 

with exploitable threats such as backdoors, often unknown to the SCADA system vendor. 

The systems developers design customized solutions to address a particular problem. The systems are 

fairly long term deployments because the controlled processes have large financial and industrial outlays. 

The criticality of maintaining the process means that the systems remain in continuous operation and have 

a range of redundancies incorporated to protect stalling the system for foreseeable problems. 

SCADA communications protocols such as Modbus, Distributed Network Protocol (DNP), IEC 870-5 

and T103 are described by the GE Communications Protocol. Most SCADA communications protocols 

have no encryption as they were designed when the SCADA systems existed only as stand-alone systems, 

rendering protocol authentication unnecessary. The Modbus protocol is one of the most common protocols 

for SCADA systems, which operate on simple request-response messaging (Al Baalbaki et al., 2013). The 

diversity of the protocols and their inoperability also creates obstacles to design secure communications 

(Sheldon et al., 2004). There are many publicly available tools that can capture network traffic wirelessly. 

Also the wireless devices that feed data to the SCADA system provide easy entry points for the intruder 

into the system because the end devices do not have adequate protection, due to very low power 

requirements. 

SCADA application vendors design their software to be hosted on generic operating systems such as 

Windows and Linux variants for widespread deployments. However, this exposes SCADA applications to 

the same vulnerabilities as that of the operating system.  The long operational lifetime of SCADA 

software means that the host operating system may be beyond technical support. Additional features being 

added to SCADA systems add further complexity and the systems become difficult to develop and 

maintain. Thus it becomes difficult to understand and restore systems to their operational state from a 

compromised state resulting from a cyber attack.  

Cyber attack paradigms have progressed much beyond the traditional attack methodologies such as 

man-in-the-middle (MITM) and Denial of Service (DoS) attacks (Chen and Abdelwahed, 2014), and have 

become  sophisticated  to avoid detection. The traditional defence approaches are unable to cope with the 

latest attack methodologies, where for example, the system parameters are altered, and are individually 

legitimate, but on the whole result in system collapse. Correct operation of the system needs not only the 

correct commands but commands that are consistent with the prevailing state of the system. It is possible 

for an attacker to inject a valid sequence of commands that gradually take the system to an unstable 

condition. The systems also operate under very tight timing constraints and can have undesired 

consequences in case of timing violation. Even the smallest intrusions on the critical infrastructure controls, 

can result in malfunctions which have devastating ripple effects on the system as a whole. The system is 

susceptible to attacks with minor effects, which can alter the system behaviour in a negative manner, 

leading to a ripple effect that compromises the whole system. The SCADA system entities are generally 

spread over a large geographical area, thus necessitating synchronisation of information at each location. 

 The threat landscape is rapidly evolving (Khadraoui and Feltus, 2015) and has gained momentum 

because SCADA systems are now accessible over the Internet, and are no longer protected by obscurity as 

the communications protocols and characteristics are available to interested parties. Currently, both the 

state and non-state agents are trying to exploit the system’s vulnerabilities. Cox (2011) discusses threat 

ontologies in detail. 



In contrast to the attacks launched from outside, threats can also emanate from an innocent or deliberate 

mistake from an insider. Such attacks could cause more harm as they could be launched with some 

understanding about the systems operations.  

Cloud infrastructure for data storage, management and processing is becoming popular and being 

adopted by an increasing number of organizations, however cyber security is still a predominant concern 

(Villalobos, 2014). One of the main issues for hosting SCADA in the cloud are the security concerns that 

arise due to resource sharing, communications over public networks, and maintaining data outside the 

organisation’s control (Shahzad et al., 2013). The benefits of utilizing cloud resources for 

telecommunications applications and role of communications between the distributed data centres are 

described in (Vasilenko, 2016). This is important because data security is a major concern for cloud 

applications and is addressed by autonomic computing data monitoring security systems that monitor the 

data changes for potential threats (Zhang, 2018). 

 2.2 Threats and Vulnerabilities of Cloud based Systems 

 

2.2.1 Closed network open to public 

The major threat is that the data and applications deployed to the cloud are accessed over the Internet. 

Thus the closed network protection as in the case of an on-site fully controlled network is no longer 

available. Therefore the advantage of access from anywhere in the world also makes it susceptible to 

attacks from malicious users, such as distributed denial of service (DDoS) attack. 

 

2.2.2 Shared Infrastructure 

The cloud vendors do not provide any guarantees that hardware infrastructure would not be shared with 

other businesses. Thus whether the sharing companies or users can be trusted becomes an issue to be 

considered, as there might be competitors sharing the same physical server. The sharing of resources can 

result in many controversies for critical and real-time applications (Ahn and Cheng, 2013). This problem 

can be addressed by having a virtual private cloud. A virtual cloud is housed on a public cloud but it is 

fully segregated and, the company placing its data and applications on the virtual cloud is the only entity 

that has access to all the resources of the virtual cloud to itself.  

 

2.2.3 Communications links  

The communication links connecting a business to the cloud provider network are over the public cloud. 

This exposes the link to cyber attacks. Such issues can be resolved by having a virtual private network 

(VPN) to connect to the cloud infrastructure and use of encryption. 

 

2.2.4 Virtual Machines 

The virtual machines provided by the cloud vendor need to be fully protected and this could be the 

responsibility of the developer depending on the deployment model, if it is the infrastructure-as-a-service 

(IaaS). 

 

2.2.5 Cloud Infrastructure unavailability 

Another threat could be the cloud infrastructure going down and remaining unavailable for an extended 

period. Such an eventuality could have disastrous consequences for a business utilising any service and 

especially for SCADA applications. This would be more relevant where the regulations require holding 

the data in a particular region or data centre. 

 

2.2.6 Insider Attack 

The employees of the cloud provider have full access to the data and espionage or subversion for gains 

with a malicious intent cannot be ruled out. This also could be a result of an innocent mistake resulting in 

loss of access to the SCADA resources. 

 

 

 



2.3  Key Benefits of Cloud Based Systems 

 

 Cloud infrastructures provide many benefits and savings to the businesses including:  

 Cost reduction 

 Availability 

 Internet or browser access 

 Elasticity and Scalability 

 Virtualisation 

 Security 

 Resource Provisioning for storage, compute and networks  

 Global Access 

 Cost savings –Pay-per-use 

 Reliability and Fault resolution. 

 

 2.4 SCADA System Deployment to Cloud 
 The migration of many business systems to the cloud, has taken place due to cost savings, however such 

large scale migration of data is not observed for real-time applications such as SCADA (Ahn and Cheng, 

2013). The business critical nature of SCADA applications makes it a difficult decision for system 

developers, companies and the application users to consider deployment of SCADA to the cloud. However, 

confidence in cloud infrastructure is growing amongst businesses due to confidence in cloud vendors. 

Despite this, SCADA applications must mitigate against time critical communications constraints for 

adequate functioning of the system. The four possible ways of taking advantage of a cloud deployment for 

a SCADA application could be, SCADA HMI and Data Storage in Cloud; Complete SCADA system in 

Cloud; Hybrid cloud SCADA; and  Public versus Virtual Private Cloud. 

2.4.1 SCADA HMI and Data Storage in Cloud 

 The SCADA application runs on-site, whereas the information can be stored and displayed in the cloud 

with the control network providing data to the SCADA server. This is a common configuration and 

provides remote access and visualisation of data (Larry, 2011).  A system based on Message Queue 

Telemetry Transport (MQTT) which is a publish/subscribe model protocol (Nazir and Kaleem, 2019) is 

proposed by Siemens SCADA WinCC OA (Siemens) for Industry 4.0 where IoT data can be populated 

through MQTT broker to the cloud. The data resides in the cloud database and has the resulting advantage: 

 Data is available globally 

 Can be easily replicated on to different server 

 The interface can be connected to and from anywhere in the world 

 Data analytics from the cloud vendor is available for visualization. 

2.4.2 Complete SCADA system in Cloud 

 The SCADA application runs in the cloud but has remote connections to sensors and control devices. This 

configuration may suit a distributed SCADA system with PLC, RTU feeding data to SCADA servers in 

the cloud (Larry, 2011). A performance comparison of an entire SCADA system in the cloud environment 

for cost and security is described by Shahzad et al. (2013). The security threats considered were attacks on 

VM, inter VM attacks, and denial of service.  

2.4.3 Hybrid cloud SCADA  

 A hybrid cloud is a composite cloud where some of the application resides on a private cloud and the 

remaining can be migrated to the public cloud as required depending on different contingencies, for 

example, in case of an overload or organisational requirements. A scenario could be that the more critical 

and confidential information is maintained in the private cloud, whereas the public cloud could be 

optionally used to absorb additional processing and storage. The migration of application and data to the 

public cloud due to an overload is known as cloud burst. 



2.4.4 Public versus Virtual Private Cloud 

A virtual private cloud is an infrastructure housed on public cloud but from the access perspective it is like 

a private cloud, that is, an organization getting the cloud services has dedicated and exclusive access to the 

cloud resources. 

3. COGNITIVE INFORMATICS AND AUTONOMIC COMPUTING 

3.1 Cognitive Informatics 

Cognitive Informatics is a broad and multidisciplinary field of cognition and information sciences that 

investigates the human information processing and its applicability for computing applications. A 

comprehensive review of the cognitive informatics framework is provided by Wang (2007a) and it also 

describes the applications from the fields of computing and software engineering. It can have diverse goals 

based on the application field but the overriding aim is to improve the human-machine interaction through 

better decision-making. For example, object recognition and classification problems in computer vision 

are hard for computers but come naturally to humans, where a lot of progress has been made by mimicking 

the cognitive processes of the brain through Artificial Neural Networks (ANN). Similarly, the application 

of machine learning and agent based processing can help overcome the cyber threats facing SCADA 

systems. 

 Cognitive computing comprises of intelligent computing methodologies to build autonomous systems 

that mimic the inference mechanisms of the human brain (Wang, 2009). Thus a system can detect 

anomalies, events and entities in a system through pattern recognition and data mining. These pro-active 

and self-learning systems can provide an effective defence against cyber threats, as signature based 

approaches can only work against known threats.  

 The advances in the field of cognitive informatics have led to the development of cognitive computing. 

Computing can be classified at four levels of computation intelligence: data, information, knowledge, and 

intelligence (Wang et al., 2011c; 2015). Data and information processing have been well studied but the 

same is not been the case for the higher levels of computational intelligence. The trends in “Cognitive 

processes of the brain, particularly the perceptive cognitive processes, are the fundamental means for 

describing autonomic computing systems, such as robots, software agent systems, and distributed 

intelligent networks.” (Wang, 2007b).  

3.2 Autonomic Computing Paradigm 

 Autonomic Computing is one of the trans-disciplinary applications of Cognitive Informatics and an 

autonomic computing system using its intelligence can autonomously carry out its actions based on the set 

of events and goals (Wang, 2007a; 2007b). This contrasts with an imperative system whose behaviour is 

controlled by a stored program and is thus deterministic. The motivation for autonomic systems is to deal 

with the system complexity, which has reached an overwhelming proportion and is inspired by the human 

nervous system (Poslad, 2011). 

The increase in system complexity and applications heterogeneity has made it difficult to process the 

information. This has necessitated the use of paradigms inspired by biological systems such as autonomic 

computing (Parashar and Hariri, 2005) that have a goal to realise systems and applications, which operate 

autonomously based on high level rules to meet the system mission.  It differs from Artificial Intelligence 

(AI) in that unlike those systems the humans may take the ultimate decision. 

As the size and complexity of an application grows so should the software to control it, to become more 

flexible and dynamic, so as to be self-managed (Kramer and Magee, 2007). Designing such systems is the 

real challenge. The basic idea of the Autonomic Computing paradigm is that the system should be 

sufficiently intelligent to enable it to develop and maintain itself in an optimised state. The research 

challenges of autonomic computing are described by Kephart (2005). The human body’s feedback and 

control mechanisms (Kephart and Chess, 2003; Parashar and Hariri, 2005) have formed the basis of general 

systems theory and holism for the development and management of computer based systems. The 

autonomic computing paradigm mimics the human autonomic nervous system. The ability to self-manage 

SCADA system security threats by developing learning systems that recognise vulnerabilities will be 



hugely advantageous. The agents and software services will form a part of the systems, gathering data and 

monitoring systems continuously (Yang et al., 2012).  

 

3.3 Autonomic Computing Features 

Autonomic computing can be developed using different technologies; however an autonomic system 

must demonstrate the following four main features: self-configuring; self-healing; self-optimising; and 

self-protecting (Ganek and Corbi, 2003):  

1) Self-configuring: The system must be able to reconfigure its behaviour based on the changing system 

requirements. For example, to acquire more system resources, such as memory, in case the system is 

overburdened. 

2) Self-healing: In response to detecting a compromised element in its configuration, or lack of 

resources, an autonomic system can respond by repairing itself to a good state. Based on this assessment 

the system should be able to, for example, isolate the system components that have been compromised 

and continue operation with the remaining elements and at the same time attempting to restore the 

compromised system elements. 

3) Self-optimising: The system must be able to assess the current state of the system variables and be 

able to tune them resulting in an optimised tuned behaviour. This is crucial, especially in the case of 

complex systems where there are thousands of system parameters that can affect the system performance. 

For best results knowing or applying them all in a reasonable amount of time, is beyond the grasp of the 

human mind.  

4) Self-protecting: The system should be aware of the normal system operation and be able to 

continuously monitor the current system state to determine when deviations occur. It can then take 

measures to contain the threat and to handle it.  

Autonomic computing facilitates identifying factors that relate to a specific state – homeostasis. The 

development of a knowledge network helps to identify what ‘homeostasis’ is and when there is an 

imbalance, to understand the structure of the network, the defences, the threats and the attacks.  The 

threats can be classified into two categories: 1) process-related: when valid credentials are used to make 

legitimate changes that can impact on industrial processes. These can also be due to an error in the input 

of incorrect values or an actual attack (Crawford, 2006) for example, by disgruntled employees; and 2) 

system-related: which are exploited via software or configuration vulnerabilities. For example, flaws in 

communication protocols, which are low level (layers 1 and 2) attacks on the SCADA architecture 

(Pidikiti et al., 2013).  Developing a mechanism to mine logged data on process-related incidents is a 

potential solution to developing an autonomic computing approach for SCADA security. Identifying user 

activities and classifying the actions into signed-on or known user actions allows the analysis of threats 

as legitimate system commands by legitimate users, or by illegitimate users, to distinguish the threats into 

attacks or errors by developing a knowledge base (Hadžiosmanović et al., 2012). The open issues and 

challenges of autonomic computing covering the industrial and academic systems are provided by Salehie 

and Tahvildari (2005). All autonomic computing features are important but self-healing is important for 

cloud deployments, whereas self-configuration and self-optimization can be controlled through policies 

by the system users (Karakostas, 2014). 

3.4 Autonomic Computing to Secure SCADA 

 Some recent technology adoptions and improvements in SCADA systems are promising to aid 

developing systems that can result in an autonomic SCADA system. System protection can be ensured 

through many techniques. The majority depend on the judgement of a human to provide safeguards for the 

system.  

 The latest trends and innovations, such as virtualisation, analytics and databases, and wireless 

communications, which must work together in close collaboration to achieve the system mission, have 

been applied to SCADA systems. The integrated framework can rightly be called systems of systems as 



the complexity has increased beyond simple control and monitoring tasks, the fundamental basis of 

SCADA. This complexity implies that developing and maintaining such systems are reaching the limits of 

human cognition (Kephart and Chess, 2003; Huebscher and McCann, 2008). 

System vendors have been cognisant of the prevailing cyber security environment and have added a 

number of features to the product offerings. These features include, for example multiplexing proxy, 

encryption and role based access to make the intruder’s task difficult. Most SCADA vendors allow 

integration with relational databases in addition to the built-in historical databases that have some 

advantages (SQL: The Next Big Thing in SCADA). Relational databases such as Oracle have their own 

integrated analytics and data mining services that can make it easier to uncover any anomalous activity. 

A review of machine learning techniques for outlier detection of different temporal data sets is provided 

in Gupta et al., (2014). Machine learning and data analytics techniques have revolutionised many 

application domains and have recently been introduced in SCADA applications software. Such native 

integration makes it easier for the SCADA developers to analyse the systems operations and identify 

impending attacks (Kirsch et al., 2014; Carcano et al., 2011). Machine learning and other such techniques 

can effectively analyse a system to detect anomalous activities. Such unsupervised anomaly detection 

schemes are more appropriate and efficient compared to human analysts (Jiang and Yasakethu, 2013) and 

other signature based approaches (Chen and Abdelwahed, 2014). The system can thus learn new 

approaches and provide defence against as yet unseen scenarios, as in the case of supervised learning 

approaches. The other techniques of interest could be based on agent based, artificial intelligence, and 

adaptive systems (Greer and Rodriguez-Martinez, 2012). The future of cyber security lies with exploiting 

such techniques that can not only autonomously assess the threats to the system security, but also contain 

and mitigate the threat from spreading. The operator alert can notify the human operator to initiate disaster 

recovery operations. 

 Virtualisation techniques provide many benefits that can advantageously be applied to support the 

autonomic computing paradigm. Virtualisation enables easy containment of an attack, restoring and 

disaster recovery, change and optimisation of system resources, etc., in a truly elastic manner. 

A recent breakthrough in this direction is that of the Autonomic Computing paradigm. With Autonomic 

Computing, the ultimate control still rests with a human but the drudgery of data manipulation and threat 

assessment can be taken out of the loop. An autonomic system can automatically detect and fix anomalies, 

which help reduce human intervention (Ahad et al., 2015). An autonomic cloud manager autoJuJu is 

proposed by Karakostas (2014) that makes autonomous decisions for scaling up or down the number of 

VMs, showing how the proposed manager meets self-configuration and self-optimization by considering 

broad policies and rules for cloud deployment, running in a sense-plan-act loop. 

4. AUTONOMIC ARCHITECTURE FOR SECURING CLOUD BASED SCADA 

SYSTEMS 

 In this section we provide a brief overview of the architectures proposed in the research literature and 

propose a framework that can be used to design SCADA systems that have built-in layered protection 

against both known and unknown threats. We also provide details of the autonomic computing SCADA 

architecture proposed by the authors (Nazir et al., 2017b). 

4.1 Autonomic SCADA Architecture 

Some autonomic architectures have been proposed in the research literature. The IBM autonomic 

computing system comprises, monitoring, analysing, planning, executing and a knowledge base 

component (Ebbers et al., 2006) and was proposed for large-scale commercial systems. The architecture 

utilises Touchpoint Autonomic Managers that are self-configuring, self-healing, self-optimizing and self-

protecting.  

An introduction to autonomic computing together with the challenges and opportunities are presented 

in Parashar and Hariri (2005). They propose architecture for an autonomic element as a smallest functional 

unit and propose a manager for each autonomic element. Chen and Abdelwahed (2014) highlight the need 



for better security for the SCADA system and present an autonomic security model comprising of risk 

assessment, early warning and prevention, intrusion detection, and intrusion response.   

An autonomic computational intelligence based system suitable for big data was proposed for 

identifying cyber attacks on smart grids by Demertzis and Iliadis (2018). Real-time control and monitoring 

of smart grid through cloud framework was proposed in (Kulkarni, 2019) that helped early detection of 

grid failures, user verification, and prevention of grid failure from anywhere in the world. A cloud based 

autonomic framework for smart grid that analyses the user social media and sensor data for energy demand 

for household is proposed considering it as a big data problem (Qin, 2014).  A multilevel user access 

control layer was proposed for cloud platform security hosting SCADA system accessible through services 

via service oriented architecture (Baker, 2015). A detailed survey of autonomic computing models and 

applications is provided by Huebscher and McCann (2008). An Autonomic Critical Infrastructure 

Protection (ACIP) system using anomaly detection and autonomic computing is proposed by Al-Baalbaaki 

and Al-Nashif (2013). The modular system has online monitoring, feature selection and correlation, multi-

level behaviour analysis, visualisation, and adaptive learning. The evaluation of ACIP is described using 

Modbus traffic generator for the Modbus traces between a server and five different PLCs. The proposed 

system could detect and stop a variety of attacks on the Modbus protocol (Al-Baalbaaki and Al-Nashif, 

2013). An autonomic computing architecture for a virtual private cloud to house real-time medical 

applications is proposed in (Ahn and Cheng 2013) by considering a distributed VM monitoring system for 

a virtual private cloud. 

 Autonomic computing for intrusion detection in cloud using big data through an intrusion response 

autonomic system using Hadoop for data organization and Map-Reduce for data extraction can provide 

self-awareness, self-configuration and self-healing in the cloud (Vieira, 2014). An intrusion detection 

system was proposed for self-healing in cloud infrastructure through trade-offs for performance and energy 

response where VMs can be replaced in case of attacks (Villalobos, 2014). It was shown that by 

incorporating knowledge of a physical model of the system it was possible to identify the attacks through 

changes in system behaviour (Cardenas et al., 2011). The detection of attacks was formulated as an 

anomaly-based intrusion detection. The results show that the response algorithm keeps the system in a safe 

state during an attack. Automatic response mechanisms were proposed on system state estimation.  

However, they caution that an automatic detection and response methodology might not be applicable for 

all processes in control systems.  

A methodology for designing a smart critical architecture that protects communications, controls and 

computations using moving target defence and autonomic computing is proposed by Hariri et al. (2017) 

who also developed a Resilient Smart Critical Infrastructure Testbed (RSCIT). A general autonomic 

computing environment (Autonomia) was developed for control and management of smart critical 

infrastructures.  

A survivable cyber-secure infrastructure (SCI) architecture is proposed by Sheldon et al. (2004) for a 

power grid and proposes a cognitive agent architecture combining agent-based and autonomic computing. 

Cognitive components are described as comprising of processes that are reactive, deliberate, or reflective. 

4.2 Proposed Architecture 

An autonomic system enables a SCADA system to optimise, configure and protect itself in case of 

changing the system state to a compromised one. The work to date for securing SCADA security focuses 

on discrete approaches.  

The authors had proposed an integrated approach that combines, the discrete knowledge based 

approaches with cognitive approaches. The memory layer of the Layered Reference Model of the Brain 

(LRMB) (layer 2) reflects the knowledge base that captures the short term, long term and transient 

memories. This can be utilised to capture process- and systems-related threats. Memory can be defined as 

a set of subconscious cognitive processes that retain the external or internal information about various 

SCADA security events. The subconscious knowledge base is inherited from the range of events and 

threats identified, and the conscious subsystem, however, is acquired and flexible, based on the autonomic 

computing paradigm (Wang et al., 2006a; Wang and Wang, 2006b).  



In contrast to the architectures above, our proposed architecture combines three features to provide a 

threat-resilient SCADA framework: (i) virtualisation of computing and networking resources (ii) hierarchy 

of autonomic managers (AMs) to identify threats at different scales (iii) protection against false alarms. In 

the following sections we describe the autonomic manager element and the corresponding autonomic 

SCADA architecture. 

4.2.1 Autonomic Manager 

Virtualisation refers to creating a virtual rather than physical version of computer hardware, storage and 

networks. The advantages are that the computing resources can be elastically assigned as required and it is 

much easier to monitor the virtual machines. In case of a cyber attack, a clean instance can be easily 

launched and the compromised machine can be isolated for forensics. Also, disaster recovery and rollback 

can be performed easily.  We propose hosting the SCADA system on a virtual platform. The advantages 

are that it can provide high availability through protection against hardware and software failures. Thus 

creating a broad generalised structure based on virtualisation wherein appropriate technologies can be 

selected to best suit an application within the given framework. 

We propose the concept of hierarchical autonomic managers that can scale protection from a small to a 

wide area. A domain autonomic manager, 𝐴𝑀𝑑 performs real-time analysis of their limited domain 

(database, communications, etc.,) at a small scale. These domain-based analyses are then aggregated at the 

local system level, 𝐴𝑀𝑙 for identification of anomalies to counter the threats locally. This relieves the central 

autonomic manager, 𝐴𝑀𝑐 to take more holistic actions. Thus, a central autonomic manager can perform an 

analysis of system wide aggregated analysis to counter system wide variations to identify possible threats. 

Thus, the inference of AM is based on the intelligent aggregation of the inferences of its lower level 

AM. 

Inferences 𝐴𝑀𝑐 = ∑ 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝐴𝑀𝑙
𝑁
𝑖=1  

We argue that despite the current state-of-the-art in autonomic computing applications, such as, 

machine learning and neural networks applied to SCADA systems, the ultimate decision should lie with 

the human operator. This is due to the criticality of the SCADA applications that might jeopardise the 

safety and health of people, or compromise national security and infrastructures in case of false alarms. 

This of course, will vary from one application to another and a human decision-maker could be in the loop 

at some or all layers of AMs. The hierarchy of autonomic managers abstracts the information as it proceeds 

from low to high levels (domain to global) and can recommend actions to make it easier for a human 

operator to make a decision. 

 The structure and execution cycle of an AM is shown in Fig 3. It is planned and executed based on the 

given goals and rules. The execution starts at plan stage, followed by evaluate stage which could be 

monitoring or comparison, to determine a condition to be an anomaly or a progression towards one, 

inferring the threat, and reporting the inference to its higher AM. The knowledge base is analogous to the 

human nervous system storing structured and unstructured information used by the autonomic manager 

during its operation.   

 



 

 

Fig 3. Structure and execution cycle of an autonomic manager. 

 

 The autonomic manager, as shown in Fig 3, can be used at various security layers of the system. The 

hierarchy helps to place the inferences at appropriate levels and the intelligence can travel up to the highest 

layer, that is, the central AM.  

4.2.2 Autonomic SCADA Architecture for a Non-cloud Deployment 

 A SCADA system can have a large geographical spread, exposing it to exploitation at many locations, 

therefore necessitating an autonomic manager at each location that can monitor the security in the local 

areas and coordinate the efforts through the central manager. A simplified SCADA system architecture is 

shown in Figure 4. At the heart of the system is a central autonomic manager that can enforce the broad 

threat mitigation and containment policies in the managed system, as defined by the system administrator. 

The knowledge base provides the various historical system models that are continuously modified to the 

current state and are analysed to check conformance. The local autonomic managers continually observe 

the system state and act promptly in case of identified security threats to the local system. 

Our proposed architecture provides a broad generalised structure based on virtualisation wherein 

appropriate technologies can be selected to best suit an application within the given framework. The 

identification of anomalies at an area level helps to counter the threats locally, relieving the central 

autonomic manager to take more holistic actions to counter system wide threats. 

 



 

 

Fig 4. Proposed Architecture for an autonomic SCADA system. 

The autonomic computing system incorporated to monitor a SCADA system may generate false alarms 

and therefore it may be necessary, based on the application domain, for a human operator to make a final 

decision based on the evidence.   

It is also pertinent to point out here that the autonomic manager itself can be the target of a cyber attack. 

Such exploitation can be avoided through redundant deployments of managers and an integrated approach 

as proposed. 

4.2.3 Cloud based Autonomic Framework for SCADA Security  

The aim is to propose a generalised framework that can be helpful of deployment of autonomic SCADA 

applications to the cloud. The objective is to protect the SCADA deployment against cyber attacks and in 

doing so continuously evaluate any imminent breaches. In case of breaches the steps are taken to contain 

the breach and to restore the system to its pre-compromise state. The framework makes use of machine 

learning and data analytic techniques to quickly identify an attack vector. 

The virtual machines provide many benefits to house a SCADA system, in case of any compromise it 

can quickly be restored to safe state. Such redundant applications can be run so that in case of a compromise 

of one, the other can continue to operate. Virtualization also makes it possible for a running application to 

migrate to another server, a phenomenon known as ‘Live Migration’. This could be very helpful if the 

server itself is compromised and there are dangers of process disruption.  

 This work proposes the application of autonomic computing paradigm to cloud based deployments of 

SCADA applications. The timing constraints and real time nature of information dictates a hybrid cloud 

where the more critical elements could be deployed off-site in a private cloud and less critical elements 

could be housed in the public cloud. The framework proposed is generic enough so that it can be made use 

of for different types of SCADA applications and deployment domains. 

 A high-level cloud-based autonomic computing framework to secure SCADA systems is proposed as 

shown in Figure 5. We propose the hosting of SCADA systems on a hybrid cloud where the SCADA server 

is placed on an on-premises private cloud and the Human Machine Interface (HMI) on the public cloud. 

The control devices such as PLC provide data to the SCADA server running on the on-premises private 

cloud.  

 A strong protection against cyber threats is possible by integrating the security features of the selected 

cloud and SCADA system with the hosting organisation’s customised security features. Public clouds 

provide many features for security and disaster recovery such as two-factor authentication, access keys, 

data backup, and security groups (acts as firewall).  For example, a Denial of Service (DoS) attack can be 

detected and contained through the use of cloud load balancer. The SCADA application provides a 

heartbeat mechanism used for continuous monitoring of different software and hardware entities in the 

system, for failure through a timeout mechanism. An absence of heartbeat signal could result in an  



 
 

 

 

Fig 5. Proposed cloud-based autonomic computing architecture for SCADA system. 

 

automatic invocation of redundant SCADA servers in cases of detection of problems with the primary 

server or could also be flagged for the attention of the human operator.   

 As shown in Fig. 5, Virtual Machine Monitors (VMM) or hypervisors on multiple host servers 

(hardware) can counteract a cyber threat by restoring a VM from a snapshot or backup. The active or 

primary SCADA application is run together with a secondary or standby server that has same state as 

primary server and can take over in case of problems with the primary server. The public cloud 

environment inherently provides redundancy and failover but with the proposed hybrid deployment some 

failover mechanisms would have to be provisioned in the on-premises cloud. For example, a redundant 

Internet connection could safeguard against the only connection going down (Larry, 2011).  

 A VPN is used to connect the SCADA database in the on-premises cloud with the HMI on the public 

cloud. For security and to avoid sharing of cloud resources with other users, we propose the use of a virtual 

private cloud (VPC) within the public cloud. HMI could be accessed over the public Internet through 

Internet connected devices. Access control rules based on Internet Protocol (IP) addresses, location or 

protocols can be used for added security. 

 The autonomous operation of the SCADA server in the cloud infrastructure is based on a set of rules 

and policies that are continuously controlled and monitored through the autonomic manager for cyber 

security. The autonomic manager through machine learning techniques can detect once a value is beyond 

a specified threshold or can detect outliers by considering many attribute values together. Based on the 



specified rules and policies a failure detected by an autonomic manager could automatically contain that 

attack by activating a redundant system, or automatically prevent an attack by updating the encryption 

algorithms.  

 The autonomic manager is proposed for use with all devices and software that are processing or 

communicating the data, and reporting detected threats to the central AM for decision making. The 

autonomic cloud based SCADA infrastructure protects itself autonomously against security threats. The 

threat detection is basically a binary classification process, but where decision is not robust (probability of 

threat) it can be referred to the human operator for review or decision-making. Thus, the proposed 

architecture also results in an added benefit of reducing direct operators’ involvement to continuously 

analyse the cyber threats. 

5. CONCLUSION 

 This chapter has proposed a cloud based autonomic framework for protecting SCADA systems 

deployed to the clouds. We propose the concept of hierarchical autonomic managers that help to extract, 

aggregate and refine intelligent inferences for ultimate decision making by a human operator. The proposed 

framework is generic and can be suitably applied across a range of real-world SCADA applications. The 

importance of the need to have such frameworks has arisen due to a gradual recognition that the cloud 

deployments provide enormous benefits to SCADA systems. The evolving cyber threat landscape dictates 

changes to cyber defence approaches for the protection of SCADA systems in the cloud. Unlike the 

traditional defence approaches where the response is governed by tailoring and monitoring according to 

threats, the concept of autonomic computing provides an advantage, as the systems are self-protecting.  

 Thus, the autonomic computing paradigm is very promising to develop SCADA system cyber security 

architectures that facilitate proactive threat mitigation methodologies, without an active intervention by a 

human operator. The autonomous nature enables flexible and scalable solutions across a wide range of 

SCADA system architectures and applications. In future, the end deployments of cloud such as fog 

computing and cloudlets can be explored that make it possible to migrate the complete SCADA application 

to the cloud without compromising the strict timing constraints of the SCADA applications. Such 

deployments would also be aided by the widespread deployments of 5G networks that provide better 

reliability and high data rates for the wireless connection. 
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