Enhancing CFD-LES air pollution prediction accuracy using data assimilation

Journal article


Aristodemou, E., Arcucci, R, Mottet, L, Robins, A, Pain, C and Guo, Y (2019). Enhancing CFD-LES air pollution prediction accuracy using data assimilation. Building and Environment. 165. https://doi.org/10.1016/j.buildenv.2019.106383
AuthorsAristodemou, E., Arcucci, R, Mottet, L, Robins, A, Pain, C and Guo, Y
Abstract

It is recognised worldwide that air pollution is the cause of premature deaths daily, thus necessitating the development of more reliable and accurate numerical tools. The present study implements a three dimensional Variational (3DVar) data assimilation (DA) approach to reduce the discrepancy between predicted pollution concentrations based on Computational Fluid Dynamics (CFD) with the ones measured in a wind tunnel experiment. The methodology is implemented on a wind tunnel test case which represents a localised neighbourhood environment. The improved accuracy of the CFD simulation using DA is discussed in terms of absolute error, mean squared error and scatter plots for the pollution concentration. It is shown that the difference between CFD results and wind tunnel data, computed by the mean squared error, can be reduced by up to three order of magnitudes when using DA. This reduction in error is preserved in the CFD results and its benefit can be seen through several time steps after re-running the CFD simulation. Subsequently an optimal sensors positioning is proposed. There is a trade-off between the accuracy and the number of sensors. It was found that the accuracy was improved when placing/considering the sensors which were near the pollution source or in regions where pollution concentrations were high. This demonstrated that only 14% of the wind tunnel data was needed, reducing the mean squared error by one order of magnitude.

Year2019
JournalBuilding and Environment
Journal citation165
PublisherElsevier
ISSN0007-3628
Digital Object Identifier (DOI)https://doi.org/10.1016/j.buildenv.2019.106383
Publication dates
Print01 Nov 2019
Online03 Sep 2019
Publication process dates
Accepted29 Aug 2019
Deposited23 Dec 2019
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/88v6y

Download files


Accepted author manuscript
Aristodemou-Arcucci-etal-2019.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 140
    total views
  • 234
    total downloads
  • 2
    views this month
  • 2
    downloads this month

Export as

Related outputs

A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19.
Mehade Hussain, S., Goel, S., Kadapa, C. and Aristodemou, E. (2022). A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03.724
Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors
Hafeez, S., Mahmood, S., Aristodemou, E., Al-Salem, S., Manos, G. and Constantinou, A. (2021). Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors. Fuels. 2 (3), pp. 272-285. https://doi.org/10.3390/fuels2030016
Modelling of Packed Bed and Coated Wall Microreactors for 6 Methanol Steam Reforming for Hydrogen Production
Constantinou, A., Hafeez, S., Aristodemou, E. and S.M, A.-S. (2020). Modelling of Packed Bed and Coated Wall Microreactors for 6 Methanol Steam Reforming for Hydrogen Production. RSC Advances: an international journal to further the chemical sciences. 68. https://doi.org/10.1039/D0RA06834A
Assessing the Horizontal Homogeneity of the Atmospheric Boundary Layer (HHABL) Profile Using Different CFD Software
Abohela, I, Aristodemou, E, Hadawey, A and Sundararajan, R (2020). Assessing the Horizontal Homogeneity of the Atmospheric Boundary Layer (HHABL) Profile Using Different CFD Software. Atmosphere. 11 (10), pp. 1138-1138. https://doi.org/10.3390/atmos11101138
CO2 capture using membrane contactors: a systematic literature review
Hafeez, S, Safdar, T, Pallari, E, Manos, G, Aristodemou, E, Zhang, Z, Al-Salem, SM and Constantinou, A (2020). CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering.
Turbulent Flows and Pollution Dispersion around Tall Buildings Using Adaptive Large Eddy Simulation (LES)
Aristodemou, E., Mottet, L., Constantinou, A. and Pain, C. (2020). Turbulent Flows and Pollution Dispersion around Tall Buildings Using Adaptive Large Eddy Simulation (LES). Buildings. 70 (7). https://doi.org/10.3390/buildings10070127
Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors
Constantinou, A, Hafeez, S, Aristodemou, E, Manos, G and Al-Salem, S (2020). Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors. Reaction Chemistry and Engineering. 5, pp. 1083-1092. https://doi.org/10.1039/D0RE00102C
A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection
Woodward, H, Stettler, M, Pavlidis, D, Aristodemou, E., ApSimon, H and Pain, C (2019). A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection. Atmopsheric Environment. 215, p. 116891. https://doi.org/10.1016/j.atmosenv.2019.116891
A domain decomposition non-intrusive reduced order model for turbulent flows
Xiao, D, Heaney, CE, Fang, F, Mottet, L, Hu, R, Bistrian, DA, Aristodemou, E, Navon, IM and Pain, CC (2019). A domain decomposition non-intrusive reduced order model for turbulent flows. Computers and Fluids. 182, pp. 15-27. https://doi.org/10.1016/j.compfluid.2019.02.012
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering. (4). https://doi.org/10.1039/c8re00040a
Natural ventilation in cities: the implications of fluid mechanics
Song, J, Fan, S, Lin, W, Mottet, L, Woodward, H, Davies Wykes, M, Arcucci, R, Dunhui, X, Debay, J-E, ApSimon, H, Aristodemou, E, Birch, D, Carpentieri, M, Fang, F, Herzog, M, Hunt, GR, Jones, LR, Pain, C, Pavlidis, D, Robins, AG, Short, CA and Linden, P (2018). Natural ventilation in cities: the implications of fluid mechanics. Building Research & Information. 46 (8), pp. 809-828. https://doi.org/10.1080/09613218.2018.1468158
How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood
Aristodemou, E., Boganegra, L.M., Mottet, L., Pavlidis, D., Constantinou, A, Pain, C., Robins, A. and ApSimon, H. (2017). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental Pollution. 233, pp. 782-796. https://doi.org/10.1016/j.envpol.2017.10.041
Simulating Turbulent Air Flows In Central London And Studying Effect Of Tall Buildings
Aristodemou, E (2016). Simulating Turbulent Air Flows In Central London And Studying Effect Of Tall Buildings. 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Budapest, Hungary 09 - 12 May 2016