Natural ventilation in cities: the implications of fluid mechanics

Journal article


Song, J, Fan, S, Lin, W, Mottet, L, Woodward, H, Davies Wykes, M, Arcucci, R, Dunhui, X, Debay, J-E, ApSimon, H, Aristodemou, E, Birch, D, Carpentieri, M, Fang, F, Herzog, M, Hunt, GR, Jones, LR, Pain, C, Pavlidis, D, Robins, AG, Short, CA and Linden, P (2018). Natural ventilation in cities: the implications of fluid mechanics. Building Research & Information. 46 (8), pp. 809-828. https://doi.org/10.1080/09613218.2018.1468158
AuthorsSong, J, Fan, S, Lin, W, Mottet, L, Woodward, H, Davies Wykes, M, Arcucci, R, Dunhui, X, Debay, J-E, ApSimon, H, Aristodemou, E, Birch, D, Carpentieri, M, Fang, F, Herzog, M, Hunt, GR, Jones, LR, Pain, C, Pavlidis, D, Robins, AG, Short, CA and Linden, P
Abstract

Research under the Managing Air for Green Inner Cities (MAGIC) project uses measurements and modelling to investigate the connections between external and internal conditions: the impact of urban airflow on the natural ventilation of a building. The test site was chosen so that under different environmental conditions the levels of external pollutants entering the building, from either a polluted road or a relatively clean courtyard, would be significantly different. Measurements included temperature, relative humidity, local wind and solar radiation, together with levels of carbon monoxide (CO) and carbon dioxide (CO2) both inside and outside the building to assess the indoor–outdoor exchange flows. Building ventilation took place through windows on two sides, allowing for single-sided and crosswind-driven ventilation, and also stack-driven ventilation in low wind conditions. The external flow around the test site was modelled in an urban boundary layer in a wind tunnel. The wind tunnel results were incorporated in a large-eddy-simulation model, Fluidity, and the results compared with monitoring data taken both within the building and from the surrounding area. In particular, the effects of street layout and associated street canyons, of roof geometry and the wakes of nearby tall buildings were examined.

Keywordsair pollutants; air quality; buildings; dispersion; microclimates; modelling; natural ventilation; urban design
Year2018
JournalBuilding Research & Information
Journal citation46 (8), pp. 809-828
PublisherTaylor & Francis
Digital Object Identifier (DOI)https://doi.org/10.1080/09613218.2018.1468158
Web address (URL)https://www.tandfonline.com/doi/full/10.1080/09613218.2018.1468158
Publication dates
Print28 Jun 2018
Publication process dates
Deposited02 Jul 2018
Accepted28 Jun 2018
Accepted author manuscript
License
File Access Level
Open
Additional information

This is an Accepted Manuscript of an article published by Taylor & Francis in Building Research & Information on 28 June 2018, available online: http://www.tandfonline.com/10.1080/09613218.2018.1468158

Permalink -

https://openresearch.lsbu.ac.uk/item/86q6q

Download files


Accepted author manuscript
BRI _revised_final-20March2018.pdf
License: CC BY 4.0
File access level: Open

  • 106
    total views
  • 210
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19.
Mehade Hussain, S., Goel, S., Kadapa, C. and Aristodemou, E. (2022). A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03.724
Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors
Hafeez, S., Mahmood, S., Aristodemou, E., Al-Salem, S., Manos, G. and Constantinou, A. (2021). Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors. Fuels. 2 (3), pp. 272-285. https://doi.org/10.3390/fuels2030016
Modelling of Packed Bed and Coated Wall Microreactors for 6 Methanol Steam Reforming for Hydrogen Production
Constantinou, A., Hafeez, S., Aristodemou, E. and S.M, A.-S. (2020). Modelling of Packed Bed and Coated Wall Microreactors for 6 Methanol Steam Reforming for Hydrogen Production. RSC Advances: an international journal to further the chemical sciences. 68. https://doi.org/10.1039/D0RA06834A
Assessing the Horizontal Homogeneity of the Atmospheric Boundary Layer (HHABL) Profile Using Different CFD Software
Abohela, I, Aristodemou, E, Hadawey, A and Sundararajan, R (2020). Assessing the Horizontal Homogeneity of the Atmospheric Boundary Layer (HHABL) Profile Using Different CFD Software. Atmosphere. 11 (10), pp. 1138-1138. https://doi.org/10.3390/atmos11101138
CO2 capture using membrane contactors: a systematic literature review
Hafeez, S, Safdar, T, Pallari, E, Manos, G, Aristodemou, E, Zhang, Z, Al-Salem, SM and Constantinou, A (2020). CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering.
Turbulent Flows and Pollution Dispersion around Tall Buildings Using Adaptive Large Eddy Simulation (LES)
Aristodemou, E., Mottet, L., Constantinou, A. and Pain, C. (2020). Turbulent Flows and Pollution Dispersion around Tall Buildings Using Adaptive Large Eddy Simulation (LES). Buildings. 70 (7). https://doi.org/10.3390/buildings10070127
Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors
Constantinou, A, Hafeez, S, Aristodemou, E, Manos, G and Al-Salem, S (2020). Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors. Reaction Chemistry and Engineering. 5, pp. 1083-1092. https://doi.org/10.1039/D0RE00102C
Enhancing CFD-LES air pollution prediction accuracy using data assimilation
Aristodemou, E., Arcucci, R, Mottet, L, Robins, A, Pain, C and Guo, Y (2019). Enhancing CFD-LES air pollution prediction accuracy using data assimilation. Building and Environment. 165. https://doi.org/10.1016/j.buildenv.2019.106383
A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection
Woodward, H, Stettler, M, Pavlidis, D, Aristodemou, E., ApSimon, H and Pain, C (2019). A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection. Atmopsheric Environment. 215, p. 116891. https://doi.org/10.1016/j.atmosenv.2019.116891
A domain decomposition non-intrusive reduced order model for turbulent flows
Xiao, D, Heaney, CE, Fang, F, Mottet, L, Hu, R, Bistrian, DA, Aristodemou, E, Navon, IM and Pain, CC (2019). A domain decomposition non-intrusive reduced order model for turbulent flows. Computers and Fluids. 182, pp. 15-27. https://doi.org/10.1016/j.compfluid.2019.02.012
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering. (4). https://doi.org/10.1039/c8re00040a
How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood
Aristodemou, E., Boganegra, L.M., Mottet, L., Pavlidis, D., Constantinou, A, Pain, C., Robins, A. and ApSimon, H. (2017). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental Pollution. 233, pp. 782-796. https://doi.org/10.1016/j.envpol.2017.10.041
Simulating Turbulent Air Flows In Central London And Studying Effect Of Tall Buildings
Aristodemou, E (2016). Simulating Turbulent Air Flows In Central London And Studying Effect Of Tall Buildings. 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Budapest, Hungary 09 - 12 May 2016