Equilibrium shapes with stress localisation for inextensible elastic möbius and other strips

Book chapter


Starostin, EL and Van Der Heijden, GHM (2016). Equilibrium shapes with stress localisation for inextensible elastic möbius and other strips. in: The Mechanics of Ribbons and Möbius Bands pp. 67-112
AuthorsStarostin, EL and Van Der Heijden, GHM
Abstract

© Springer Science+Business Media Dordrecht 2015. We formulate the problem of finding equilibrium shapes of a thin inextensible elastic strip, developing further our previous work on the Möbius strip. By using the isometric nature of the deformation we reduce the variational problem to a second-order onedimensional problem posed on the centreline of the strip. We derive Euler-Lagrange equations for this problem in Euler-Poincaré form and formulate boundary-value problems for closed symmetric one-and two-sided strips. Numerical solutions for the Möbius strip show a singular point of stress localisation on the edge of the strip, a generic response of inextensible elastic sheets under torsional strain. By cutting and pasting operations on the Möbius strip solution, followed by parameter continuation, we construct equilibrium solutions for strips with different linking numbers and with multiple points of stress localisation. Solutions reveal how strips fold into planar or self-contacting shapes as the length-to-width ratio of the strip is decreased. Our results may be relevant for curvature effects on physical properties of extremely thin two-dimensional structures as for instance produced in nanostructured origami.

Page range67-112
Year2016
Book titleThe Mechanics of Ribbons and Möbius Bands
ISBN9789401772990
Publication dates
Print01 Jan 2016
Publication process dates
Deposited14 Jan 2020
Digital Object Identifier (DOI)https://doi.org/https://www.doi.org/10.1007/978-94-017-7300-3
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/88w83

Download files

  • 86
    total views
  • 554
    total downloads
  • 1
    views this month
  • 12
    downloads this month

Export as

Related outputs

Biased statistical ensembles for developable ribbons
van der Heijden, G. and Starostin, E. L. (2023). Biased statistical ensembles for developable ribbons. Proceedings of the National Academy of Sciences of the United States of America. 120 (41), p. e2221419120. https://doi.org/10.1073/pnas.2221419120
Describing whisker morphology of the Carnivora
Dougill, G., Brassey, C.A., Starostin, E., Andrews, H., Kitchener, A., van der Heijden, G.H.M., Goss, G. and Grant, R. (2023). Describing whisker morphology of the Carnivora. Journal of morphology. 284 (9), p. e21628. https://doi.org/10.1002/jmor.21628
Theoretical considerations of the mechanics of whisker sensors
Starostin, E., van der Heijden, G. and Goss, G. (2022). Theoretical considerations of the mechanics of whisker sensors . The 10th European Nonlinear Dynamics Conference (ENOC 2022) July 17-22, 2022, Lyon, France. Lyon 17 - 22 Jul 2022
Comment on Y.-C. Chen, E. Fried, Möbius bands, unstretchable material sheets and developable surfaces. Proc. R. Soc. A 472, 20160459 (2016)
van der Heijden, G. and Starostin, E. (2022). Comment on Y.-C. Chen, E. Fried, Möbius bands, unstretchable material sheets and developable surfaces. Proc. R. Soc. A 472, 20160459 (2016). Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 478 (2261), p. 20210629. https://doi.org/10.1098/rspa.2021.0629
Forceless folding of thin annular strips
Starostin, E. and van der Heijden, G. (2022). Forceless folding of thin annular strips. Journal of the Mechanics and Physics of Solids. 169, p. 105054. https://doi.org/10.1016/j.jmps.2022.105054
Whisker Sensing by Force and Moment Measurements at the Whisker Base
Starostin, E.L., Goss, V.G.A. and van der Heijden, G. (2022). Whisker Sensing by Force and Moment Measurements at the Whisker Base. Soft Robotics. 10 (2), pp. 326-335. https://doi.org/10.1089/soro.2021.0085
Morphological peculiarities of a harbour seal (Phoca vitulina) whisker revealed by normal skeletonisation
Goss, G., Starostin, E., Dougill, G. and Grant, R.A. (2022). Morphological peculiarities of a harbour seal (Phoca vitulina) whisker revealed by normal skeletonisation. Bioinspiration & biomimetics. https://doi.org/10.1088/1748-3190/ac5a6b
Ecomorphology reveals Euler spiral of mammalian whiskers.
Dougill, G., Starostin, E.L., Milne, A.O., van der Heijden, G.H.M., Goss, G.A. and Grant, R.A. (2020). Ecomorphology reveals Euler spiral of mammalian whiskers. Journal of morphology. https://doi.org/10.1002/jmor.21246
The Euler Spiral of Rat Whiskers
Starostin, E., Grant, R.A., Dougill, G., van der Heijden, G.H.M. and Goss, G. (2020). The Euler Spiral of Rat Whiskers. Science Advances. 6 (3). https://doi.org/10.1126/sciadv.aax5145
Equilibria of elastic cable knots and links
Starostin, E. and van der Heijden, G. (2018). Equilibria of elastic cable knots and links. in: Reiter, Ph., Blatt, S. and Schikorra, A. (ed.) New Directions in Geometric and Applied Knot Theory De Gruyter. pp. 258-275
Forceless Sadowsky strips are spherical
Starostin, EL and Van Der Heijden, GHM (2018). Forceless Sadowsky strips are spherical. Physical Review E. 97 (2), pp. 023001-. https://doi.org/10.1103/PhysRevE.97.023001