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Abstract We formulate the problem of finding equilibrium shapes of a thin inextensible
elastic strip, developing further our previous work on the Möbius strip. By using the iso-
metric nature of the deformation we reduce the variational problem to a second-order one-
dimensional problem posed on the centreline of the strip. We derive Euler–Lagrange equa-
tions for this problem in Euler–Poincaré form and formulate boundary-value problems for
closed symmetric one- and two-sided strips. Numerical solutions for the Möbius strip show
a singular point of stress localisation on the edge of the strip, a generic response of inexten-
sible elastic sheets under torsional strain. By cutting and pasting operations on the Möbius
strip solution, followed by parameter continuation, we construct equilibrium solutions for
strips with different linking numbers and with multiple points of stress localisation. Solu-
tions reveal how strips fold into planar or self-contacting shapes as the length-to-width ratio
of the strip is decreased. Our results may be relevant for curvature effects on physical proper-
ties of extremely thin two-dimensional structures as for instance produced in nanostructured
origami.

Keywords Möbius strip · Inextensible ribbon · Developable surface · Switching point ·
Equilibrium · Invariant variational formulation · Stress localisation · Conical surface
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1 Introduction

We do not know who was the first to take a thin flexible strip of paper (papyrus, parchment,
birch bark, animal skin, palm leaf or whatever material), to join its ends in space so that
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the long edges of the strip make a single closed curve and to admire the resulting shape.
Certainly it happened a long time ago. However, the mathematical description of such an
object was given only in 1858, independently by August Ferdinand Möbius and Johann
Benedict Listing. The Möbius strip is not only interesting from an aesthetic or mathematical
point of view but also as a generic example of a strip whose equilibrium shape demonstrates
principal characteristic features of other elastic ribbons.

Since Möbius the eponymous strip has had a significant impact on human culture. Its
intriguing beauty has inspired many artists including M.C. Escher [11]. In engineering, pul-
ley belts are often used in the form of Möbius strips in order to wear ‘both’ sides equally.
At a much smaller scale, Möbius strips have recently been formed in ribbon-shaped NbSe3

crystals under certain growth conditions involving a large temperature gradient [55, 56].
The mechanism proposed by Tanda et al. to explain this behaviour is a combination of Se
surface tension, which makes the crystal bend, and twisting as a result of bend-twist cou-
pling due to the crystal nature of the ribbon. Gravesen & Willatzen [17] computed quantum
eigenstates of a particle confined to the surface of a developable Möbius strip and compared
their results with earlier calculations by Yakubo et al. [62]. They found curvature effects in
the form of a splitting of the otherwise doubly degenerate ground state wave function (see
also [27]). Thus qualitative changes in the physical properties of Möbius strip structures (for
instance nanostrips) may be anticipated and it is of physical interest to know the exact shape
of a free-standing strip. It has also been theoretically predicted that a novel state appears
in a superconducting Möbius strip placed in a magnetic field [23]. Möbius strip geometries
have furthermore been proposed to create optical fibres with tunable polarisation [46] and
the Möbius strip topology has been suggested for compact resonators that have a resonance
frequency that is half that of a cylindrical loop of the same size [41].

There exist infinitely many realisations of the Möbius strip and attempts have been made
to define a unique, ‘canonical’, shape that is in some sense the simplest [42, 44, 47, 48, 61].
One way to approach this problem is to ask for the shape adopted by a free-standing Möbius
strip made of a thin material (like paper); see Fig. 1.1 In the idealised case when we can
neglect the material’s stretching, the shape may be found as that minimising the elastic en-
ergy associated with bending. A strip that deforms without stretching has constant Gaussian
curvature under deformation. If such a strip is intrinsically flat (i.e., has zero Gaussian cur-
vature) then it deforms into a developable surface: it can be unrolled onto a plane [13, 49].
Sadowsky was probably the first who formulated the problem in this way [44, 45]: find the
shape of a Möbius strip by minimisation of the integral of the squared mean curvature over a
deformed rectangular domain under the constraint of developability. Sadowsky went further
and also derived the equations that describe the equilibrium shape of a thin inextensible elas-
tic strip in the limit of vanishing width [45]. For a strip of finite width, Wunderlich showed
how to reduce the variational problem to a one-dimensional one: he carried out analytical in-
tegration over the width of the strip so that the variational problem reduces to minimisation
of the remaining one-dimensional integral over the centreline of the strip [61]. He didn’t de-
rive the Euler–Lagrange equilibrium equations for this reduced variational problem. It was

1Manufacturing an accurate model of an elastic Möbius strip is not entirely straightforward. If we glue the
ends together with a small region of overlap then the resulting model will have non-uniform thickness, which
affects the bending stiffness locally and hence the equilibrium shape in space. Welding the ends of a metal or
plastic strip would have similar effects. To overcome these problems the model shown in Fig. 1 was created
by printing the computed solution on a strip of double the length and then closing it after winding it twice,
thus creating a strip of double the thickness. The two layers were then glued together without the need for an
overlap and the thickness of the resulting strip is constant everywhere. The colouring was carefully phased in
accordance with the actual shape.
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Fig. 1 Photo of a paper Möbius strip of aspect ratio L/(2w) = 2π . Inextensibility of the material causes the
surface to adopt a characteristic developable shape indicated by the straight generators. The colouring varies
according to the bending energy density, from violet for regions of low bending to red for regions of high
bending

proven recently that the Sadowsky functional is the Γ -limit of the Wunderlich functional
for centrelines with non-vanishing curvature [26].

An alternative approach has been to model a narrow elastic Möbius strip as a thin in-
extensible elastic rod with non-circular cross-section taken in the limit where one of the
bending stiffnesses tends to infinity [33]. Although the centreline shapes obtained using
this approach are superficially in good agreement with those of a real narrow Möbius strip,
such a model fails to reproduce the generic characteristic features of the surface of twisted
inextensible strips.

Approximate equations for deformations of wide strips were derived in the mid-1950s by
Mansfield [34, 35]. These equations predict the distribution of generators of the developable
surface while ignoring the actual three-dimensional geometry. This work was followed up
in [2], where localisation of stresses at two diagonally opposite corners was found for a strip
in its first buckling mode. The actual shape of the strip was not computed.

The Euler–Lagrange equations for the Sadowsky functional describing equilibria of a
narrow developable strip were derived in [21]. Some explicit solutions of the same varia-
tional problem were presented in [8, 22]. Folded narrow annular strips were studied in [9].

The geometrically exact equilibrium equations for an elastic developable strip were pre-
sented in [50] together with their numerical solution for Möbius strips of various aspect
ratios. Here we give a more detailed discussion of the theory of developable strips including
a more self-contained analysis of the variational problem and a complete formulation, and
solution, of the boundary-value problem for the Möbius strip. We then extend the work to
closed one- and two-sided strips of different topology.

2 Geometry of a Developable Strip

Consider an inextensible ribbon that, when developed onto a plane, makes a strip that is
bounded by two parallel straight lines. By the developability property, the strip, however
deformed, can be reconstructed from its centreline, i.e., the line that is equidistant from both
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Fig. 2 A developable strip is made up of straight generators in the rectifying plane of tangent, t , and binor-
mal, b, to the centreline, r . The generators make an angle β with the tangent. N is the unit normal to the
surface of the strip

parallel lines in the intrinsic geometry of the strip. We denote this line by r(s) ∈ R
3, where

s ∈ [0,L] is arclength along the curve and L is its length. We assume that r(s) is a regular
curve of differentiability class C3.

Let t = r ′ be the unit tangent vector (here and in what follows a prime denotes the
derivative with respect to s). In points where the curvature κ = |t ′| �= 0 we define the unit
principal normal n = t ′/κ and the unit binormal b = t ×n. Like any regular curve in R

3, r(s)

is determined, up to Euclidean motion, by its curvature κ(s) and torsion τ(s) = −b′(s) ·n(s).
A non-planar developable surface is either (part of) a cylinder, a cone or a so-called

rectifying developable [49]. An analytical flat Möbius strip can only be of the latter type
[42] (analyticity rules out Sadowsky’s [44] construction of a Möbius strip from planar and
cylindrical pieces). Given a curve with non-vanishing curvature there is a unique rectifying
developable on which this curve is a geodesic curve. The unit normal N to the surface at the
curve is then aligned with the principal normal to the curve and the surface is the envelope
of rectifying planes orthogonal to the principal normal to the curve. Then

x(s, t) = r(s) + t
[
b(s) + η(s)t(s)

]
,

τ (s) = η(s)κ(s), s = [0,L], t = [−w,w], (1)

is a parametrisation of a rectifying developable strip with centreline r and width 2w [39].
The straight lines s = const. are the generators of the surface. They make an angle β =
arctan(1/η) with the positive tangent direction of the curve r(s) (see Fig. 2). The short edges
s = 0 and s = L of the strip in particular are generators and for closure of the strip we require
|η(0)| = |η(L)| (η(L) = η(0) [parallelogram] for a two-sided surface and η(L) = −η(0)

[isosceles trapezium] for a one-sided surface).
We compute the first fundamental form of the surface coordinate patch given by Eq. (1):

I = dx · dx = E ds2 + 2F ds dt + Gdt2,
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where

E = xs · xs = (
1 + tη′)2

,

F = xs · x t = η
(
1 + tη′),

G = x t · x t = 1 + η2.

The area element is dσ = ‖xs × x t‖dt ds = √
EG − F 2 dt ds = (1 + tη′)dt ds. The unit

normal to the surface N(s, t) = xs×xt

‖xs×xt ‖ = −n(s) is constant along any generator. We also
need the second fundamental form defined by

II = −dx · dN = e ds2 + 2f ds dt + g dt2,

where

e = −N s · xs = −κ
(
1 + tη′),

f = −N s · x t = 0,

g = −N t · x t = 0.

We can now compute the shape operator (or Weingarten map) S, i.e., the linear operator
on the tangent plane defined by S(T ) = −∂T N , where T is a unit tangent vector to the
surface [49]. S(T ) is the gradient of the unit normal to the surface in the tangent direction T .
It therefore encodes information about the curvature of the surface. In fact, the eigenvalues of
the shape operator at each point are the principal curvatures at this point and the eigenvectors
are the principal directions. We have S(xs) = −N s , S(x t ) = −N t , and hence in the basis
(xs ,x t ),

S =
(

E F

F G

)−1 (
e f

f g

)
= 1

EG − F 2

(
eG − f F f G − gF

f E − eF gE − f F

)
=

(
−κ(1+η2)

1+tη′ −κη

0 0

)

.

We then compute the Gaussian curvature as

K := detS = κ1κ2 = eg − f 2

EG − F 2
= 0,

confirming that it vanishes identically, while for the mean curvature we find

H := 1

2
trS = 1

2
(κ1 + κ2) = eG + gE − 2f F

2(EG − F 2)
= − κ(1 + η2)

2(1 + tη′)
, (2)

where κ1 and κ2 are the two principal curvatures of the surface.
As to the space-curve geometry of the centreline r we recall the following. After choos-

ing a coordinate system we may identify the orientations of the Frenet–Serret frame {t,n,b}
attached to r with elements of the group of orthogonal 3 × 3 matrices:

R(s) := (
t(s),n(s),b(s)

) ∈ SO(3).

This defines a skew-symmetric 3 × 3 matrix in the Lie algebra so(3) as follows:

ω̂ = RᵀR′, (3)
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where we have introduced the ‘hat’ isomorphism between skew-symmetric matrices ŵ =(
0 −w3 w2

w3 0 −w1
−w2 w1 0

)
in so(3) and axial (or rotation) vectors w = (w1,w2,w3)

ᵀ in R
3.2 By defi-

nition of the Frenet–Serret frame, we have ω1 = τ , ω2 = 0, ω3 = κ . For a curve on a surface
we define its Darboux frame {t,N , t × N}. The rotation (Darboux) vector has components
(τg, κg, κN), which have their own names, geodesic torsion, geodesic curvature and normal
curvature, respectively. They relate to the curvature and torsion of the curve as τg = τ + χ ′,
κg = κ sinχ , κN = κ cosχ , where χ measures the angle from n to N [49]. Here we con-
sider only the case of a geodesic centreline and we thus have n = −N , hence χ = π and
τg = τ = ω1, κg = 0 = ω2, κN = −κ = −ω3.

The Frenet–Serret frame is discontinuous at an inflection point where the normal n (and
hence the binormal b) flips (n → −n). For a continuous description through an inflection
point we can however use a generalised Frenet–Serret frame (whose normal and binormal
are plus or minus the normal and binormal of the Frenet–Serret frame and such that the
frame is continuous through an inflection point) and let κ be the signed curvature [39, 42].

2.1 Edge of Regression

The asymptotic completion of a developable strip is defined as the surface obtained by ex-
tending all generators to infinity in both directions, i.e., taking t in all of R in Eq. (1).
From Eq. (2) we see that the mean curvature H becomes singular if the parameter t in
Eq. (1) equals −1/η′. If η′ = 0 then there is no singularity on the extended generator in
the asymptotic completion. We call points on the centreline where η′ = 0, ‘cylindrical’.
At such points the mean curvature H is independent of t , so the principal curvatures are
constant along the local generator. Away from cylindrical points we can define the curve
xe(s) = r(s) − 1

η′(s) [b(s) + η(s)t(s)], which is called the edge of regression. When η′
changes sign the edge of regression jumps within the asymptotic completion from one side
of the centreline to the other. (For a graphical representation the reader may wish to look
ahead to Fig. 10 for the case of a Möbius strip.) The strip cannot be wider than the critical
value of t , i.e., we require that w|η′| ≤ 1. The developable surface is then the envelope of
the tangents to the edge of regression (i.e., of the generators of the surface) and is therefore
also the tangent developable. This envelope meets the edge of regression in two sheets that
form cusps in the normal plane to xe [37].

The edge of regression may have its own singularities. By differentiation we find x ′
e(s) =

η′′(s)
η′2(s)

[b(s) + η(s)t(s)]. If η′′ = 0 the tangent to the edge of regression is discontinuous. This
corresponds to a cusp point on the curve and a swallow tail singularity of the asymptotic
completion of the strip. We call isolated points of the centreline where η′′ = 0, ‘conical’.
Clearly, for a smooth centreline, there must be a conical point between any pair of cylindrical
points.

3 The Energy Functional

The bending energy for an arbitrary Kirchhoff–Love shell of thickness 2d can be written as
the following integral over the surface of the strip [12, 38, 63]:

U = D

2

∫∫

Ω

[
ν
(
tr(�S)

)2 + (1 − ν) tr
(
(�S)2

)]
dσ, (4)

2Throughout we adopt the notation that for any vector v ∈ R
3 the sans-serif symbol v denotes the triple of

components (v1, v2, v3)ᵀ = (v · t,v · n,v · b)ᵀ in the Frenet–Serret frame.
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where D = 2Yd3/[3(1 − ν2)] is the flexural rigidity, ν is Poisson’s ratio, Y is Young’s
modulus and �S = S −S0; here and later the subscript 0 refers to the undeformed reference
configuration. By expressing both S and S0 in principal axes of S0, we may write

S =
(

cos�β − sin�β

sin�β cos�β

)(
κ1 0
0 κ2

)(
cos�β sin�β

− sin�β cos�β

)
, S0 =

(
κ1,0 0
0 κ2,0

)
,

where �β = β − β0 is the angle between the principal curvature axes in the deformed and
undeformed states. Equation (4) then becomes [63]

U = D

∫∫

Ω

[
(1 + ν)(�H)2 + (1 − ν)

(
(�A)2 + 4AA0 sin2 �β

)]
dσ, (5)

where �H = H − H0 and A = √
H 2 − K .

In our case of a developable surface obtained by isometric deformation from its un-
stressed state we have zero Gaussian curvature K (the undeformed surface must be flat,
although not necessarily planar). This means that one of the principal curvatures is zero (say
κ2 = 0) and we may write

U = D

2

∫∫

Ω

[
(κ1 − κ1,0)

2 + 2(1 − ν)κ1κ1,0 sin2 �β
]

dσ. (6)

The fact that the strip is fully determined by its centreline suggests reduction of this dou-
ble integral to a single integral over the centreline. However, this reduction looks intractable
for an arbitrary undeformed shape given by κ1,0. We develop the general theory a little fur-
ther, and consider two special cases, in Appendix A, but here we proceed by assuming that
the strip is planar when relaxed. Thus we set κ1,0 = 0 and have, with κ1 = 2H ,

U = D

2

∫ L

0

∫ w

−w

κ2(1 + η2)2

1 + tη′ dt ds. (7)

The t -integration can be carried out analytically [61], and we arrive at

U = Dw

∫ L

0
h
(
κ,η, η′)ds (8)

with

h
(
κ,η, η′) = κ2

(
1 + η2

)2
V

(
wη′),

V
(
wη′) = 1

2wη′ log

(
1 + wη′

1 − wη′

)
.

(9)

Note that for strips with no intrinsic curvature, equilibrium shapes do not depend on the
material properties: Young’s modulus is a simple factor and Poisson’s ratio does not en-
ter the energy expression. Also note that in the limit of narrow strips, wη′ → 0, we have
V (wη′) → 1 and no derivative enters the integrand in Eq. (8) (cf. [44, 45]). The integrand
h reduces to κ2 of the planar Euler elastica if η ≡ 0, the surface then being cylindrical with
the generator everywhere perpendicular to the centreline r .

For solutions of closed strips or strips with fixed end points we impose a constant end-to-
end distance constraint by adding the following integral expression to the bending energy:

W = −F · [r(L) − r(0)
] = −

∫ L

0
F · t ds,
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where we have used inextensibility of the centreline, i.e., t = r ′, and F is a (constant) La-
grange multiplier (with the physical meaning of an internal force). Finally, we have to im-
pose the constraint that the centreline is geodesic (straight in the intrinsic geometry), i.e.,
ω2 = κg ≡ 0. We enforce this constraint by adding the integral T = ∫ L

0 M2ω2 ds, where
M2 = M2(s) is another (local) Lagrange multiplier.

In conclusion, equilibrium shapes of a thin, inextensible and intrinsically planar strip are
given by stationary points of the functional

A = Ū + W + T =
∫ L

0
Lds, with L = h + M2ω2 − F · t, (10)

where L is the Lagrangian of the problem and Ū = U/(Dw) (all force and moments in the
rest of the paper are thus normalised by Dw). This represents a 1D variational problem on
a curve in R

3 cast in Euclidean invariant form.
Although we are here interested in closed-strip solutions, the functional A can also be

used to study open-strip solutions. If for such open strips the ends are free to move relative
to each other then W represents the work done by any applied end force F . However, since
we use the parametrisation of Eq. (1) in the t -integration to obtain the one-dimensional
integral (8), the short edges of the strip must be generators and therefore straight. This is
quite natural for fixed ends (held by a straight clamp covering the entire edge of the strip)
but constitutes a restriction on deformations considered for strips with free ends.

4 Variational Principle and Equilibrium Equations

4.1 Variational Principle

To derive the equilibrium equations for the functional A we follow the recent higher-order
variational approach of [16]. This approach yields equations in a particularly elegant and
transparent geometrical form if we view the Lagrangian L as a function of the rotation
matrix R and its derivatives, i.e., as defined on the (higher-order) tangent bundle of the
symmetry group of our problem, the Lie group SO(3). The theory in [16] then gives a
symmetry-reduced variational problem with Euler–Lagrange equations in Euler–Poincaré
form. Similar treatments of higher-order variational problems on curves can be found in
[24, 52].

We can transform L into suitable form by expressing κ , η, η′ and ω2 in terms of the
Frenet–Serret frame viewed as a rotation matrix, R (see Sect. 2). The result is the second-
order Lagrangian L = LF (R,R′,R′′) : T (2)SO(3) → R, where T (2)SO(3) is the second-
order tangent bundle and F ∈ R

3 is regarded as a parameter. The functional A may then be
written as

A =
∫ L

0
LF

(
R,R′,R′′)ds =

∫ L

0
L̄

(
R,R′,R′′)ds −

∫ L

0
F · t ds, (11)

where t = Re1 and L̄ collects all terms not depending on F . The parameter-dependent
Lagrangian LF is not invariant under SO(3) because of the W term, which is only invariant
under rotations S1 about F . Thus F breaks SO(3) symmetry of LF . However, if we view
L = LF as a function defined on T (2)SO(3) × R

3 with SO(3) acting by left multiplication
on both T (2)SO(3) and the parameter manifold R

3 then this L is left-invariant under SO(3).
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We are then in the situation of Sect. 3.3 of [16] and can apply Euler–Poincaré reduction for
Lie groups acting on manifolds to obtain a reduced variational principle.

We consider curves in SO(3) with given end point conditions R(0), R′(0), R(L), R′(L)

(these fix the end generators in space). According to Hamilton’s principle such a curve is
an extremal of A (δA = 0) under variations of the curve that vanish at the end points, i.e.,
δR(0) = δR′(0) = δR(L) = δR′(L) = 0, while F is held fixed, if and only if it is a solution
of the Euler–Lagrange equations. Here we have used the usual notation for infinitesimal
variations of a field variable v(s): for a smooth one-parameter family of curves vε(s) we
write δv(s) = d

dε
vε(s)|ε=0.

The reduced variational principle is

δ

∫ L

0
l
(
ω,ω′,F

)
ds = δ

(∫ L

0
l̄
(
ω,ω′)ds −

∫ L

0
F · t ds

)
= 0 (12)

for l : 2so(3) × R
3 → R given by l(ω,ω′,F) = LF (R,R′,R′′), i.e., l is just LF expressed

in different variables, and the constrained variations δω of ω and δω′ = (δω)′ of ω′ of the
form δω = � ′ + ω × � with � another axial vector and ω × � := [ω̂, �̂ ], the Lie bracket
of so(3), �̂ = Rᵀ(δR) ∈ so(3) and δF = −�̂F. The vanishing variation conditions for the
non-reduced functional Eq. (11) imply �(0) = � ′(0) = �(L) = � ′(L) = 0 and therefore
δω(0) = δω(L) = 0. The reduced variables are (ω̂,F) = (RᵀR′,RᵀF ) ∈ so(3) × R

3. Note
that under this reduction the parameter F acquires field status.

F satisfies the equation

(∂s + ω̂)F = 0, (13)

with initial condition F(0) = Rᵀ(0)F . The Euler–Lagrange equations for the reduced func-
tional take the Euler–Poincaré form

(∂s + ω̂)M = ∂l

∂F
× F, (14)

with M defined by

M = Eω(l), (15)

where Eζ (k) := ∂k
∂ζ

− d
ds

( ∂k
∂ζ ′ ) is the Euler–Lagrange operator for the variable ζ .

For further analysis we rewrite Eqs. (13), (14), (15) as the following system: (a) bal-
ance equations for the components of the internal force F = (F1,F2,F3)

ᵀ and moment
M = (M1,M2,M3)

ᵀ expressed in the Frenet–Serret frame [24, 52]

F′ + ω × F = 0, (16)

M′ + ω × M + t × F = 0, (17)

and (b) the ‘constitutive’ equations

Mj = ∂l

∂ωj

− d

ds

∂l

∂ω′
j

, j = 1,2,3. (18)

Here we have used that ∂l
∂F = −t = −e1, e1 ≡ (1,0,0)ᵀ.

The equations have |F|2 and F · M as first integrals.
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4.2 Equations in the Original Variables κ , η

We note that Eq. (18) for j = 2 is trivial. For j = 1 and 3 we use a contact transformation
(ω1,ω3) = (τ, κ) → (η, κ) [52] to obtain

M1 = ∂η

∂ω1
Eη(h) = 1

κ
Eη(h), (19)

M3 = ∂h

∂ω3
+ ∂η

∂ω3
Eη(h) = ∂h

∂κ
− η

κ
Eη(h), (20)

or, in more compact form,

∂κh − ηM1 − M3 = 0, (21)

Eη(h) − κM1 = 0 (22)

(cf. [50] where the signs of moments and forces are taken opposite). We see that Eq. (21)
contains only the first derivative of η (coming from the energy density h), while Eq. (22)
also has a term with the second derivative of η. Note that for the infinitesimally narrow strip
both Eqs. (21), (22) are algebraic. To use Eqs. (16), (17) we represent the Darboux vector as
ω = (κη,0, κ)ᵀ.

To bring Eqs. (21), (22) into a convenient form for numerical solution, we first differ-
entiate Eq. (21) with respect to s. On substitution of the moment derivatives from Eq. (17)
this gives (ηM1 + M3)

′ = η′M1 − F2. Combining this equation with Eq. (22) we obtain the
following third-order system, linear in terms of the highest derivatives, i.e., κ ′ and η′′:

4a1

(
1 + η2

)2
κ ′ + 8b2κη

(
1 + η2

) = −b3M1 + b4F2, (23)

4a1κ
(
1 + η2

)2
η′′ + 4a3κη

(
1 + η2

) = a2M1 − a4F2, (24)

where

a1

(
η′) = 1

4

(
2V 2

η′ − V Vη′η′
)
,

a2
(
η′) = V + η′Vη′ ,

a3

(
η′) = V a2,

a4

(
η′) = Vη′ ,

b2
(
η′) = 1

2

[
η′(V 2

η′ − V Vη′η′
) − V Vη′

]
,

b3
(
η′) = 1

2

(
2Vη′ + η′Vη′η′

)
,

b4

(
η′) = 1

2
Vη′η′ .

(25)

Note that the above equations become singular if the curvature vanishes or if a1 = 0.
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4.3 Hamiltonian

Legendre transformation of the second-order reduced Lagrangian l gives the symmetry-
reduced Hamiltonian

H(π1,ω,π2,F) = π1 · ω + π2 · ω′ − l
(
ω,ω′,F

)
,

where π1 = ∂l
∂ω

− d
ds

(
∂l
∂ω′

) = M, π2 = ∂l
∂ω′ are the reduced Ostrogradsky momenta [16]. The

Euler–Lagrange equations for the reduced Lagrangian l derived in Sect. 4 are equivalent
to Hamilton’s equations for the reduced Hamiltonian H with respect to a non-canonical
Poisson bracket. It is easy to show that

∑3
j=1

∂l

∂ω′
j
ω′

j = ∂h
∂η′ η′. So in terms of η and our other

variables the Hamiltonian can be written as

H = M1κη + M3κ + ∂h

∂η′ η
′ − h

(
κ,η, η′) + F1. (26)

For a uniform strip with h not explicitly depending on arclength s, H is a conserved quantity,
as can be verified directly by differentiating the right-hand side of Eq. (26) with respect to s

and using Eqs. (16), (17), (21) and (22) to show that H′ = 0.
After substitution of h from Eq. (9) we can rewrite Eq. (26) in the explicit form:

H = κ(M1η + M3) + κ2
(
1 + η2

)2
[

1

1 − (wη′)2
− 1

wη′ log

(
1 + wη′

1 − wη′

)]
+ F1.

4.4 Symmetries

The equilibrium equations (Eqs. (16), (17), (23), (24)) are invariant under the reversing
involutions R1 and R2:

R1 :
F1 → F1, F2 → −F2, F3 → F3, M1 → M1, M2 → −M2, M3 → M3,

κ → κ, η → η, s → −s,

R2 :
F1 → F1, F2 → F2, F3 → −F3, M1 → M1, M2 → M2, M3 → −M3,

κ → −κ, η → −η, s → −s,

and the non-reversing involution

S :
F1 → F1, F2 → F2, F3 → −F3, M1 → −M1, M2 → −M2, M3 → M3,

κ → κ, η → −η, s → s.

Further involutions exist but will not be required. Note that R2 requires κ to be interpreted
as the signed curvature.
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4.5 Kinematics Equations

Reconstruction of the centreline of the strip requires solving for the tangent t and integrating
this to get r . We choose a parametrisation of the Frenet–Serret frame {t,n,b} in terms of
three Euler angles ψ , ϑ and ϕ [32]:

t =
⎛

⎝
sinϑ cosψ

sinϑ sinψ

cosϑ

⎞

⎠ , n =
⎛

⎝
− sinψ sinϕ + cosϑ cosψ cosϕ

cosψ sinϕ + cosϑ sinψ cosϕ

− sinϑ cosϕ

⎞

⎠ ,

b =
⎛

⎝
− sinψ cosϕ − cosϑ cosψ sinϕ

cosψ cosϕ − cosϑ sinψ sinϕ

sinϑ sinϕ

⎞

⎠ .

The Euler angles are related to the Darboux vector by the kinematics equations

ψ ′ = κ sinϕ cscϑ,

ϑ ′ = κ cosϕ, (27)

ϕ′ = κ(η − sinϕ cotϑ).

Note that the angle ϑ should not approach 0 or π . To guarantee this we have to choose the
third axis z of the laboratory reference frame such that the tangent t would never align with
±z.

To find the centreline r we solve Eq. (27) in conjunction with the equation r ′ = t , or,
writing r = (x, y, z)ᵀ,

x ′ = sinϑ cosψ,

y ′ = sinϑ sinψ, (28)

z′ = cosϑ.

4.6 Full System of Equations

For ease of reference we collect here together all the equations derived (i.e., Eqs. (16), (17),
(23), (24), (27), (28)):

F ′
1 − κF2 = 0,

F ′
2 + κF1 − κηF3 = 0,

F ′
3 + κηF2 = 0,

M ′
1 − κM2 = 0,

M ′
2 + κM1 − κηM3 − F3 = 0,

M ′
3 + κηM2 + F2 = 0,

4a1

(
1 + η2

)2
κ ′ + 8b2κη

(
1 + η2

) = −b3M1 + b4F2,

4a1κ
(
1 + η2

)2
η′′ + 4a3κη

(
1 + η2

) = a2M1 − a4F2, (29)

ψ ′ = κ sinϕ cscϑ,
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ϑ ′ = κ cosϕ,

ϕ′ = κ(η − sinϕ cotϑ),

x ′ = sinϑ cosψ,

y ′ = sinϑ sinψ,

z′ = cosϑ.

This system is of 15th order with variables F1, F2, F3, M1, M2, M3, κ , η, ψ , ϑ , ϕ, x, y, z.
In the following sections we formulate boundary-value problems for these equations that
exploit the symmetries identified in Sect. 4.4.

5 The Möbius Strip

5.1 Properties of a One-Sided Strip

Randrup & Røgen [39] have shown that along the centreline of a one-sided rectifying de-
velopable strip an odd number of switching points must occur where κ = τ = 0 and the
principal normal to the centreline flips (i.e., makes a 180◦ turn). Moreover, when approach-
ing a switching point, τ goes to zero at least as fast as κ , meaning that η is bounded. From
Eq. (2) it follows that through the inflection point goes an umbilic line, i.e., a line on which
both principal curvatures are equal, namely zero. (Incidentally, developable Möbius strips
without switching points may exist if the surface does not contain a closed geodesic [7].)
To make the twisted nature of the Möbius strip precise we note that a closed centreline with
a continuous and periodic twist rate (here τ(s)) defines a closed cord [15], for which one
can define a linking number Lk [15]. Any closed ribbon of a cord of half-integer Lk is one-
sided. The simplest example, with Lk = ± 1

2 , gives the classical Möbius strip with half a
turn of twist (the opposite values of Lk corresponding to mirror images of each other). The
linking number Lk so defined is identical to the Möbius twisting number of a closed curve
in an embedded surface in R

3 introduced in [40]. In [40] it was shown that within the set
of flat surfaces, flat strips with the same Möbius twisting number, and whose centrelines are
of the same knot type, belong to the same isotopy class. It is known that for every isotopy
class there exists a developable Möbius strip with a closed geodesic centreline (each such
class for instance contains a strip that is obtained by isometric deformation from a planar
rectangular domain) [29].

5.2 Boundary-Value Problem

Plastic or paper models of a Möbius strip suggest that equilibrium shapes possess an axis of
π -rotational symmetry. It seems unlikely that nonsymmetric solutions exist. We formulate
a boundary-value problem for such a C2-symmetric Möbius strip by imposing boundary
conditions at s = 0 and s = L/2. Involution R1 is then used to obtain a solution on the full
interval [−L/2,L/2] by π rotation about the axis through both end points. Thus we specify
the following boundary conditions for the system of Eqs. (29) over half a strip (see Fig. 3):

F2(0) = 0, (30)

M2(0) = 0, (31)
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Fig. 3 Möbius strip made of two congruent pieces (green and yellow). The y-axis is the axis of C2-symmetry
and is (negatively) aligned both with the principal normal at the cylindrical point at s = 0 and with the
binormal at the inflection point at s = L/2. The Frenet–Serret frame {t,n,b} is shown at the beginning (grey)
and end (black) of the arclength interval [0,L/2]. The shape shown is an actual solution for aspect ratio
L/(2w) = 5π

κ(L/2) = 0, (32)

η′(0) = 0, (33)

ψ(0) = π, ψ(L/2) = 2π, (34)

ϑ(L/2) = π

2
, (35)

ϕ(0) = π

2
, ϕ(L/2) = π, (36)

x(0) = 0, x(L/2) = 0, (37)

y(0) = 0, (38)

z(0) = 0, z(L/2) = 0. (39)

The conditions Eqs. (37)–(39) fix one end of the half strip at the origin and align the
rotational symmetry axis with the y-axis. The conditions Eqs. (34)–(36) orient the Frenet–
Serret frames at both ends as follows:

t(0) =
⎛

⎝
− sinϑ0

0
cosϑ0

⎞

⎠ , n(0) =
⎛

⎝
0

−1
0

⎞

⎠ , b(0) =
⎛

⎝
cosϑ0

0
sinϑ0

⎞

⎠ ,

t(L/2) =
⎛

⎝
1
0
0

⎞

⎠ , n(L/2) =
⎛

⎝
0
0
1

⎞

⎠ , b(L/2) =
⎛

⎝
0

−1
0

⎞

⎠ ,
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where ϑ0 = ϑ(0) is as yet unknown. It turns out that this choice of angles avoids the Euler-
angle singularity at θ = 0 in all our subsequent computations. Taken together these position
and angle conditions eliminate all rigid-body degrees of freedom of the strip. We see that
the tangent plane to the strip is orthogonal to the axis of symmetry at s = 0 and contains this
axis at s = L/2. Moreover, the principal normal n(0) points in the negative y-direction, as
does the binormal b(L/2).

The left end condition Eq. (33) specifies the end point s = 0 as a cylindrical point, while
the right end condition Eq. (32) specifies the end point s = L/2 as a point with vanishing
curvature (which together with the symmetry property means that it is an inflection point).
Having the inflection point at the end of the interval prevents us from having to integrate
through the inflection point. Note that the κ thus obtained is non-negative over the entire
arclength interval. To maintain force and moment balance when assembling the entire strip
we require that the components along the π -rotation symmetry axis vanish at s = 0, hence
Eqs. (30) and (31).

The final boundary condition comes from Eq. (21). Since we differentiated this equation
to derive our system of ODEs, we need to impose Eq. (21) as a boundary condition to fix
the integration constant. Using that η′(0) = 0 and taking the limit lims→0 ∂κg = 2κ(0)(1 +
η2(0))2, we may impose this condition in the form

M3(0) = −η(0)M1(0) − 2κ(0)
(
1 + η2(0)

)2
.

Since the force vector is constant in space, Eq. (30) implies F3(L/2) = 0 because
n(0) = b(L/2). Vanishing curvature and torsion at s = L/2 together with Eq. (21) entails
M3(L/2) = 0. Note that F3(L/2) = 0 and M3(L/2) = 0 are in the fixed-point set of R2.
One can similarly verify that the boundary conditions cause an R1 symmetric solution also
to be R2 symmetric. We could therefore also have used the R2 involution about the inflection
point at s = L/2 to obtain the full Möbius strip from the computed half strip.

Note that the boundary conditions do not include the condition η(L/2) = 0. This condi-
tion is not required because it is enforced by symmetry: the boundary conditions at s = L/2
enforce a switching point at s = L/2 for the symmetric full strip (i.e., n(−L/2) = −n(L/2)

and b(−L/2) = −b(L/2)) and according to the Randrup & Røgen properties of Sect. 5.1,
at such points η = 0, in addition to κ = 0. For a nonsymmetric solution, η in fact need not
be zero at switching points. The fact that we always find η tending to zero at s = L/2 (see
below) is therefore evidence for the non-existence of nonsymmetric solutions. For the in-
finitely narrow strip, η in fact does approach a nonzero value, namely 1, at the switching
point [45], which shows that there is no symmetric solution in that case.

The boundary-value problem is solved numerically by the continuation code AUTO [10].
There are significant numerical difficulties solving this problem, as each end of the integra-
tion interval has a singularity. At the switching point enforced at s = L/2, |η′| is always
found to tend to 1/w, giving a logarithmic singularity in Eq. (9) (this singular behaviour
is consistent with analytical asymptotic results in [25]). In practice, to compute a starting
solution, we first compute an approximate solution with κ(L/2) ≈ 0.1 to stay away from
the singularity at s = L/2. When all other boundary conditions are satisfied we ‘pull’ the
solution into the singularity by continuing κ(L/2) to zero as far as possible, typically reach-
ing values of 0.001. At this point, we typically have η(L/2) of the same order of magnitude
while 1/w−|η′(L/2)|, the distance from the singularity, is typically as small as 10−6. At the
other end (s = 0), numerical convergence requires Taylor expansions of the coefficients ai ,
bi in Eqs. (25) about η′ = 0 to be used for a small interval around s = 0 to eliminate the
removable singularity of V in Eq. (9) (we use expansions up to fourth order). As a check on
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Fig. 4 Projections and 3D shape of the centreline of Möbius strips for w = 0 (magenta), 0.1 (red), 0.2
(green), 0.5 (blue), 0.8 (black), 1.0 (cyan) and 1.5 (orange). (L = 2π .)

the numerical results, the first integrals |F| and F · M are typically found to be constant to
within 10−7.

Figures 4, 5 and 6 show numerically obtained solutions with Lk = 1
2 (mirror images, hav-

ing a link Lk = − 1
2 , are obtained by applying the reflection S). There is only one physical

parameter in the problem, namely the aspect ratio L/(2w) of the strip. In the computations
we have fixed L = 2π and varied w. Also shown in the figures is the evolution along the
strip of the straight generator. We note the points where the generators start to accumulate.
At these points |wη′| → 1 and the integrand in Eq. (8) (the energy density) diverges. Where
this happens the generator rapidly sweeps through a nearly flat (violet) triangular region,
a phenomenon readily observed in a paper Möbius strip (Fig. 1). We also observe two ad-
ditional (milder) accumulations where no inflection occurs and the energy density remains
finite. It can be shown that the energy density is monotonic along a generator. This implies
that the (red) regions of high curvature cannot be connected by a generator, as a careful in-
spection confirms. Bounding the (violet) triangular (more precisely, trapezoidal) regions are
two cylindrical generators of constant curvature (and hence constant colour in the figure)
that realise local minima for the angle β .
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Fig. 5 Computed 3D shapes of the Möbius strip for w = 0.1 (a), 0.2 (b), 0.5 (c), 0.8 (d), 1.0 (e) and 1.5 (f).
The colouring changes according to the local bending energy density, from violet for regions of low bending
to red for regions of high bending (scales are individually adjusted). Solution (c) may be compared with the
paper model in Fig. 1 on which the generator field and density colouring have been printed. (L = 2π .)
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Fig. 6 Developments on the plane of the solutions in Fig. 5: w = 0.1 (a), 0.2 (b), 0.5 (c), 0.8 (d), 1.0 (e) and
1.5 (f). The colouring changes according to the local bending energy density, from violet for regions of low
bending to red for regions of high bending (scales are individually adjusted). (L = 2π .)
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Fig. 7 Curvature and torsion of a Möbius strip. Curvature κ (left) and torsion τ (right) are shown for w = 0
(magenta), 0.1 (red), 0.2 (green), 0.5 (blue), 0.8 (black), 1.0 (cyan) and 1.5 (orange). At s = π the principal
normal changes direction to its opposite. (L = 2π .)

Fig. 8 Diagram of torsion against curvature of the strip’s centreline. Colours as in Fig. 7

As w is increased the accumulations and associated triangular regions become more pro-
nounced. At the critical value given by w = π/

√
3 the strip collapses into a triple-covered

equilateral triangle [3, 48]. The folding process as w is increased towards this flat trian-
gular limit resembles the tightening of tubular knots as they approach the ideal shape of
minimum length to diameter ratio [54]. In the flat limit the generators are divided into three
groups, intersecting each other in three vertices. The bounding generators of constant cur-
vature become the creases. It has been conjectured that a smooth developable Möbius strip
can be isometrically embedded in R

3 only if w < π/
√

3 [20], while it has been proven that
a smooth developable Möbius strip can be immersed in R

3 only if w < 2 [20]. Interestingly,
smaller (in fact, arbitrarily small) values for the aspect ratio L/(2w) can be obtained if one
allows for additional folding [3, 13].

Figures 7 and 8 give plots of curvature and torsion. The Randrup & Røgen property that
κ = η = 0 at an odd number of points is confirmed in Fig. 7 and can also be seen in Fig. 6
at the centre of the images where the generator makes an angle of 90◦ with the centreline.
As the maximum value wc = π/

√
3 = 1.8138 . . . is approached, both curvature and torsion

become increasingly peaked about s = 0, 2π/3 and 4π/3. In the limit all bending and torsion
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Fig. 9 Equilibrium shape of the Möbius strip for w = 0.7. Red curves show the edge of regression. Dashed
lines mark the asymptotic directions. (L = 2π .)

is concentrated at the creases of the flat triangular shape. Going to the other extreme, we find
that the solution in the limit of zero width has non-vanishing curvature, so that the Randrup
& Røgen conditions are not satisfied. Given that the Frenet–Serret frame flips at s = π

this means that the curvature is discontinuous. In addition, η tends to 1, giving a limiting
generator angle β = 45◦. Both these properties were anticipated in [45]. This shows that
the zero-width limit is singular and suggests that the Sadowsky problem has only a solution
with discontinuous curvature.

5.3 Edge of Regression

The edge of regression for an equilibrium shape consists of three components (the red curves
in Fig. 9). Each component has a cusp, corresponding to a swallow tail singularity of the
asymptotic completion of the strip. This is the minimum number of singularities that a recti-
fying developable Möbius strip can have [37]. Note that precisely one cusp lies on the edge
of the strip at the umbilic generator (this is always observed, for all widths). The edge of
regression goes to infinity when approaching a cylindrical point (having η′ = 0) and asymp-
totically tends to the direction of the generator at this point (see Fig. 10). Thus three cusps
(corresponding to ‘conical’ points, having η′′ = 0) alternate with three ‘cylindrical’ points.

5.4 Energy, Twist and Writhe of the Strip’s Centreline

The normalised energy Ū = U/(Dw) of the strip is shown in Fig. 11. The only meaningful
energy estimate available in the literature, at the particular value of w = π/30, is that of
Gravesen & Willatzen [17], who minimise Ū for the parametrised family of developable
Möbius strips (not in equilibrium) constructed in [39]. Their solution gives Ū = 9.22; at the
same width we find the much lower value Ū = 5.93.

Also shown in Fig. 11 is the twist T w = 1
2π

∫ L

0 τ ds of the strip as a function of w. T w

may be written as T w = Lk − Wr , where Lk is the linking number of the Möbius cord
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Fig. 10 Development of the Möbius strip for w = 0.7 with graphs of η(s) (brown), η′(s) (green) and η′′(s)
(blue). I marks the inflection point while the Si mark cylindrical points. Generators are drawn in grey with
extensions outside the strip illustrating the asymptotic completion in projection. Red curves show the edge of
regression where extensions of the generators intersect. Inclined dashed lines mark the asymptotic directions.
(L = 2π .)

Fig. 11 Normalised energy Ū and total torsion (twist) T w as functions of half-width w. The results suggest
that the energy diverges as the critical value wc = π/

√
3 = 1.8138 . . . is approached. In the same (flat) limit

both T w and Wr can be analytically shown to be 1/4. (L = 2π .)
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and Wr is the writhe of the centreline. Wr is commonly used as a measure for the spatial
deformation of a 3D curve. It can be defined as the crossing number of the curve averaged
over all viewing directions [14].

6 Developable Strips of Higher Linking Number—Möbius Surgery

6.1 Modified Boundary-Value Problem for Dn-Symmetric Solutions

The Möbius strip defines only one example of a boundary-value problem for twisted sheets.
A natural generalisation is to strips with linking numbers other than ± 1

2 . The Randrup & Rø-
gen properties of Sect. 5.1 also hold for these generalised Möbius strips and our techniques,
exploiting symmetry, can readily be applied to such problems.

We have seen that the Möbius strip has π rotational symmetry about n (described by R1)
at the cylindrical point at s = 0 (labelled S0 in Fig. 10), where η′ = 0, and π rotational
symmetry about b (described by R2) at the inflection point at s = L/2 (labelled I in Fig. 10),
where κ = 0. Continuity of forces and moments across these points is ensured because the
corresponding normal and binormal components vanish: F2(0) = 0 = M2(0) and F3(L/2) =
0 = M3(L/2). (Note that the rotational symmetry is also confirmed in Figs. 5 and 6 by the
generators at these two points having constant colour, corresponding to the curvature being
constant along these generators.)

We can therefore use involution R1 at cylindrical points and involution R2 at inflection
points to construct solutions to the equilibrium equations with an arbitrary number of such
points. In fact, the Möbius half strip has a second, intermediate, cylindrical point (S1 in
Fig. 10) with constant-colour generator. This point is not a point of full symmetry as F2 and
M2 are nonzero. However, it turns out that by a slight change of orientation of the Frenet–
Serret frame we can deform the strip such as to make these components zero. We then have a
choice of taking either the (long) segment S0I or the (short) segment S1I as elementary piece
in constructing more complicated equilibrium shapes. Note from Fig. 10 that one difference
between these two pieces is that S1I has positive η (and hence positive torsion τ ), while on
S0I η (and hence τ ) changes sign. The shapes constructed by combining these pieces will
in general not be closed. However, by imposing symmetric closure conditions we can obtain
Dn-symmetric solutions for n = 2,3,4,5, . . . .

We thus reformulate the boundary-value problem as follows. We drop the two frame
orientation conditions at s = 0 in the previous set of boundary conditions in Sect. 5.2 and
specify, on the interval [0,L/(2n)] (see Fig. 12),

F2(0) = 0, F3

(
L/(2n)

) = 0, (40)

M2(0) = 0, M3
(
L/(2n)

) = 0, (41)

κ
(
L/(2n)

) = 0, (42)

η′(0) = 0, (43)

ψ
(
L/(2n)

) = 2π, (44)

ϑ
(
L/(2n)

) = π

2
, (45)

φ
(
L/(2n)

) = π, (46)

x
(
L/(2n)

) = 0, (47)
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Fig. 12 A D3-symmetric solution for (m,n) = (2,3). The D3-symmetry axis is vertical (dashed). The three
C2-symmetry axes are also shown dashed; each is aligned with the principal normal at one intersection with
the strip and with the binormal at the opposite intersection. The Frenet–Serret frame {t,n,b} is shown at
the beginning (grey) and end (dark) of the arclength interval [0,L/6]. Two of the six congruent pieces are
coloured (green and yellow); one is obtained from the other by rotation through π about the binormal b at
the inflection point s = L/6. The angle between the principal normal at s = 0 and the binormal at s = L/6
equals 2π/3. The shape shown is an actual solution for aspect ratio L/(2w) = 9.87

y
(
L/(2n)

) = 0, (48)

z
(
L/(2n)

) = 0. (49)

These boundary conditions ‘cut out’ a piece between cylindrical and inflection points (either
S0I or S1I ) of the Möbius strip solution.

We then add two symmetric closure conditions for a solution consisting of a sequence of
2n congruent pieces satisfying the above boundary conditions. The first condition enforces
coplanarity of n(0), b(L/(2n)) and r(L/(2n)) − r(0):

(
n(0) × b

(
L/(2n)

)) · (r(
L/(2n)

) − r(0)
) = z(0)nx(0) − x(0)nz(0) = 0. (50)

In explicit form, after using the boundary conditions (40)–(49), this reads

z(0)
(− sinψ(0) sinϕ(0) + cosϑ(0) cosψ(0) cosϕ(0)

) + x(0) sinϑ(0) cosϕ(0) = 0. (51)

The second condition enforces an angle m
n
π , m

n
∈ Q \ Z, m < n, between n(0) and

b(L/(2n)):

n(0) · b(
L/(2n)

) = cos

(
m

π

n

)
. (52)

This condition guarantees that concatenation of 2n copies of the elementary piece produces
a closed strip (with n inflection points). In our variables the condition reads

− cosψ(0) sinϕ(0) − cosϑ(0) sinψ(0) cosϕ(0) = cos

(
m

π

n

)
. (53)
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Fig. 13 Two-sided closed strip for (m,n) = (1,2) with Lk = 1 and aspect ratio L/(2w) = 6.589 (strip (b)
in Fig. 14), |C1V1| = |C2V2| = 2w. Arrows show the contact forces. Left: Equilibrium shape in 3D. Ci is a
point of self-contact. Right: Development of one half of the strip with straight generators shown. The blue
diagonal line is a geodesic

The Dn-symmetry axis is directed along the vector (z(0),0,−x(0))ᵀ and intersects the
y-axis at

yc =
[(
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.

Note that the C2-symmetric Möbius strip solution of Sect. 5, having (m,n) = (0,1),
is degenerate for these boundary conditions as the first symmetry condition, Eq. (51), is
identically satisfied since x(0) = z(0) = 0.

6.2 Two-Sided Strip with (m,n) = (1,2)—Figure-of-Eight (Lk = 1)

For (m,n) = (1,2) we have a two-sided solution with Lk = 1 in the shape of a figure-
of-eight. A simple instance of this solution is a cylindrical shape with planar centreline
and with all generators orthogonal to this centreline (η ≡ 0). This is the figure-of-eight
elastica solution with self-intersection [32]. A non-selfintersecting solution may be obtained
by considering a slightly displaced solution with non-planar centreline and allowing for self-
contact (see Fig. 13). For a D2-symmetric solution we assume, prompted by paper models,
that this self-contact occurs at the inflection point. If we then also assume that the contact at
the edge of the strip is frictionless then the contact force will only have a component in the
binormal direction, i.e., along the umbilical generator through the inflection point. We can
compute such solutions by dropping the second boundary condition in Eq. (40) and imposing
the geometrical contact condition yc = w, which now becomes y(0) = w, instead. The end
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Fig. 14 D2-symmetric shapes of a two-sided developable closed strip for (m,n) = (1,2) with Lk = 1 and
aspect ratio L/(2w) = 24.420 (a), 6.589 (b) and 4.218 (c, d) (two views). This last value is the lowest value
without self-intersections of the strip. Rotational symmetry axes are shown

force F3(L/4) is then allowed to become nonzero. For a physically realisable solution we
require F3(L/4) < 0 so that it is balanced by an equal and opposite contact force in the
(positive) binormal direction coming from the other half of the strip (see Fig. 13).

Three examples of strips with self-contacts, constructed from (short) S1I pieces of the
Möbius strip, are shown in Fig. 14. The solutions have three cylindrical points between the
two inflection points, which means that in deforming the S1I piece to satisfy the symmetric
closure conditions an extra intermediate cylindrical point has appeared. The solutions in
Fig. 14(a, b) have, however, retained the property of S1I that they have positive torsion,
while those in (c) and (d) have slightly negative torsion (in the top and bottom violet regions
in the figure).

Dependence of the contact force 2F3(L/4) on the aspect ratio of the strip is plotted
in Fig. 15. The contact force vanishes only in the zero-width limit w = 0. This seems to
suggest that no finite-width solutions exist that are free of self-contact. However, there may
be different types of (m,n) = (1,2) solutions with no self-contact and indeed Fig. 16 below
gives an example of exactly such a solution.

Figure 14 shows that as the width w increases the figure-of-eight increasingly flattens.
The aspect ratio of the strip is bounded from below. To see this note from Fig. 13 (left)
that the points V1 and V2 of the umbilic generators lying on the outer edges opposite to the
contact points are separated by twice the width of the strip: |V1V2| = 4w. This means that in
the planar development of the strip the straight line connecting V1 and V2 cannot be shorter
than 4w (Fig. 13, right), so we conclude that the length of the centreline cannot be less than
4w

√
3 and the aspect ratio L/(2w) cannot go below 2

√
3 (consistent with the asymptotic

behaviour displayed in Fig. 15).
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Fig. 15 Contact force �F3 = 2F3(L/4) for D2-symmetric two-sided strip with (m,n) = (1,2), having
Lk = 1, as a function of aspect ratio L/(2w). The diamond marks the point where the tangents at contacting
points become aligned. Solutions on the dashed continuation of the curve have self-intersections. The vertical
asymptote corresponds to the limiting aspect ratio 2

√
3

If we imagine continuation of the sequence in Fig. 14 to a completely flattened triple-
covered rhombus, with diagonals of length 4w and 4w/

√
3, then this solution would have

exactly the limiting aspect ratio. (By allowing other such sharp folds we can in fact reach
strips of the same topology with lower aspect ratio.)

However, numerical results show that, for our equilibrium solutions, the strip starts to
self-intersect near the contact point before this flat state is reached. This indicates that
shapes with a single contact do not exist beyond a critical value of w. Shapes with mul-
tiple contact points are beyond the scope of the present work, but it appears that the con-
tact point bifurcates giving rise to other, nonsymmetric, solutions. The onset of this self-
intersection coincides with the tangents to the edges at the contact point becoming aligned
with each other (at the diamond in Fig. 15). This tangent alignment happens when t(L/2)

becomes parallel to the rotational symmetry axis, which can be represented as the vector
n(0) × b(L/2). Hence the condition is t(L/2) × (n(0) × b(L/2)) = 0, which simplifies to
n(0) · t(L/2) = 0 and further to x(0) = 0. In our continuation run this condition is met at
aspect ratio L/(2w) = 4.218. Figures 14(c, d) show the solution at this value.

We finally show, in Fig. 16, an example of a (m,n) = (1,2) strip with Lk = 1 constructed
from two (long) S0I pieces of the Möbius strip. The solution is not self-contacting and has
the additional cylindrical points between inflection points from the S0I piece. The number
of cylindrical and conical points is therefore the same as that of the solutions in Fig. 14.
At the four conical points η and κ are small and in this sense the conical points are close
to being inflection points; they share with the two inflection points the features of radiat-
ing sharp ridges that bound flat triangular regions (similar to the Möbius strip solutions in
Figs. 5 and 6). In projection the solution has almost perfect D6 symmetry. Despite the vastly
different appearances, the main difference between the solutions in Fig. 14(a, b) and Fig. 16
is that the former have all positive torsion while the latter has a torsion that changes sign (at
non-inflection points where the generator is perpendicular to the centreline).
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Fig. 16 Different views of a developable closed strip for (m,n) = (1,2) with Lk = 1 and aspect ratio
L/(2w) = 15.789 and with D2-symmetry axes indicated

6.3 One-Sided Strip with (m,n) = (2,3)—Strip with Lk = 3/2

For (m,n) = (2,3), taking three copies of a S1I piece of the Möbius strip, we get a one-
sided strip with Lk = 3

2 (also known from Escher’s work [11]). Three examples at different
aspect ratios are shown in Fig. 17, with the last (c) showing the shape at initial (triple) self-
contact at the central axis, when yc = w. The development of one third of this shape is
shown in Fig. 18. The points C1 and C2 coincide in space at the point of triple contact. All
three solutions have positive torsion and, unlike for the figure-of-eight solutions in Fig. 14,
no intermediate cylindrical points have appeared in the deformation of the S1I piece.

D3-symmetric solutions for wider strips, without self-intersection, can be obtained by
imposing an impenetrability constraint and introducing a contact force. Thus we assume
that the single triple contact point is maintained by three contact forces of equal magnitude
acting along the respective umbilic binormals (the lines CiVi, i = 1,2,3, in Fig. 18). The
contact forces are then coplanar and therefore self-balancing (note that these forces applied
at the edge of the strip produce no moments when transferred to the centreline of the strip).

The boundary-value problem is then modified as in the previous section for the figure-
of-eight solution by dropping the second condition in Eq. (40) and adding the geometrical
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Fig. 17 3D shapes of a
one-sided developable closed
strip for (m,n) = (2,3) with
Lk = 3

2 and aspect ratio
L/(2w) = 54.863 (a), 9.369 (b)
and 4.744 (c)
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Fig. 18 One-sided closed strip for (m,n) = (2,3) with Lk = 3
2 and aspect ratio L/(2w) = 4.744 (strip

(c) in Fig. 17), |C1V1| = |C2V2| = 2w. Left: Equilibrium shape in 3D. Ci is a point of triple self-contact.
The straight lines connecting the points Vi , i = 1,2,3, do not belong to the surface of the strip. Right:
Development of one third of the strip with straight generators shown. The blue diagonal line is a geodesic

Fig. 19 Self-contacting one-sided closed strip for (m,n) = (2,3) with Lk = 3
2 and aspect ratio

L/(2w) = 4.249. The vertical D3-symmetry axis is shown. The shape closely approaches an assembly of
three conical surfaces. The edge of the strip touches itself in the centre of symmetry in a triple contact point.
Left: Strip with one third removed to better reveal its shape. Right: Strip with colouring according to the local
bending energy density, ranging from violet for regions of low bending to red for regions of high bending

contact condition yc = w instead. The end force F3(L/6) is thus allowed to become nonzero.
An example of such a self-contacting solution is shown in Fig. 19.

There is again a lower bound to the aspect ratio of the strip. The three coplanar binormals
CiVi make an equilateral triangle V1V2V3 with sides 2w

√
3 (see Fig. 18) and the distance

V1V2 measured on the strip’s surface cannot be shorter than 2w
√

3, this minimum value
occurring only if the entire straight line connecting V1 and V2 lies in the surface. This mini-
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Fig. 20 Dependence of η on normalised arclength for a sixth of the strip with Lk = 3
2 : blue (dotted) is for

the shape in Fig. 17(c), green (dashed) for the shape in Fig. 19 and red (solid) for the strip made of cones, in
which case η = √

2 − s/w

mum value for |V1V2| = 2w
√

3 then gives the minimum aspect ratio L/(2w) = 3
√

2. In this
limit, V1V2 becomes a generator and all other generators pass through the points Vi . The
surface is thus conical. One can also show that η becomes a piecewise linear function of ar-
clength: η = √

2(|4{√2s/(8w)} − 2| − 1), s ∈ [0,6
√

2w], where {x} denotes the fractional
part of x. Figure 20 shows how η approaches this conical limit. Looking at Fig. 19 one can
indeed imagine a limiting shape consisting of three conical surfaces with their apices at V1,
V2 and V3. The conical patches join each other along the three generators V1V2, V2V3 and
V3V1. We study the conical limit of our equations further in Appendix B.

The combined tri-conical surface can be made arbitrarily smooth (by appropriate local
change of the curvature). The resulting surface then provides an interesting example of a
developable surface that is arbitrarily smooth yet does not have a smooth (just a continuous)
field of generators (since η(s) lacks differentiability at points where the centreline crosses
either of the three generators V1V2, V2V3 or V3V1) [43, 57].

Returning to equilibrium solutions, our computational results suggest that just before
the limiting aspect ratio, at L/(2w) = 4.249, all three tangents to the edges in the central
triple contact point Ci become aligned along the D3-symmetry axis. This solution is shown
in Fig. 19. The strip has no other contacts and does not self-intersect. However, as in the
case of the figure-of-eight solution, this alignment of tangents appears to be the onset of
self-intersection. To find the limiting shape of a physical strip we would therefore have to
account for contact more complicated than single-point contact, a problem we leave for
future work.

Experimentation with paper models also suggests that at or shortly after the first contact
a pitchfork bifurcation occurs where the D3-symmetric solution becomes unstable and two
stable solutions appear, buckled in opposite directions. For such nonsymmetric solutions
the three contacting umbilic generators would no longer be coplanar. They may or may not
continue to be perpendicular to the edge of the strip (η = 0). If they are then there would
only be a normal component in addition to the binormal component of the contact force
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Fig. 21 Different views of a developable closed strip for (m,n) = (2,3) with Lk = 3/2 and aspect ratio
L/(2w) = 47.229 and with D3-symmetry axes indicated

at the edge of the strip, and hence at the centreline. This edge component would induce
a twisting moment M1 at the centreline that would also have to be taken into account. If
the umbilic generators are no longer perpendicular to the edge then all force and moment
components of the contact force would have to be accounted for. In the wide limit we can
imagine a folded shape in the form of a tetrahedron with three faces being double-covered
right triangles with sides 2w, 2w and 2w

√
2, while the fourth face is absent. It is easy to

see that such a ‘quarter-cube’ configuration, with residual C3-symmetry, has aspect ratio
L/(2w) = 3.

In Fig. 21 we finally show an example of a (m,n) = (2,3) strip with Lk = 3/2 con-
structed from three (long) S0I pieces of the Möbius strip. The solution is not self-contacting.
It follows the pattern of the Lk = 1 solution in Fig. 16 and in projection has approximate
D9-symmetry.

6.4 Higher-Order One- and Two-Sided Developable Strips

The series of closed-strip solutions may be continued by increasing the number of congruent
pieces. Figure 22 shows strips made of 6, 8, 10 and 12 pieces of type S1I for, respectively,
m = 2,3,4,5 and n = m + 1. By construction each strip possesses the corresponding Dn-
symmetry. The edges of the strips form torus knots or links of type (n,2). The centrelines are
unknotted. Each of these solutions has n isolated cylindrical points, the same as the number
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Fig. 22 3D shapes of a developable closed strip for m = 2,3,4,5, n = m + 1 (a–d) and aspect ratio
L/(2w) = 9.888,13.186,16.507,26.394. The Dn-symmetry axis is orthogonal to the plane of the figure
for the top views (top) and vertical for the side views (bottom)
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Fig. 23 3D shapes of a developable closed strip for m = 1, n = 3,4,5,6 (a–d) and aspect ratio
L/(2w) = 47.134,62.861,157.104,94.272. The Dn-symmetry axis is orthogonal to the plane of the fig-
ure for the top views (top) and vertical for the side views (bottom). The strips in (a) and (b) are (3,2) and
(4,3) torus knots, respectively, while those in (c) and (d) are unknots
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Fig. 24 3D shapes of a developable closed strip for (m,n) = (2,5) (left) and (m,n) = (3,5) (right) with
aspect ratio L/(2w) = 157.169 and 26.345, respectively. The D5-symmetry axis is orthogonal to the plane of
the figure for the top views (top) and vertical for the side views (bottom). The left and right strips are (5,3)

and (5,2) torus knots, respectively

of inflection points. Solutions are alternatingly one- or two-sided. As the width is increased
the strips become flatter (as illustrated by the bottom figures in side projection), tending to
flat folded shapes with the inflection points at vertices of regular n-gons. One easily verifies
that these limiting flat shapes have aspect ratio L/(2w) = n cot π

n
, n = 3,4,5, . . .. The strip

for n = 3, that we also discussed in the previous section, has self-contact before its width
reaches this critical value, while for n = 4 self-contact coincides with the final shape, which
is a double-covered square of side 2

√
2w (equal to the distance ViVi+1 between singularities

on the edge of the strip) and centreline length L = 8w. Solutions for n > 4 do not have self-
contacts. We cannot rule out that Dn-symmetric shapes with multiple central contact exist
at higher aspect ratio, but we have not found such elastic strips in equilibrium.

Figure 23 shows a series of Dn-symmetric solutions with 2n (n = 3,4,5,6) congruent
pieces of type S0I with an extra cylindrical point in the interior. These shapes therefore
have 3n cylindrical points 2n of which generically do not lie on a C2-symmetry axis (the
number of inflection points remains n). In general, computed solutions may easily have
self-intersections (or undergo self-crossings during parameter continuation, which affect the
linking number), particularly at smaller aspect ratios, but all presented solutions are non-
selfintersecting.
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The final two shapes in Fig. 24, for (m,n) = (2,5) and (3,5), complement the set of D5-
symmetric solutions made of 10 pieces (the (m,n) = (4,5) and (1,5) solutions are shown in
Figs. 22 and 23, respectively). Each has 5 inflection points and the left strip has 15 cylindrical
points while the right one has only 5.

7 Discussion

We have formulated and numerically solved boundary-value problems for the isometric de-
formation of flat elastic sheets. Both one- and two-sided topologies have been considered.
A common feature in all computed solutions is the existence of singularities of infinite bend-
ing energy density on the edge of the strip. Symmetry was used to construct solutions with
multiple edge singularities from elementary pieces of the Möbius strip with a single singu-
larity. This technique can be applied to find equilibrium shapes with any number of inflec-
tion points. Nonsymmetric solutions could be obtained by solving multiple boundary-value
problems with different end conditions but with matching conditions at interior points. Our
approach, of course, applies to open strips as well as to closed strips. In [28] we used a tech-
nique similar to the Möbius surgery discussed here to construct triangular buckling patterns
of twisted strip in good agreement with experimental observations.

We used the developability property to reduce the energy integral to a single integral over
the centreline thus obtaining a one-dimensional variational problem. The great advantage of
this reduction is that the Euler–Lagrange equations for this problem are ODEs rather than the
usual PDEs of plate theory. The relatively small price we pay is that the reduced variational
problem is second-order but efficient equilibrium equations, Eqs. (16), (17), (21), (22), were
derived in Euler–Poincaré form. A similar approach was taken in [53] to derive equilibrium
equations for braided rods.

This reduction generalises to more general strips with prescribed boundaries in the in-
trinsic geometry, although it may be necessary to choose a non-straight centreline (refer-
ence curve) to reduce to (κg �= 0). In this case determining the bounds of the t -integration
in Eq. (7) may require the solution of algebraic equations, which may render the reduction
impractical. For simple geometries, however, for instance for an annular strip, reduction, at
least in the narrow limit, is straigthforward [9].

Another generalisation is to strips that are developable but not necessarily planar in their
relaxed state. Since we use the parametrisation of a developable surface in Eq. (1), the short
edges of the strip must be generators in the deformed state. Subject to this constraint on the
deformation, generalisations are possible (see Appendix A for more on this). For instance,
for a strip whose relaxed surface belongs to a cylinder (i.e., η = const.), the reduction to
the centreline can still be carried out (see [51] for an example). Extension to strips with
anisotropic elasticity is straightforward.

The Möbius strip is usually treated as a topological or a geometrical object, not a me-
chanical one. One of the few previous attempts to compute equilibrium shapes of a Möbius
strip was by Mahadevan & Keller [33] who employed a thin anisotropic elastic rod model.
They obtained asymptotic equations for large values of the aspect ratio of the rod’s cross-
section. This limit corresponds to perfect alignment of the rod material frame and the Frenet–
Serret frame, and the equilibrium equations are therefore the Euler–Lagrange equations for
Lagrangian l̄ = κ2(1 + C

B
η2) in Eq. (12), where B and C are the bending and torsional

stiffnesses, respectively. This corresponds to a strip formed by the binormal as it moves
along the rod’s centreline. The solution to those equations, however, although closed as
a rod, does not describe a closed strip, even after the modifications made by the authors.
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In particular, it does not satisfy the Randrup & Røgen conditions of Sect. 5.1, and there-
fore cannot serve as the centreline of a developable Möbius strip, not even a narrow one.
It does not capture the essential geometrical properties of such a strip, for instance the
fact that the torsion τ is zero in the inflection point (required for the generators to line
up).

The geometrical features and accompanying stress localisation of Möbius and other
developable strips observed here are seen more widely in problems of elastic sheets
such as paper folding or crumpling and fabric draping, and were already noted in [34].
Crumpling of paper is dominated by bending along ridges bounding almost flat regions
or facets [31, 58], behaviour that we see back in the nearly flat triangular regions in
Fig. 5. In fabric draping, triangular regions are seen to form that radiate out from (ap-
proximate) vertices [60]. The formation of these flat triangular regions appears to be a
generic feature of nature’s response to twisting inextensible sheets. Analytical work on
such sheets often assumes regions of localisation of bending energy in the form of ver-
tices of conical surfaces [5, 6, 18]. It is known that conical surfaces have infinite elas-
tic energy within the linear elastic theory. A cut-off near the cone apex was therefore
introduced in [6] to obtain the equilibrium equations. More recently, local constraints
on the surface metric have been incorporated into a variational framework to describe
equilibria of generalised conical surfaces made of unstretchable flat sheets [18, 19]. As
the examples in our present work show, by using non-conical developable elastic sur-
faces one can describe bending localisation phenomena without the need for a cut-
off.

Importantly, our approach predicts the emergence of regions of high bending. Although
we prescribe the number of inflection (switching) points of the solution we never impose
any a priori constraints on the shape of the strip, neither in the vicinity of the inflection
points nor elsewhere. Points of divergence of the bending energy may serve as indicators
of positions where out-of-plane tearing (fracture failure mode III) is likely to be initiated.
In this respect it is interesting to observe that when one tries to tear a piece of paper one
intuitively applies a torsion, thereby creating intersecting creases as in the vertices of the
central triangular domains in Fig. 5. A crack originates at the vertex, where the energy
density diverges.

Curvature singularities are of interest to studies of twisted graphene-based nanoribbons.
All-atom first-principle simulations of zigzag-edged graphene nanoribbons in the form of a
Möbius strip show a shape evolution under varying aspect ratio that is in good agreement
with our results in Fig. 5 [59]. Other simulation results reveal that the local curvature of
nanoribbons increases at defect sites [4]. A seemingly related ‘twist localisation’ was ob-
served in ab initio calculations of twisted cyclacenes [36].

Recent technological developments, such as nanostructured origami [1] and strain en-
gineering of nanomembranes [30], have demonstrated the possibility of producing ex-
tremely thin membrane structures that can be folded in a controlled fashion. These struc-
tures have great potential as components of electromechanical devices such as force
probes, capacitors, resonators, etc. with potentially unusual physical properties. For in-
stance, silicon nanomembranes (SiNMs), consisting of the same material as bulk Si-
based semiconductors, have been shown to become electrical conductors when the mem-
brane is sufficiently thin. There is, therefore, significant interest in the relationship be-
tween geometry (and topology) and transport and optical properties such as electri-
cal conductance and photoluminescence. In [27] it was shown that in thin conduct-
ing sheets electrons increasingly localise to the high-curvature regions as the sheet
folds, with creases forming channels for electron transport. Our methods presented in
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this paper may be used to find how thin free-standing sheets fold and where creases
form.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix A: Energy Functional U for a Non-planar Relaxed Strip

Here we briefly consider the general case of a strip that is developable in its unstressed state
but not planar. We rearrange Eq. (6) as

U = D

2

∫∫

Ω

{
κ2

1 − 2κ1κ1,0

[
1 + (ν − 1) sin2 �β

] + κ2
1,0

}
dσ. (54)

The relaxed surface of the strip is determined by the centreline r0, which itself is fully
specified (up to Euclidean motion) by its curvature κ0(s) and torsion τ0(s) so that η0(s) =
τ0(s)/κ0(s), η0(s) = cotβ0(s). Following the calculation in Sect. 2 we then have for the

intrinsic principal curvature κ1,0 = − κ0(1+η2
0)

1+tη′
0

. Since κ0(s) and torsion τ0(s) are given func-

tions, the last term in Eq. (54) integrates to a constant over the fixed domain, which can be
dropped. For the remaining two terms we write U = U1 + U2. The first term, the integral
of κ2

1 , gives the single integral of Eq. (8):

U1 = Dw

∫ L

0
h
(
κ,η, η′)ds.

The second term becomes

U2 = −D

∫ L

0

∫ w

−w

{
κ(1 + η2)κ0(s0(s, t))[1 + η2

0(s0(s, t))]
1 + tη′

0(s0(s, t))

× [
1 + (ν − 1) sin2

(
β − β0

(
s0(s, t)

))]
}

dt ds, (55)

where s0(s, t) solves s0 = s + t[η(s) − η0(s0)]. To interpret this result, note that the strip
is parametrised by two families of generators, one for the relaxed strip and one for the
deformed strip. Through any point on the centreline of the deformed strip goes exactly one
generator of each family. s0(s, t) is the arclength coordinate of a point on the centreline
such that the relaxed generator passing through this point, at angle β0, crosses the deformed
generator passing through centreline point s, at angle β , at distance t from the centreline
(see Fig. 25). Because of the property that generators within each family do not intersect
inside the surface of the strip, s0(s, t) is a monotonic function of both s and t . s0(s, t) may
lie outside the interval [0,L], so we will assume that the relaxed state is given for a larger

interval if required. Noting that sin2(β − β0) = (η−η0)2

(1+η2)(1+η2
0)

we can write Eq. (55) as

U2 = −D

∫ L

0
κI1(s, η)ds,

where
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Fig. 25 Coordinates for an intrinsically non-planar strip. The generators for the relaxed state are shown in
grey, those for the actual, deformed, state in black

I1(s, η) =
∫ w

−w

κ0(s0(s, t))

1 + tη′
0(s0(s, t))

× {[
1 + η(s)η0

(
s0(s, t)

)]2 + ν
[
η(s) − η0

(
s0(s, t)

)]2}
dt.

To make further progress we can replace the integration along the generator in I1 by inte-
gration along the centreline, provided that η(s0(s, t)) �= η(s) for all s. Then (1 + tη′

0)ds0 =
(η − η0)dt and

I1(s, η) =
∫ s+

0

s−
0

κ0(s0)

η(s) − η0(s0)

[(
1 + η(s)η0(s0)

)2 + ν
(
η(s) − η0(s0)

)2]
ds0,

where s±
0 are solutions of the equation s±

0 = s ± w[η(s) − η0(s
±
0 )].

If η = η0 in an isolated point then I1 has a finite limit. To see this, let η−η0 = ε, |ε| � 1,
at, say, s = 0. Then we have s0 = t (η−η0) = tε and limε→0 I1(0, η) = 2wκ0(0)(1+η2(0))2,
which means that the singularity is removable. If η = η0 on an interval then s0 = s on that
interval and the t -integration in Eq. (55) can be performed immediately, as in U1.

A.1 Two Special Cases

We consider two special cases where a reduction to a single integral over the centreline of
the strip can be obtained explicitly.

– Cylindrical strip
If the relaxed shape of the strip is cylindrical, i.e., η0 = const, then I1 can be simplified

to

I1(s, η) = 1

η − η0

[
(1 + η0η)2 + ν(η − η0)

2
] ∫ s+

0

s−
0

κ0(s0)ds0,

where s±
0 = s ± w(η − η0).
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For a strip lying on a circular cylinder of constant radius R0 and having a helical
centreline with pitch angle π/2 − β0 = const., we have κ0 = sin2 β0/R0 = 1/[R0(1 +
η2

0)] = const. and

U2 = −2D

R0

∫ L

0
κ

(1 + η0η)2 + ν(η − η0)
2

1 + η2
0

ds

(cf. [51]).
– Corrugated strip

Now let κ0 be a prescribed periodic function, for instance κ0(s) = A sin(υs), where
the amplitude A and frequency υ are constant. Taking for simplicity η0 ≡ 0, then

U2 = −2DA

υ

∫ L

0

κ sin(υwη)

η

(
1 + νη2

)
sin(υs)ds.

We note that the integrand now explicitly depends on arclength s.

Appendix B: The Conical Limit

Here we explore the particular (singular) case in which the developable strip adopts a coni-
cal shape. The statics of conical surfaces has attracted extensive attention recently [5, 6, 18],
especially in models for paper crumpling. Approximately conical pieces appear in our com-
puted solutions for relatively wide strips. Our particular aim here is to describe the limiting
tri-conical shape of the D3-symmetric one-sided strip with Lk = 3/2 as the strip’s aspect
ratio is increased (see Fig. 19).

The limiting strip solution that we are interested in is assembled from six congruent con-
ical pieces. It is sufficient to focus on finding the shape of one such piece for s ∈ [0,w

√
2].

The edge of regression for this conical piece degenerates into a point, the apex of the cone.
The condition for all generators to go through this point, η = √

2−s/w, gives an explicit for-
mula for η (see Fig. 26). This η makes the logarithm in the bending energy density, Eq. (9),
divergent. We regularise this energy by cutting off a small triangular domain near the apex
of the cone. Thus we compute the bending energy by performing integration in Eq. (7) for
t ∈ [−w, (1 − ε)w], 0 < ε � 1 (we can justify this by appealing to the fact that the local
curvature becomes too high near the apex for the assumption of an elastic material to remain
valid [6]). Then V is a multiplicative constant, V = − 1

2 log ε
2 , in Eq. (9) and therefore does

not enter the equilibrium equations. To account for the conical η(s) given above we replace
the density h(κ, η, η′) in Eq. (8) with

h̃(κ, η) = κ2
(
1 + η2

)2 + λ(s)(η − √
2 + s/w),

where λ is a Lagrange multiplier. Note that this is exactly Sadowsky’s density but with
prescribed η.

The equations for this density follow from the procedure described in Sects. 4.1 and 4.2.
The constitutive Eq. (21) allows us to express

κ = ηM1 + M3

2(1 + η2)2
, (56)

which we substitute into the balance equations to obtain a closed system of six non-
autonomous equations, Eqs. (16), (17), for the six components (F1,F2,F3,M1,M2,M3).
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Fig. 26 Development of the conical surface. |C1V1| = |C2V2| = 2w, |V1V2| = 2w
√

3. Arclength s is mea-
sured along the straight centreline from 0 to the right; sc is measured along the circular arc of radius w (red).
The cut-off is indicated by the yellow line

We can then formulate a boundary-value problem as in Sect. 6.1 on the interval [0,w
√

2] to
find the forces, moments and the curvature of the centreline and reconstruct the surface of the
strip. There is however one difference and that is that for the η as prescribed we cannot sat-
isfy the boundary condition η′(0) = 0. This means that the resulting assembled strip has only
a continuous (and generally not a differentiable) generator at s = 0. All other boundary con-
ditions carry over to the present limiting situation. In particular, the condition κ(w

√
2) = 0

follows from Eq. (56), the fact that η(w
√

2) = 0 and the other condition M3(w
√

2) = 0.
The remaining constitutive Eq. (22) may be used to obtain the Lagrange multiplier λ(s).
However, instead of pursuing this formulation it is instructive for this conical problem to
use a different formulation as we discuss next.

The bending energy of the cone has a particularly simple form if we change to a dif-
ferent reference curve, namely the circular arc of radius w centred at the apex of the cone
(see Fig. 26). Let sc be the arclength coordinate along this arc. It is easy to see that the
generators induce a one-to-one mapping between the strip’s centreline and the circular arc,
s → sc for s ∈ [0,w

√
2], sc ∈ [0, sce], sce = w arctan

√
2, given by

√
2 − s

w
= tan sce−sc

w
=

tan(arctan(
√

2) − sc
w

) and ds = (1 + η2)dsc . Let κN be the normal curvature of the new ref-
erence curve. It equals the nonzero principal curvature at the same point, which we can com-
pute from Eq. (2) by noting that t is now given by the value tc at the intersection of the local
generator with the circular arc (see Fig. 26). We have tc = w(1− sinβ) = w(1−1/

√
1 + η2)

and hence κN = −κ(1 + η2)3/2. We can then express the bending energy as

∫ w
√

2

0
κ(s)2

(
1 + η(s)2

)2
ds =

∫ sce

0
κ2

N(sc)dsc.

This simple form suggests that the equation governing the normal curvature is that of the
Euler elastica, as observed previously in [6]. To demonstrate this we introduce the Darboux
frame {T ,N ,U } at the reference arc with the unit tangent T , normal to the surface N and
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U = T × N . Then we define Rc(sc) := (T ,N ,U) ∈ SO(3) and ω̂c = Rᵀ
c

dRc

dsc
∈ so(3), so that

ωc1 = τg , ωc2 = κg , ωc3 = κN (we omit the subindex ‘c’ in τg , κg and κN ). Since our circular
arc lies on the conical surface with tangent orthogonal to the generator everywhere, we have
τg ≡ 0 and κg ≡ 1/w. Then we define the reduced Lagrangian as

Lc = ω2
c3 + Mc1ωc1 + Mc2

(
ωc2 − 1

w

)
− Fc1,

where Mc1(sc) and Mc2(sc) are Lagrange multipliers. Applying again the procedure de-
scribed in Sect. 4.1, we obtain the six balance equations for (Fc1,Fc2,Fc3,Mc1,Mc2,Mc3)

and the constitutive equation

Mc3 = 2κN . (57)

For completeness we give the relationship between the system of forces and moments at
the centreline and the equivalent transferred system of forces and moments at the circular
arc:

Fc1 = 1
√

1 + η2
(F1 − ηF3),

Fc2 = −F2,

Fc3 = − 1
√

1 + η2
(ηF1 + F3),

(58)

Mc1 = 1
√

1 + η2
(M1 − ηM3) + w

(√
1 + η2 − 1

)
F2,

Mc2 = −M2 + w

(
1 − 1

√
1 + η2

)
(F1 − ηF3),

Mc3 = − 1
√

1 + η2
(ηM1 + M3).

We can also write the Hamiltonian corresponding to the Lagrangian Lc:

Hc = κ2
N + Mc2

w
+ Fc1, (59)

which is a conserved quantity. (By using Eqs. (58) this Hamiltonian when expressed in terms
of centreline variables becomes Hc = κ2(1+η2)3 − M2

w
+F1 −ηF3. That this is a conserved

quantity, despite the fact that η is a given function of s, can also be verified by differentiation
and using the balance equations for the centreline forces and moments.)

From the first and last moment balance equations we find Mc2 = 1
κN

dMc1
dsc

+ 2
w

and Fc2 =
Mc1
w

− 2 dκN

dsc
. Differentiating the latter and substituting the result together with Fc1 obtained

from Eq. (59) into the second force balance equation we arrive at

d2κN

ds2
c

+ κN

2

(
κ2

N − Hc + 2

w2

)
= 0, (60)
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where Hc is the value of the Hamiltonian Hc , as yet undetermined. This is the curvature
equation for the planar Euler elastica, which has well-known solutions in terms of Jacobi
elliptic functions.

To reconstruct the surface, we first parametrise the vectors with three Euler angles ψc ,
ϑc , ϕc:

T =
⎛

⎝
− sinψc sinϕc + cosϑc cosψc cosϕc

cosψc sinϕc + cosϑc sinψc cosϕc

− sinϑc cosϕc

⎞

⎠ ,

N =
⎛

⎝
− sinψc cosϕc − cosϑc cosψc sinϕc

cosψc cosϕc − cosϑc sinψc sinϕc

sinϑc sinϕc

⎞

⎠ , U =
⎛

⎝
sinϑc cosψc

sinϑc sinψc

cosϑc

⎞

⎠ .

The Euler angles are related to the Darboux vector by the kinematics equations

dψc

dsc

= − 1

w
sinϕc cscϑc,

dϑc

dsc

= − 1

w
cosϕc, (61)

dϕc

dsc

= κN + 1

w
sinϕc cotϑc.

Note that the angle ϑc should not approach 0 or π . Finally, to find the reference arc rc =
(x, y, z)ᵀ in three-dimensional space we solve Eq. (61) in conjunction with the equation
drc

dsc
= T .
To compute limiting tri-conical shapes of our one-sided strip we solve the elastica equa-

tion (60) together with Eq. (61) on the interval [0, sce] subject to appropriate boundary con-
ditions. We choose an orientation such that the tangent T (0) is aligned with the z-axis and
the vectors U(0) and U(sce) span the xy-plane, making an angle of π/6 (cf. Eq. (52)).
The xy-plane will then be a symmetry plane for the full strip. We also require the normal
curvature to vanish at sce . All this translates into the boundary conditions

κN(sce) = 0,

ψc(0) = −π/6, ψc(sce) = 0,

ϑc(0) = π/2, ϑc(sce) = π/2,

ϕc(0) = 0,

i.e., six boundary conditions for a fifth-order system of equations and one free parame-
ter Hc. Since the parameter w can be trivially scaled out the solution to this boundary-
value problem yields a universal tri-conical shape for our strip. Numerical solution gives
Hcw

2 = −1.830652 and the graphs for the normal curvature κN on the circular arc and the
curvature κ of the centreline shown in Fig. 27. Figure 28 illustrates the assembly of the en-
tire shape from a single piece in the same manner as described in Sect. 6.3. The resulting
shape is barely distinguishable from the shape in Fig. 19 (Fig. 20 compares η for the two
solutions). Note that while the normal to the surface is continuous everywhere, the curvature
is discontinuous at the generators connecting the apices.
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Fig. 27 Left: Normal curvature κN along the circular reference arc for a sixth of the limiting tri-conical
shape of the strip. sc/w measures normalised length along the arc. Right: Curvature κ along the centreline of
the conical piece. s/w measures normalised length along the centreline

Fig. 28 Assembling the limiting D3-symmetric one-sided strip from six congruent conical pieces

The shape of the conical strip has been found without simultaneously solving for the
forces and moments whose equations are semi-decoupled from the elastica equation (60).
Once κN has been found the force and moment equations form a system of six linear equa-
tions for the components Fc1, Fc2, Fc3, Mc1, Mc2 and Mc3. We can solve these equations
subject to our standard force and moment conditions, Eqs. (40) and (41), translated into
conditions for the above components by using the relationships (58). These four conditions,
together with the single constitutive equation (57) and the Hamiltonian (59), both of which
are fixed by the geometry, yield a unique solution.
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