Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology

Journal article


AminiAghdam, S., Rode, C., Muller, R. and Blickhan, R. (2017). Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology. Journal of Experimental Biology. 220 (3), pp. 478-486. https://doi.org/10.1242/jeb.148312
AuthorsAminiAghdam, S., Rode, C., Muller, R. and Blickhan, R.
Abstract

© 2017. Published by The Company of Biologists Ltd. Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteerstowalk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. Astrunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a filatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs.

Year2017
JournalJournal of Experimental Biology
Journal citation220 (3), pp. 478-486
PublisherThe Company of Biologists
ISSN0022-0949
Digital Object Identifier (DOI)https://doi.org/10.1242/jeb.148312
Publication dates
Print01 Feb 2017
Online25 Nov 2016
Publication process dates
Accepted17 Nov 2016
Deposited04 Nov 2019
Publisher's version
License
All rights reserved
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/885x3

Download files


Publisher's version
478.full.pdf
License: All rights reserved
File access level: Open

  • 67
    total views
  • 72
    total downloads
  • 2
    views this month
  • 2
    downloads this month

Export as

Related outputs

Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running.
AminiAghdam, S., Epro, G., James, D. and Karamanidis, K. (2021). Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. Journal of strength and conditioning research. https://doi.org/10.1519/JSC.0000000000004128
The influence of sagittal trunk leans on uneven running mechanics.
AminiAghdam, S., Blickhan, R. and Karamanidis, Ki. (2020). The influence of sagittal trunk leans on uneven running mechanics. The Journal of Experimental Biology. 224 (1). https://doi.org/10.1242/jeb.228288
Reactive gait and postural adjustments following the first exposures to (un)expected stepdown
AminiAghdam, S., Vielemeyer, J., Abel, R. and Muller, R. (2019). Reactive gait and postural adjustments following the first exposures to (un)expected stepdown. Journal of Biomechanics. 94. https://doi.org/10.1016/j.jbiomech.2019.07.029
Dynamic postural control during (in)visible curb descent at fast versus comfortable walking velocity
AminiAghdam, S., Griessbach, E., Vielemeyer, J. and Muller, R. (2019). Dynamic postural control during (in)visible curb descent at fast versus comfortable walking velocity. Gait and Posture. 71, pp. 38-43. https://doi.org/10.1016/j.gaitpost.2019.04.014
Locomotor stability in able-bodied trunk-flexed gait across uneven ground
AminiAghdam, S., Muller, R. and Blickhan, R, (2018). Locomotor stability in able-bodied trunk-flexed gait across uneven ground. Human Movement Science. 62, pp. 176-183. https://doi.org/10.1016/j.humov.2018.10.011
The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface
AminiAghdam, S. and Blickhan, R. (2018). The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface. Gait and Posture. 61 (3), pp. 431-438. https://doi.org/10.1016/j.gaitpost.2018.02.013
Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking
Mueller, R., Rode, C., AminiAghdam, S., Vielemeyer, J. and Blickhan, R. (2017). Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 473 (2207). https://doi.org/10.1098/rspa.2017.0404
Posture alteration as a measure to accommodate uneven ground in able-bodied gait
AminiAghdam, S., Blickhan, R., Muller, R. and Rode, C. (2017). Posture alteration as a measure to accommodate uneven ground in able-bodied gait. PLoS ONE. https://doi.org/10.1371/journal.pone.0190135
Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground
AminiAghdam, S. and Rode, C. (2017). Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground. Biology Open. 6 (7). https://doi.org/10.1242/bio.025239