Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground

Journal article


AminiAghdam, S. and Rode, C. (2017). Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground. Biology Open. 6 (7). https://doi.org/10.1242/bio.025239
AuthorsAminiAghdam, S. and Rode, C.
Abstract

© 2017. Published by The Company of Biologists Ltd Studies of disturbed human locomotion often focus on the dynamics of the gait when either posture, movement or surface is perturbed. Yet, the interaction effects of variation of trunk posture and ground level on kinetic behaviour of able-bodied gait have not been explored. For 12 participants we investigated the kinetic behaviour, as well as velocity and contact time, across four steps including an unperturbed step on level ground, pre-perturbation, perturbation (10-cm drop) and post-perturbation steps while walking with normal speed with four postures: regular erect, with 30°, 50° and maximal sagittal trunk flexion (70°). Two-way repeated measures ANOVAs detected significant interactions of posture×step for the second peak of the vertical ground reaction force (GRF), propulsive impulse, contact time and velocity. An increased trunk flexion was associated with a systematic decrease of the second GRF peak during all steps and with a decreased contact time and an increased velocity across steps, except for the perturbation step. Pre-adaptations were more pronounced in the approach step to the drop in regular erect gait. With increased trunk flexion, walking on uneven ground exhibited reduced changes in GRF kinetic parameters relative to upright walking. It seems that in trunk-flexed gaits the trunk is used in a compensatory way during the step-down to accommodate changes in ground level by adjusting its angle leading to lower variations in centre of mass height. Exploitation of this mechanism resembles the ability of small birds in adjusting their zig-zag-like configured legs to cope with changes in ground level.

Year2017
JournalBiology Open
Journal citation6 (7)
PublisherThe Company of Biologists
ISSN2046-6390
Digital Object Identifier (DOI)https://doi.org/10.1242/bio.025239
Publication dates
Online15 Jul 2017
Publication process dates
Deposited04 Nov 2019
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/885x0

Download files


Publisher's version
BioOpen_2017.pdf
License: CC BY 4.0
File access level: Open

  • 79
    total views
  • 67
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running.
AminiAghdam, S., Epro, G., James, D. and Karamanidis, K. (2021). Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. Journal of strength and conditioning research. https://doi.org/10.1519/JSC.0000000000004128
The influence of sagittal trunk leans on uneven running mechanics.
AminiAghdam, S., Blickhan, R. and Karamanidis, Ki. (2020). The influence of sagittal trunk leans on uneven running mechanics. The Journal of Experimental Biology. 224 (1). https://doi.org/10.1242/jeb.228288
Reactive gait and postural adjustments following the first exposures to (un)expected stepdown
AminiAghdam, S., Vielemeyer, J., Abel, R. and Muller, R. (2019). Reactive gait and postural adjustments following the first exposures to (un)expected stepdown. Journal of Biomechanics. 94. https://doi.org/10.1016/j.jbiomech.2019.07.029
Dynamic postural control during (in)visible curb descent at fast versus comfortable walking velocity
AminiAghdam, S., Griessbach, E., Vielemeyer, J. and Muller, R. (2019). Dynamic postural control during (in)visible curb descent at fast versus comfortable walking velocity. Gait and Posture. 71, pp. 38-43. https://doi.org/10.1016/j.gaitpost.2019.04.014
Locomotor stability in able-bodied trunk-flexed gait across uneven ground
AminiAghdam, S., Muller, R. and Blickhan, R, (2018). Locomotor stability in able-bodied trunk-flexed gait across uneven ground. Human Movement Science. 62, pp. 176-183. https://doi.org/10.1016/j.humov.2018.10.011
The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface
AminiAghdam, S. and Blickhan, R. (2018). The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface. Gait and Posture. 61 (3), pp. 431-438. https://doi.org/10.1016/j.gaitpost.2018.02.013
Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking
Mueller, R., Rode, C., AminiAghdam, S., Vielemeyer, J. and Blickhan, R. (2017). Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 473 (2207). https://doi.org/10.1098/rspa.2017.0404
Posture alteration as a measure to accommodate uneven ground in able-bodied gait
AminiAghdam, S., Blickhan, R., Muller, R. and Rode, C. (2017). Posture alteration as a measure to accommodate uneven ground in able-bodied gait. PLoS ONE. https://doi.org/10.1371/journal.pone.0190135
Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology
AminiAghdam, S., Rode, C., Muller, R. and Blickhan, R. (2017). Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology. Journal of Experimental Biology. 220 (3), pp. 478-486. https://doi.org/10.1242/jeb.148312