Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses

Journal article


Iturrarana, N, Huraux, K, Bao, Y, Gawne, D and Guilment, J (2018). Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses. Journal of Non-Crystalline Solids. 489, pp. 64-70. https://doi.org/10.1016/j.jnoncrysol.2018.03.013
AuthorsIturrarana, N, Huraux, K, Bao, Y, Gawne, D and Guilment, J
Abstract

FTIR and Raman spectroscopy indicate the glass structure during synthesis of tin fluoride phosphate glass was pyrophosphate, mainly built up from Q1 end groups with a low concentration of Q2 polymeric chains. However, sub-optimal melting produced significantly higher concentrations of orthophosphate Q0 structural units. The variationsinNHandP-OHvibrationsinthespectrarevealedthatacriticaltimeandtemperatureofmeltingwere necessary for the conversion of NH4H2PO2 to produce sufficient P2O5 for glass forming. During melting, P2O5 and SnF2 form a low-temperature melt, which facilitates melting of the SnO and promotes the formation of a more stable glass structure. The fluorine breaks the PeOeP bonds and induces depolymerisation. The density of the glass reached a maximum at 450°C for 25min driven by the need for conversion of NH4H2PO4 to P2O5 and miscibility of SnO in the melt. Inadequate melting times and temperatures gave low Tg values because of weak FeSn and FeP linkages. Glass stability improved with melting due to increased P2O5 and SnO miscibility enabling stronger SneOeP linkages. The results show that melting conditions during synthesis strongly influence critical glass properties and future industrial scale-up will require an understanding of optimum processing.

KeywordsPhosphate glass; Melting conditions; Glass transition temperature; Degradation; Chemical durability; 0912 Materials Engineering; Applied Physics
Year2018
JournalJournal of Non-Crystalline Solids
Journal citation489, pp. 64-70
PublisherElsevier BV
ISSN0022-3093
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jnoncrysol.2018.03.013
Publication dates
Print17 Mar 2018
Publication process dates
Deposited19 Mar 2018
Accepted08 Mar 2018
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/86vq0

Download files

  • 86
    total views
  • 494
    total downloads
  • 1
    views this month
  • 8
    downloads this month

Export as

Related outputs

The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites
Paspali, A, Bao, Y, Gawne, D, Piestert, F and Reinelt, S (2018). The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites. Composites Part B: Engineering. 152, pp. 160-168. https://doi.org/10.1016/j.compositesb.2018.07.005
Effect of composition on the mechanical properties of 3d printed polymer nanocomposites
Paspali, A, Bao, Y, Gawne, DT and Piestert, F (2017). Effect of composition on the mechanical properties of 3d printed polymer nanocomposites. 25th Annual International Conference on Composite/Nano Engineering (ICCE 25). Rome, Italy 16 - 22 Jul 2017
Effect of tin fluoride content on the structure and properties of phosphate glass – polyamide 11 hybrids
Serio, L, Gawne, DT and Bao, Y (2017). Effect of tin fluoride content on the structure and properties of phosphate glass – polyamide 11 hybrids. European Polymer Journal. 99, pp. 134-141. https://doi.org/10.1016/j.eurpolymj.2017.12.012
Microporosity and delamination mechanisms in thermally sprayed borosilicate glass coatings
Gao, J, Bao, Y and Gawne, DT (2016). Microporosity and delamination mechanisms in thermally sprayed borosilicate glass coatings. Surface & Coatings Technology. 304 (25 Oct), pp. 195 - 202. https://doi.org/10.1016/j.surfcoat.2016.07.008
Process control for thermal-spray deposition of thermoset coatings using computer simulation
Hu, X, Bao, Y, Gawne, DT and Zhang, T (2016). Process control for thermal-spray deposition of thermoset coatings using computer simulation. Progress in Organic Coatings. 101, pp. 407 - 415. https://doi.org/10.1016/j.porgcoat.2016.09.008