The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites

Journal article


Paspali, A, Bao, Y, Gawne, D, Piestert, F and Reinelt, S (2018). The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites. Composites Part B: Engineering. 152, pp. 160-168.
AuthorsPaspali, A, Bao, Y, Gawne, D, Piestert, F and Reinelt, S
Abstract

An obstacle for wider application of 3D printed parts is their inferior mechanical performance compared with those from conventional fabrication. This research aims to overcome this deficiency by developing nanostructured PLA/clay composite filaments that are 3D printable by the FFF technique, investigating the effect of filament composition on mechanical properties, and correlating it with the extent of intercalation of different types of clay. The results showed the addition of 5 wt% organomodified clay to PLA raised the elastic and flexural modulus by 10% and 14% respectively. Einstein’s composite theory did not hold for the PLA/organoclay composites but the Halpin-Tsai model was successful in interpreting the measured moduli of the organoclays. The model also showed that increasing the clay intercalation was much more effective than raising the total clay content.

KeywordsA. Polymer-matrix composites (PMCs),; A. Nano-structures,; B. Mechanical properties, C. Computational modelling;3D printing; 09 Engineering; Materials
Year2018
JournalComposites Part B: Engineering
Journal citation152, pp. 160-168
Digital Object Identifier (DOI)doi:10.1016/j.compositesb.2018.07.005
Publication dates
Print01 Nov 2018
Publication process dates
Deposited30 Aug 2018
Accepted10 Jul 2018
Accepted author manuscript
License
CC BY-NC-ND 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/868y6

Accepted author manuscript

  • 3
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Related outputs

Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses
Iturrarana, N, Huraux, K, Bao, Y, Gawne, D and Guilment, J (2018). Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses. Journal of Non-Crystalline Solids. 489, pp. 64-70.
Effect of tin fluoride content on the structure and properties of phosphate glass – polyamide 11 hybrids
Serio, L, Gawne, DT and Bao, Y (2017). Effect of tin fluoride content on the structure and properties of phosphate glass – polyamide 11 hybrids. European Polymer Journal.
Effect of composition on the mechanical properties of 3d printed polymer nanocomposites
Paspali, A, Bao, Y, Gawne, DT and Piestert, F (2017). Effect of composition on the mechanical properties of 3d printed polymer nanocomposites. 25th Annual International Conference on Composite/Nano Engineering (ICCE 25). Rome, Italy 16 - 22 Jul 2017 London South Bank University.
Process control for thermal-spray deposition of thermoset coatings using computer simulation
Hu, X, Bao, Y, Gawne, DT and Zhang, T (2016). Process control for thermal-spray deposition of thermoset coatings using computer simulation. Progress in Organic Coatings. 101, pp. 407 - 415.
Microporosity and delamination mechanisms in thermally sprayed borosilicate glass coatings
Gao, J, Bao, Y and Gawne, DT (2016). Microporosity and delamination mechanisms in thermally sprayed borosilicate glass coatings. Surface & Coatings Technology. 304 (25 Oct), pp. 195 - 202.