Text in Visualization: Extending the Visualization Design Space

PhD Thesis


Brath, R (2018). Text in Visualization: Extending the Visualization Design Space. PhD Thesis London South Bank University School of Engineering
AuthorsBrath, R
TypePhD Thesis
Abstract

This thesis is a systematic exploration and expansion of the design space of data visualization specifically with regards to text. A critical analysis of text in data visualizations reveals gaps in existing frameworks and the use of text in practice. A cross-disciplinary review across fields such as typography, cartography and technical applications yields typographic techniques to encode data into text and provides the scope for the expanded design space. Mapping new attributes, techniques and considerations back to well understood visualization principles organizes the design space of text in visualization. This design space includes: 1) text as a primary data type literally encoded into alphanumeric glyphs, 2) typographic attributes, such as bold and italic, capable of encoding additional data onto literal text, 3) scope of mark, ranging from individual glyphs, syllables and words; to sentences, paragraphs and documents, and 4) layout of these text elements applicable most known visualization techniques and text specific techniques such as tables. This is the primary contribution of this thesis (Part A and B).
Then, this design space is used to facilitate the design, implementation and evaluation of new types of visualization techniques, ranging from enhancements of existing techniques, such as, extending scatterplots and graphs with literal marks, stem & leaf plots with multivariate glyphs and broader scope, and microtext line charts; to new visualization techniques, such as, multivariate typographic thematic maps; text formatted to facilitate skimming; and proportionally encoding quantitative values in running text – all of which are new contributions to the field (Part C). Finally, a broad evaluation across the framework and the sample visualizations with cross-discipline expert critiques and a metrics based approach reveals some concerns and many opportunities pointing towards a breadth of future research work now possible with this new framework. (Part D and E).

Year2018
PublisherLondon South Bank University
Digital Object Identifier (DOI)doi:10.18744/PUB.002743
Publication dates
Print01 Sep 2018
Publication process dates
Deposited17 Dec 2018
Publisher's version
License
CC BY 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/86994

  • 9
    total views
  • 128
    total downloads
  • 5
    views this month
  • 69
    downloads this month

Related outputs

Bertin’s Forgotten Typographic Variables and New Typographic Visualization
Brath, R and Banissi, E (2018). Bertin’s Forgotten Typographic Variables and New Typographic Visualization. Cartography and Geographic Information Science.
Stem and leaf plots extended for text visualizations
Brath, R and Banissi, E (2018). Stem and leaf plots extended for text visualizations. 14th International Conference on Computer Graphics, Imaging and Visualization. Marrakesh, Morocco 23 - 25 May 2017 London South Bank University. pp. 99-104 doi:10.1109/CGiV.2017.32
Multivariate label-based thematic maps
Brath, R and Banissi, E (2017). Multivariate label-based thematic maps. International Journal of Cartography. 3 (1), pp. 45-60.
Using font attributes in knowledge maps and information retrieval
Brath, R and Banissi, E (2014). Using font attributes in knowledge maps and information retrieval. Knowledge Maps and Information Retrieval 2014. London 11 Sep 2014 London South Bank University.
Evaluating Lossiness and Fidelity in Visualization
Banissi, E and Brath, R (2015). Evaluating Lossiness and Fidelity in Visualization. Visualization and Data Analysis 2015. San Francisco, USA 08 - 12 Feb 2015 London South Bank University.
The Design Space of Typeface
Brath, R and Banissi, E (2014). The Design Space of Typeface. IEEE Conference on Information Visualisation VIS 2014. Paris, France 09 - 14 Nov 2015 London South Bank University.
Using text in visualizations for micro/macro readings
Brath, R and Banissi, E (2015). Using text in visualizations for micro/macro readings. IUI Workshop on Visual Text Analytics. Atlanta, USA 29 Mar 2015 London South Bank University. doi:10.13140/RG.2.1.1651.2084
Using Type to Add Data to Data Visualizations
Brath, R and Banissi, E (2015). Using Type to Add Data to Data Visualizations. TypeCon 2015. Denver, Colorado, USA 12 - 16 Aug 2015 Society of Typographic Aficionados.
Typographic sets: Labeled set elements with font attributes
Brath, R and Banissi, E (2016). Typographic sets: Labeled set elements with font attributes. International Workshop on Set Visualization and Reasoning. Philadelphia, United States of America 07 Aug 2016 London South Bank University. pp. 29-43
Stem & Leaf Plots Extended to Various Ranges of Text
Brath, R and Banissi, E (2017). Stem & Leaf Plots Extended to Various Ranges of Text. 14th International Conference Computer Graphics, Imaging and Visualization. Marrakesh, Morocco 22 - 25 May 2017 London South Bank University.
Microtext Line Charts
Brath, R and Banissi, E (2017). Microtext Line Charts. 21st International Conference Information Visualisation. London 11 - 14 Jul 2017 London South Bank University.
Set Visualization
Brath, R and Banissi, E (2016). Set Visualization. SetVR 2016. Philadelphia, USA 07 - 10 Aug 2016 London South Bank University.
Mutlivariate Labeled Cartograms
Brath, R and Banissi, E (2016). Mutlivariate Labeled Cartograms. North American Cartographic Information Society Annual Meeting. Colorado Springs, USA 19 - 22 Oct 2016 London South Bank University.
Evaluation of Visualization by Critiques
Brath, R and Banissi, E (2016). Evaluation of Visualization by Critiques. BELIV '16 Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. Baltimore, MD, USA 24 Oct 2016 ACM. doi:10.1145/2993901.2993904
Font attributes enrich knowledge maps and information retrieval: Skim formatting, proportional encoding, text stem and leaf plots, and multi-attribute labels
Brath, R and Banissi, E (2016). Font attributes enrich knowledge maps and information retrieval: Skim formatting, proportional encoding, text stem and leaf plots, and multi-attribute labels. International Journal on Digital Libraries. 18 (1), pp. 5-24.
Using Typography to Expand the Design Space of Data Visualization
Brath, R and Banissi, E (2016). Using Typography to Expand the Design Space of Data Visualization. She Ji: The Journal of Design, Economics, and Innovation. 2 (1), pp. 59-87.