Experimental data of cathodes manufactured in a convective dryer at the pilot-plant scale, and charge and discharge capacities of half-coin lithium-ion cells.

Journal article


Román-Ramírez, L.A., Apachitei, G., Faraji-Niri, M., Lain, M., Widanage, D. and Marco, J. (2021). Experimental data of cathodes manufactured in a convective dryer at the pilot-plant scale, and charge and discharge capacities of half-coin lithium-ion cells. Data in Brief. 40, p. 107720. https://doi.org/10.1016/j.dib.2021.107720
AuthorsRomán-Ramírez, L.A., Apachitei, G., Faraji-Niri, M., Lain, M., Widanage, D. and Marco, J.
AbstractMegtec Systems pilot-plant scale continuous convective coater. The data was generated as part of an experimental design involving the following coating-drying process variables and ranges: comma bar gap, 80-140 µm; web speed, 0.5-1.5 m/min; coating ratio, 110-150%; drying temperature, 85-110 °C and drying air speed, 5-15 m/s. The manufacturing data include pre-calendered coating thickness, mass loading dry and wet, pre-calendered porosity, spatial autocorrelation and join counting (SAJC) -score for carbon and for fluorine, cell thickness, coating weight and porosity of 15 different electrode coatings and 45 half-coin cells. The electrochemical data was obtained at 25 °C in a Maccor 4000 series battery cycler and consists of charge and discharge capacities at C/20, C/5, C/2, 1C, 2C, 5C and 10C C-rates. Discharge gravimetric and volumetric capacities, rate performance (at 5C:0.2C) and first cycle loss data is also reported. Details of the experimental design and a comprehensive analysis of the data can be found in the co-submitted manuscript (Román-Ramírez et al., 2021). Additional collected data not used in Román-Ramírez et al. (2021) is reported in the present manuscript and include visual observations of coating defects, rheological properties of the electrode slurries (solid content, viscosity, coating shear rate and viscosity at coating shear rate), room temperature and room humidity during the coatings and first cycle loss of the coin cells. Raw and analyzed data is made available. The reported data can be used to extend the analysis reported in Román-Ramírez et al. (2021), and for the comparison of relevant data obtained at different manufacturing scales. [Abstract copyright: © 2021 The Author(s). Published by Elsevier Inc.]
KeywordsCapacity; Coating; Electrochemical testing; Cathode; Drying; Manufacturing; Experimental data; Lithium-ion battery
Year2021
JournalData in Brief
Journal citation40, p. 107720
PublisherElsevier
ISSN2352-3409
Digital Object Identifier (DOI)https://doi.org/10.1016/j.dib.2021.107720
Publication dates
Online16 Dec 2021
Publication process dates
Accepted13 Dec 2021
Deposited21 Jan 2022
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8z1w6

Download files


Publisher's version
1-s2.0-S2352340921009951-main.pdf
License: CC BY 4.0
File access level: Open

  • 14
    total views
  • 14
    total downloads
  • 3
    views this month
  • 4
    downloads this month

Export as

Related outputs

Design of experiments applied to lithium-ion batteries: A literature review
Roman-Ramirez, L.A. and Marco, J. (2022). Design of experiments applied to lithium-ion batteries: A literature review. Applied Energy. 320, p. 119305. https://doi.org/10.1016/j.apenergy.2022.119305
Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production
Lamberti, Fabio M., Roman-Ramirez, L., Dove, A. and Wood, J. (2022). Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production. Polymers. 14 (9), p. e1763. https://doi.org/10.3390/polym14091763
Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries
Roman Ramirez, L., Apachitei G., Faraji-Niri M., Lain M., Widanage D. and Marco J. (2022). Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries. International Journal of Energy and Environmental Engineering. https://doi.org/10.1007/s40095-022-00481-w