“On-The-Fly” Fabrication of Highly-Ordered Interconnected Cylindrical and Spherical Porous Microparticles via Dual Polymerization Zone Microfluidics

Journal article


Sajjadi, S., Alroaithi, M., Chaurasia, A.S. and Jahanzad, F. (2019). “On-The-Fly” Fabrication of Highly-Ordered Interconnected Cylindrical and Spherical Porous Microparticles via Dual Polymerization Zone Microfluidics. Langmuir. 35 (39), pp. 12731-12743. https://doi.org/10.1021/acs.langmuir.9b01077
AuthorsSajjadi, S., Alroaithi, M., Chaurasia, A.S. and Jahanzad, F.
Abstract

A microfluidic platform with dual photopolymerization zones has been developed for production of novel uniform interconnected porous particles with shapes imposed either by the geometry of the external capillary or by the thermodynamic minimisation of interfacial area. Double w/o/w drops with well-defined internal droplet size and number were produced and then exposed to online photopolymerization to create the porous particles. Cylindrical interconnected porous particles were
produced in a segmented flow where the drops took the shape of the capillary. The microfluidic set up included an extension capillary where the drops relaxed and conformed to their thermodynamically favoured morphology. Window opening of the particles occurred “on-the-fly” during UV polymerization without using any offline auxiliary methods. A distinction was made between critically and highly packed arrangements in double drops. The window opening occurred consistently for highly packed spherical drops, but only for critically packed drops containing more than 6 internal cores at internal phase ratio as low as 0.35. The size and number of cores, shape and structure of double drops could be precisely tuned by the flowrate and by packing structure of the inner droplets.

Year2019
JournalLangmuir
Journal citation35 (39), pp. 12731-12743
PublisherAmerican Chemical Society
Digital Object Identifier (DOI)https://doi.org/10.1021/acs.langmuir.9b01077
Web address (URL)https://pubs.acs.org/doi/10.1021/acs.langmuir.9b01077
Publication dates
Online28 Aug 2019
Print01 Oct 2019
Publication process dates
Accepted28 Aug 2019
Deposited15 Oct 2019
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/883wv

Download files

Accepted author manuscript
Revised Manuscript -28-08-19.pdf
License: CC BY 4.0
File access level: Open

  • 14
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Supressing Coalescence and Improving Uniformity of Polymer Beads in Suspension Polymerisation using a Two-Stage Stirring Protocol
Jahanzad, F, Sajjadi, S and Alroaithi, M (2018). Supressing Coalescence and Improving Uniformity of Polymer Beads in Suspension Polymerisation using a Two-Stage Stirring Protocol. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.8b01599
Preparation and characterization of tunable oil-encapsulated alginate microfibers
Chaurasia, AS, Jahanzad, F and Sajjadi, S (2017). Preparation and characterization of tunable oil-encapsulated alginate microfibers. Materials and Design. 128, pp. 64-70. https://doi.org/10.1016/j.matdes.2017.04.069
Two-Stage Stabiliser Addition Protocol as a Means to Reduce the Size and Improve the Uniformity of Polymer Beads in Suspension Polymerisation
Jahanzad, F and Sajjadi, S (2017). Two-Stage Stabiliser Addition Protocol as a Means to Reduce the Size and Improve the Uniformity of Polymer Beads in Suspension Polymerisation. Journal of Applied Polymer Science. 135 (2), p. 45671. https://doi.org/10.1002/app.45671
Ultrafine Nanolatexes Made via Monomer-Starved Semicontinuous Emulsion Polymerization in the Presence of Water-Soluble Chain Transfer Agents
Jahanzad, F, Sajjadi, S and Chen, Y (2016). Ultrafine Nanolatexes Made via Monomer-Starved Semicontinuous Emulsion Polymerization in the Presence of Water-Soluble Chain Transfer Agents. European Polymer Journal. 80, pp. 89 - 98. https://doi.org/10.1016/j.eurpolymj.2016.04.036
Flexible microfluidic fabrication of oil-encapsulated alginate microfibers
Jahanzad, F, Sajjadi, S and Chaurasia, A (2016). Flexible microfluidic fabrication of oil-encapsulated alginate microfibers. Chemical Engineering Journal. 308, pp. 1090-1097. https://doi.org/10.1016/j.cej.2016.09.054