Experimental Study of Wax Deposition in Pipeline – Effect of Inhibitor and Spiral Flow

Journal article


Theyab, M. and Diaz, P. (2016). Experimental Study of Wax Deposition in Pipeline – Effect of Inhibitor and Spiral Flow. International Journal of Smart Grid and Clean Energy. 5 (3), pp. 174-181.
AuthorsTheyab, M. and Diaz, P.
Abstract

Wax deposition is one of the main flow assurance problems in the oil industry. It can result in the restriction of crude oil flow in the pipeline, creating pressure abnormalities and causing an artificial blockage leading to a reduction or interruption in the production. Wax can precipitate as a solid phase on the pipe wall when its temperature (inlet coolant temperature) drops below the Wax Appearance Temperature (WAT). An experimental flow loop system was built in the lab to study the variation of wax deposition thickness under the single phase transport. A series of experiments were carried out at different flow rates (2.7 and 4.8 L/min) to study wax deposition and measure the wax thickness using four different techniques including direct technique pigging, pressure drop, heat transfer and liquid displacement-level detection (LD-LD). The effect of factors on wax formation such as inlet coolant temperature, inhibitor and spiral flow has been examined. The results show the wax inhibition percentage (WI)% was 40% and 45% at flow rate 2.7 and 4.8 L/min respectively of the inhibitor W802 (polyacrylate polymer (C16-C22)) at inlet coolant temperature 14 ºC. The wax reduction percentage (WR) % was 65% and 73% at flow rate 2.7 and 4.8 L/min respectively of the spiral flow at inlet coolant temperature 14 ºC. This percentage of inhibition will increased rapidly by increasing the inlet coolant temperature.

Keywordswaxing crude oil; wax deposition; spiral flow; waxing inhibition
Year2016
JournalInternational Journal of Smart Grid and Clean Energy
Journal citation5 (3), pp. 174-181
PublisherLondon South Bank University
ISSN2315-4462
Digital Object Identifier (DOI)doi:10.12720/sgce.5.3.174-181
Publication dates
Print30 Jul 2016
Publication process dates
Deposited22 Sep 2016
Accepted30 Jul 2016
Accepted author manuscript
License
CC BY 4.0
File Access Level
Open
Publisher's version
License
CC BY 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/87304

  • 6
    total views
  • 76
    total downloads
  • 1
    views this month
  • 11
    downloads this month

Related outputs

Slug Flow Monitoring in Pipes Using a Novel Non-Intrusive Optical Infrared Sensing Technology
Sarkodie, K, Fergusson-Rees, A, Makwashi, N and Diaz, P (2019). Slug Flow Monitoring in Pipes Using a Novel Non-Intrusive Optical Infrared Sensing Technology. 81st EAGE Conference and Exhibition. London 04 - 06 Jun 2019
Investigation of the Severity of Wax Deposition in Bend Pipes Under Subcooled Pipelines Conditions
Makwashi, N, Sarkodie, K, Akubo, S, Zhao, D and Diaz, P (2019). Investigation of the Severity of Wax Deposition in Bend Pipes Under Subcooled Pipelines Conditions. 81st EAGE Annual Conference & Exhibition. London 04 - 06 Jun 2019
A review of the application of non-intrusive infrared sensing for gas–liquid flow characterization
Sarkodie, K, Fergusson-Rees, AJ and Diaz, P (2018). A review of the application of non-intrusive infrared sensing for gas–liquid flow characterization. The Journal of Computational Multiphase Flows. 10 (1), pp. 43-56.
AN EXPERIMENTAL AND SIMULATION STUDY OF WAX DEPOSITION IN HYDROCARBON PIPELINE
Diaz, P and Theyab, M (2017). AN EXPERIMENTAL AND SIMULATION STUDY OF WAX DEPOSITION IN HYDROCARBON PIPELINE. GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES. 4 (7), pp. 85-98.
Experimental Study on the Effect of Polyacrylate Polymer (C16-C22) on Wax Deposition
Theyab, M. and Diaz, P. (2016). Experimental Study on the Effect of Polyacrylate Polymer (C16-C22) on Wax Deposition. 7th International Conference on Chemical Engineering and Applications (CCEA 2016). Shanghai, China 07 - 09 Jul 2016 London South Bank University.
Experimental Study of Wax Deposition in Pipeline – Effect of Inhibitor and Spiral Flow
Diaz, P. and Theyab, M. (2016). Experimental Study of Wax Deposition in Pipeline – Effect of Inhibitor and Spiral Flow. 4th International Petroleum Engineering Conference. London 15 - 17 Aug 2016 London South Bank University.
Experimental Study of Wax Deposition in Pipeline – Effect of Inhibitor and Spiral Flow
Theyab, M. and Diaz, P. (2016). Experimental Study of Wax Deposition in Pipeline – Effect of Inhibitor and Spiral Flow. 2016 5th International Conference on Petroleum Industry and Energy (ICPIE 2016). Barcelona, Spain 10 - 12 Jun 2016 London South Bank University.
Experimental Study on the Effect of Spiral Flow on Wax Deposition Volume
Theyab, M. and Diaz, P. (2016). Experimental Study on the Effect of Spiral Flow on Wax Deposition Volume. Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, UAE 07 - 10 Nov 2016 SPE. doi:10.2118/182936-MS