Application of Low Concentration Surfactant Enhanced Water-Alternating-Gas Flooding

Conference paper


Sagbana, I, Diaz, PA, Eneotu, M, Centeno, M, Vajihi, F and Farhadi, A (2017). Application of Low Concentration Surfactant Enhanced Water-Alternating-Gas Flooding. IOR 2016 – 19th European Symposium on Improved Oil Recovery. Stavanger, Norway 24 - 27 Apr 2017 EAGE. https://doi.org/10.3997/2214-4609.201700343
AuthorsSagbana, I, Diaz, PA, Eneotu, M, Centeno, M, Vajihi, F and Farhadi, A
TypeConference paper
Abstract

Large amounts of oil left in the petroleum reservoir after primary and secondary enhanced oil recovery methods have brought about the implementation of several tertiary means of oil recovery. Increment of oil recovery can support the world’s oil supply. Water alternating gas injection has been a very popular method of gas injection to improving volumetric sweep efficiency. Although water alternating as injection has been shown to improve oil recovery, this process suffers inherent challenges such as water blocking, mobility control in high viscosity oil and gravity segregation. To combat these problems associated with water alternating gas flooding, the use of surfactant has been employed in water alternating gas injection. Due to the high operational cost arising from chemical cost in surfactant alternating gas injection, a new technique which involves the injection of low concentration surfactant before water alternating as flooding has been proposed. This work investigates experimental and numerical oil recovery potential of surfactant enhanced water alternating gas flooding. The distinctive feature of this technique is that instead of injecting surfactant slugs alternatively with gas, which will result to using a greater amount of surfactant, a low concentration surfactant is injected into the reservoir before water alternating gas flooding. The aim is to evaluate the performance of this technique as a low cost and effective means of chemically enhanced oil recovery by combining both mechanisms of surfactant reduction of water-oil interfacial tension and creation of foam with gas. This study begins with surfactant evaluation to characterise surfactants compatibility with reservoir brine and oil. Then followed by series core flooding experiments which include waterflooding, gas flooding, water alternating gas flooding and surfactant-enhanced water alternating gas flooding. Core flood data was history matched for water alternating as flooding and surfactant-enhanced water alternating as flooding via commercial simulator by inputting relative permeability curves, rock, fluid properties and interfacial tension. The results showed that experimentally, surfactant enhanced water alternating as flooding had the highest oil recovery when compared to conventional enhanced oil recovery methods. History matching of core flood experiment predicted similar increment in oil recovery during surfactant enhanced WAG. The effectiveness of this technique is based on the injection pattern after the initial surfactant injection and oil recovery potential is similar to that of surfactant alternating gas flooding.

Year2017
PublisherEAGE
Journal citation2017, pp. 1-15
Digital Object Identifier (DOI)https://doi.org/10.3997/2214-4609.201700343
Accepted author manuscript
License
File Access Level
Open
Publication dates
Print24 Apr 2017
Publication process dates
Deposited08 Jun 2017
Accepted23 Feb 2017
Permalink -

https://openresearch.lsbu.ac.uk/item/86z98

Download files


Accepted author manuscript
Paper_EAGE_2017_Surfactant_Ivy_79.pdf
License: CC BY 4.0
File access level: Open

  • 566
    total views
  • 231
    total downloads
  • 5
    views this month
  • 1
    downloads this month

Export as

Related outputs

Enhanced History Matching Process by Incorporation of Saturation Logs as Model Selection Criteria
Aponte, J.M, Webber, R, Centeno, M., Dhaka, H.N, Sayed, M.H and Malakooti, R (2023). Enhanced History Matching Process by Incorporation of Saturation Logs as Model Selection Criteria. Petroleum Exploration and Development. 50 (2), pp. 398-408. https://doi.org/10.11698/PED.20220442
Should Engineering Students Learn About Human Factors at Universities?
Nazaruc, M, Centeno, M., Bitar, F and Peres, S (2021). Should Engineering Students Learn About Human Factors at Universities? Journal of Petroleum Technology. 5.
Experimental Study of Chemical Enhanced Oil Recovery (EOR) Methods in Sandstone Core Samples: Effect of Salinity and Divalent Cations.
Centeno, M. (2019). Experimental Study of Chemical Enhanced Oil Recovery (EOR) Methods in Sandstone Core Samples: Effect of Salinity and Divalent Cations. PhD Thesis London South Bank University School Of Engineering https://doi.org/10.18744/lsbu.8qv7w
Feasibility Study on Offshore Polymer Flooding, Forecasting Production Through Integrated Asset Modelling, A Technical and Economic Approach
Farhadi, A, Primera, A, Aponte, J and Centeno, M (2015). Feasibility Study on Offshore Polymer Flooding, Forecasting Production Through Integrated Asset Modelling, A Technical and Economic Approach. SPE Review London.
Systematic comparative study of Polyacrylamide Co-polymers for EOR at High Salinity Conditions
Diaz, PA, Centeno, M and Breda, A (2017). Systematic comparative study of Polyacrylamide Co-polymers for EOR at High Salinity Conditions. 19th European Symposium on Improved Oil Recovery. Stavenger, Norway. 24 - 27 Apr 2017
Comparative Study of Polyacrylamide Co-polymers for EOR at High Salinity Conditions “Laboratory and Simulation"
Centeno, M, Diaz, PA and Breda, A (2017). Comparative Study of Polyacrylamide Co-polymers for EOR at High Salinity Conditions “Laboratory and Simulation". IOR 2017 - 19th European Symposium on Improved Oil Recovery. Satavanger 22 - 24 Apr 2017 EAGE. https://doi.org/10.3997/2214-4609.201700348