Critical Points of the Clamped-Pinned Elastica

Journal article

Singh, P and Goss, VGA (2018). Critical Points of the Clamped-Pinned Elastica. Acta Mechanica. https://doi.org/10.1007/s00707-018-2259-3
Authors Singh, P and Goss, VGA We investigate equilibrium configurations of the clamped-pinned elastica where the pinned end can be displaced towards, and past, the clamped end. Solving the non-linear ordinary differential equation for the clamped-pinned elastica for any mode in terms of elliptic integrals, we find sets of equations which govern the equilibrium configurations for given displacements. Equilibrium configurations for various displacements of the pinned end and any mode are obtained by numerically solving those sets of equations. A physical quantity, such as the force that arises in the elastica due to displacement of the pinned end, is taken to be a function of displacement. Although, it is generally not possible to define a physical quantity as a function of displacement explicitly, an equation for the rate of change of this physical quantity with respect to displacement can be found by partial differentiation of the sets of equations which govern the equilibrium configurations. Setting that rate of change to zero provides a constraint equation for locating the critical points of that physical quantity. That constraint equation and the sets of equations which govern the equilibrium configurations are solved numerically to obtain the critical points of the physical quantity. Our procedure is demonstrated by finding local extrema on force-displacement plots (useful when analysing stability of equilibrium configurations) and the maximum deflection of the elastica. Finally, we suggest how our procedure has scope for wider application. Elastica; Clamped-Pinned; Critical Points; Force-displacement plots; 01 Mathematical Sciences; 09 Engineering; Mechanical Engineering & Transports 2018 Acta Mechanica Springer 0001-5970 https://doi.org/10.1007/s00707-018-2259-3 15 Sep 2018 06 Sep 2018 01 Sep 2018 Singh_et_al-2018-Acta_Mechanica.pdfLicenseCC BY 4.0File Access LevelOpen

https://openresearch.lsbu.ac.uk/item/86960

Publisher's version
 Singh_et_al-2018-Acta_Mechanica.pdf License: CC BY 4.0 File access level: Open

total views
• 1
views this month

Related outputs

Describing whisker morphology of the Carnivora
Dougill, G., Brassey, C.A., Starostin, E., Andrews, H., Kitchener, A., van der Heijden, G.H.M., Goss, G. and Grant, R. (2023). Describing whisker morphology of the Carnivora. Journal of morphology. 284 (9), p. e21628. https://doi.org/10.1002/jmor.21628
Theoretical considerations of the mechanics of whisker sensors
Starostin, E., van der Heijden, G. and Goss, G. (2022). Theoretical considerations of the mechanics of whisker sensors . The 10th European Nonlinear Dynamics Conference (ENOC 2022) July 17-22, 2022, Lyon, France. Lyon 17 - 22 Jul 2022
Whisker Sensing by Force and Moment Measurements at the Whisker Base
Starostin, E.L., Goss, V.G.A. and van der Heijden, G. (2022). Whisker Sensing by Force and Moment Measurements at the Whisker Base. Soft Robotics. 10 (2), pp. 326-335. https://doi.org/10.1089/soro.2021.0085
Morphological peculiarities of a harbour seal (Phoca vitulina) whisker revealed by normal skeletonisation
Goss, G., Starostin, E., Dougill, G. and Grant, R.A. (2022). Morphological peculiarities of a harbour seal (Phoca vitulina) whisker revealed by normal skeletonisation. Bioinspiration & biomimetics. https://doi.org/10.1088/1748-3190/ac5a6b
What can whiskers tell us about mammalian evolution, behaviour, and ecology?
Grant, R.A. and Goss, V.G. A. (2021). What can whiskers tell us about mammalian evolution, behaviour, and ecology? Mammal Review. 52 (1), pp. 148-163. https://doi.org/10.1111/mam.12253
Ecomorphology reveals Euler spiral of mammalian whiskers.
Dougill, G., Starostin, E.L., Milne, A.O., van der Heijden, G.H.M., Goss, G.A. and Grant, R.A. (2020). Ecomorphology reveals Euler spiral of mammalian whiskers. Journal of morphology. https://doi.org/10.1002/jmor.21246
The Euler Spiral of Rat Whiskers
Starostin, E., Grant, R.A., Dougill, G., van der Heijden, G.H.M. and Goss, G. (2020). The Euler Spiral of Rat Whiskers. Science Advances. 6 (3). https://doi.org/10.1126/sciadv.aax5145
Reach of an Inclined Cantilever with a Tip Load
Singh, P. and Goss, V.G.A. (2019). Reach of an Inclined Cantilever with a Tip Load. Archives of Mechanics. 71 (6), pp. 595-614. https://doi.org/10.24423/aom.3254
The Clamped-Free Rod Under Inclined End Forces and Transitions Between Equilibrium Configurations
Singh, P. and Goss, V.G.A. (2019). The Clamped-Free Rod Under Inclined End Forces and Transitions Between Equilibrium Configurations. Journal of Engineering Mathematics. 117 (1), pp. 65-78. https://doi.org/10.1007/s10665-019-10009-7
Asymptotic analysis of the clamped-pinned elastica
Singh, P. and Goss, VGA (2018). Asymptotic analysis of the clamped-pinned elastica. Archives of Mechanics. 70 (4), pp. 1-20.
Large Llamas with Silver Shoes
Goss, VGA (2017). Large Llamas with Silver Shoes. Society & Animals. 25 (2), pp. 144-162. https://doi.org/10.1163/15685306-12341443
Loading paths for an elastic rod in contact with a flat inclined surface
Goss, VGA (2016). Loading paths for an elastic rod in contact with a flat inclined surface. International Journal of Solids and Structures. 88-89, pp. 274-282. https://doi.org/10.1016/j.ijsolstr.2016.02.042