Distributed deep networks based on Bagging-Down SGD algorithm
Journal article
Qin, C, Gao, X and Chen, D (2019). Distributed deep networks based on Bagging-Down SGD algorithm. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics. 41 (5), pp. 1021-1027. https://doi.org/10.3969/j.issn.1001-506X.2019.05.13
Authors | Qin, C, Gao, X and Chen, D |
---|---|
Abstract | © 2019, Editorial Office of Systems Engineering and Electronics. All right reserved. As a cutting-edge disruptive technology, deep learning and unsupervised learning have attracted a significant research attention, and it has been widely acknowledged that training big data with a distributed deep learning algorithm can get better structures. However, there are two main problems with traditional distributed deep learning algorithms: the speed of training is slow and the accuracy of training is low. The Bootstrap aggregating-down stochastic gradient descent (Bagging-Down SGD) algorithm is proposed to solve the speed problem mainly. We add a speed controller to update the parameters of the single machine statistically, and to split model training and parameters updating to improve the training speed with the assurance of the same accuracy. It is to be proved in the experiment that the algorithm has the generality to learn the structures of different kinds of data. This article is in Chinese. |
Year | 2019 |
Journal | Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics |
Journal citation | 41 (5), pp. 1021-1027 |
ISSN | 1001-506X |
Digital Object Identifier (DOI) | https://doi.org/10.3969/j.issn.1001-506X.2019.05.13 |
Publication dates | |
01 May 2019 | |
Publication process dates | |
Deposited | 15 Jul 2019 |
Accepted | 01 Mar 2019 |
Accepted author manuscript | License File Access Level Restricted |
https://openresearch.lsbu.ac.uk/item/866v9
191
total views0
total downloads2
views this month0
downloads this month