Mr Bugra Alkan
Name | Mr Bugra Alkan |
---|---|
Job title | Lecturer in Artificial Intelligence - Secure Systems |
Organisational Unit | Computer Science and Informatics |
ORCID | https://orcid.org/0000-0002-5994-4351 |
Research outputs
A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs
Alkan, B., Seth, B., Galvin, K. and Johnson, A. (2020). A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs. Complex Systems Design & Management. Paris 15 - 17 Dec 2020Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation
Yao, F, Alkan, B, Ahmad, B and Harrison, R (2020). Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation. Sensors (Switzerland). 20 (21), pp. 1-25. https://doi.org/10.3390/s20216333Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series
Alkan, B. and Bullock, S. (2020). Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2020.1779622A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase
Alkan, B. and Harrison, R. (2019). A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems. 53, pp. 18-31. https://doi.org/10.1016/j.jmsy.2019.09.001An experimental investigation on the relationship between perceived assembly complexity and product design complexity
Alkan, B. (2019). An experimental investigation on the relationship between perceived assembly complexity and product design complexity. International Journal on Interactive Design and Manufacturing (IJIDeM). 13 (3), pp. 1145-1157. https://doi.org/10.1007/s12008-019-00556-9A framework to predict energy related key performance indicators of manufacturing systems at early design phase
Assad, F, Alkan, B, Chinnathai, MK, Ahmad, MH, Rushforth, EJ and Harrison, R (2019). A framework to predict energy related key performance indicators of manufacturing systems at early design phase. Procedia CIRP. 81, pp. 145-150. https://doi.org/10.1016/j.procir.2019.03.026A Framework for Pilot Line Scale-up using Digital Manufacturing
Chinnathai, M. K., Al-Mowafy, Z., Alkan, B., Vera, D. and Harrison, R. (2019). A Framework for Pilot Line Scale-up using Digital Manufacturing. Procedia CIRP. 81, pp. 962-967. https://doi.org/10.1016/j.procir.2019.03.235Pilot To Full-Scale Production: A Battery Module Assembly Case Study
Chinnathai, M.K., Alkan, B., Vera, D. and Harrison, R. (2018). Pilot To Full-Scale Production: A Battery Module Assembly Case Study. Procedia CIRP. 72, pp. 796-801. https://doi.org/10.1016/j.procir.2018.03.194A method to assess assembly complexity of industrial products in early design phase
Alkan, B., Vera, D., Ahmad, B. and Harrison, R. (2017). A method to assess assembly complexity of industrial products in early design phase. IEEE Access. 6, pp. 989-999. https://doi.org/10.1109/ACCESS.2017.2777406Convertibility Evaluation of Automated Assembly System Designs for High Variety Production
Chinnathai, M.K., Alkan, B. and Harrison, R. (2017). Convertibility Evaluation of Automated Assembly System Designs for High Variety Production. Elsevier BV. https://doi.org/10.1016/j.procir.2017.01.005Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability
Ahmad, M., Ahmad, B., Alkan, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability. Procedia CIRP. 57, pp. 428-433. https://doi.org/10.1016/j.procir.2016.11.074A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment
Ahmad, M, Ahmad, B, Harrison, R, Alkan, B, Vera, D, Meredith, J and Bindel, A (2016). A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment. Elsevier BV. https://doi.org/10.1016/j.procir.2016.04.178Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2016). Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic. Procedia CIRP. 50, pp. 141-146. https://doi.org/10.1016/j.procir.2016.05.031The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence
Ahmad, M., Alkan, B., Ahman, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence. Procedia CIRP. 44, pp. 169-174. https://doi.org/10.1016/j.procir.2016.02.054A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload. Elsevier BV. https://doi.org/10.1016/j.procir.2016.02.115A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems. Procedia CIRP. 44, pp. 429-434. https://doi.org/10.1016/j.procir.2016.02.11198
total views of outputs85
total downloads of outputs22
views of outputs this month21
downloads of outputs this month