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Abstract 

 

The Virtual Fields Method (VFM) allows spatial distributions of material properties to be 

calculated from experimentally-determined strain fields. A numerically-efficient Fourier-

series-based extension to the VFM (the F-VFM) has recently been developed, in which the 

unknown stiffness distribution is parameterised in the spatial frequency domain rather than in 

the spatial domain as used in the classical VFM. However, the boundary conditions for the F-

VFM are assumed to be well-defined, whereas in practice the traction distributions on the 

perimeter of the region of interest are rarely known to any degree of accuracy. In the current 

paper we therefore consider how the F-VFM theory can be extended to deal with the case of 

unknown boundary conditions. Three different approaches are proposed; their ability to 

reconstruct normalised stiffness distributions and traction distributions around the perimeter 

from noisy input strain fields is assessed through simulations based on a forward finite 

element analysis. Finally a practical example is given involving strain fields of experimental 

displacements measured from a diametral compression test on an aluminium disc. 

 

Keywords: stiffness identification, virtual fields method, Fourier series, unknown boundary 

conditions. 
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1. Introduction 

In solid mechanics, robust identification of material properties from experimental data 

depends on the accuracy of the mathematical model being used, including the magnitudes and 

positions of the boundary conditions applied to the perimeter of the domain of interest. 

Despite the importance of the determination of such boundary conditions in inverse 

engineering problems, only a modest amount of research has been carried out in this area: it 

is not easy to estimate the traction distributions using pointwise measuring devices, such as 

strain gauges, attached to the surface of the specimen, particularly in the case of (soft) 

biological materials. 

There exist a number of methods which address the inverse identification of stiffness or of 

modulus in the literature. A significant volume of researches has been carried out to solve for 

the modulus analytically while exploiting the information from elastography [1] for example. 

Modulus of incompressible isotropic plane stress problem was also investigated using a 

variational method whilst weighting by the adjoint operator [2]. Alternative technique to 

solve for inverse problems of this type is through finite element model updating (or FEMU), 

which adjusts the unknown quantities through a process to minimise the difference between 

the response of a numerical model and that measured from experiments. Experimental data 

used in FEMU can be either static [3] or dynamic [4]. An insight review of the FEMU 

together with several other inverse techniques can be found in [5]. The virtual fields method 

(VFM) is another technique to reconstruct the modulus information within the materials with 

less computational effort than other techniques. The VFM takes benefits from a wise choice 

of virtual fields in an effort to solving the equation of the principle of virtual work [6]. 

Regarding the characterisation of unknown boundary condition distributions in statics, i.e. 

tractions, displacements, heat fluxes or temperatures on the boundary of the domain of 

interest, a number of methods have been proposed in the literature. The first is the analytical 

method, which solves the equilibrium equations of the inverse problems through several 

mathematical implementations. Typical example of this method can be found in[7]. Many 

other researchers were successful at determining the distributions of the boundary conditions 

based on redundant data measured on a portion of the boundary (known as an over-specified 

boundary). A system of equations which contains parameters from both unknown and over-

specified boundaries is established, which can then return the parameters characterising the 

unknown part of the boundary either iteratively [8, 9] or by a single computation [10]. Recent 

efforts to solving Cauchy boundary problems can be found in [11]. Attempts have also been 
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made to identify unknown boundary conditions in dynamics [12]. Inverse problems of this 

type are typically ill-conditioned [7]. A regularisation method may therefore be needed to 

stabilise the final results by preventing amplification of measurement errors [8], especially 

when the noise is significant [12]. 

In a paper closely related to the aims of the current one, the unknown boundary conditions 

problem in 3-D was considered by Avril et al. [13] using a finite-element-based VFM. In this 

case the work done by the unknown tractions on the outer surfaces of a 3-D volume were 

nulled by using a set of virtual displacement fields that are zero on the boundary. This 

approach is in fact the basis of the so-called ‘windowed traction’ technique which will be 

described later in this paper. Pierron et al. [14] used the VFM with a sinusoidal window 

function on a dynamic data set of a phantom to determine its shear modulus. Another 

example is the development of a mechanical consistency indicator to locate impact damage 

on composite plates [15]. A detailed theory of the VFM can be found in [6]. 

In the awareness of the limited number of techniques in the literature which are able to, at the 

same time address the inverse identification of stiffness distributions and of unknown 

boundary conditions, the present paper investigates the unknown traction boundary condition 

problem as part of the inverse identification of a 2-D stiffness distribution. The approach is an 

extension to the recently proposed Fourier-series-based virtual fields method (F-VFM) [16] 

in which the stiffness distribution is parameterised in the spatial frequency domain, rather 

than the spatial domain as in the classical VFM. Particular advantages of this approach 

include the ability to control directly the spatial resolution of the reconstructed stiffness 

distributions, and the existence of a fast algorithm that reduces computational effort by 

typically 3-4 orders of magnitude. However, the tractions round the boundary are assumed to 

be known in this first implementation, which seriously limits its applicability to the analysis 

of many experimental datasets.  

The theory underlying the F-VFM is summarised for completeness in Section 2. Three 

different extensions to the F-VFM, namely the ‘experimental traction’, the ‘windowed 

traction’ and the ‘Fourier-series traction’ approaches, are then proposed in Section 3 to cope 

with the situation where boundary information is lacking. Validation of the F-VFM with 

numerical strain data from a forward finite element analysis is presented in Section 4 

followed by its application to real experimental data. Discussion on and conclusions of the 

new method is found in the last section. 
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2. Summary of the Fourier Virtual Fields Method in 2-D 

The fundamental equation of the VFM comes from the principle of virtual work (PVW) 

equation (integral form) written for a deformable body, which describes the balance between 

the virtual works of internal and external forces with any continuous and differentiable virtual 

displacement field (and its associated virtual strain field). In the case of a quasi-statically 

loaded 2-D thin structure with negligible body forces and linear elastic constitutive 

behaviour, the equilibrium equation of the structure can be written as 

 ∫       

 

 ∫     

 

   (1) 

where Q is the stiffness matrix; ϵ is the measured strain field vector (ϵxx, ϵyy, ϵss), with ϵxx and 

ϵyy the normal strains along the x- and y-axes of a Cartesian coordinate system and ϵss the 

engineering shear strain within a domain of interest (S); T = (Tx, Ty) is the traction vector 

acting on a portion     of the boundary; and    (  
    

 ) and    (   
     

     
 ) are 

vectors of virtual displacement and virtual strain fields, respectively. 

For the case of an isotropic material, Eqn. (1) can be written   

∫((        )   
  (        )   

  
   

 
      

 )     

 

 ∫(    
      

 )  

 

 

(2) 

where the stiffness Qxx is related to the elastic modulus E and the Poisson’s ratio ν through 

    
 

    
 (3) 

The early VFM relied on the assumption that Qxx is uniform over the domain, allowing it to 

be taken out of the left-hand-side integral in Eqn. (2) and thus to a direct and single 

computation of the stiffness [17]. However, this assumption is often not valid, in which case a 

continuous parameterisation of the stiffness distribution as polynomials of the spatial 

variables can be made. Coefficients of the polynomials can be isolated from the integral, and 

recovered through the use of multiple virtual fields (see for example [18]). A discrete (piece-

wise) parameterisation has been proposed and successfully applied in 2-D [19], 3-D [13] and 

to welds [20-22].  
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In the F-VFM, the stiffness distributions are written as Fourier series of the spatial variables x 

and y. In the simplest form, where ν is approximated as a known position-independent 

constant
2
, Qxx may be written: 

         ∑ ∑              

 

    

 

   

 ∑ ∑              

 

    
  | |  

 

   

 

 

(4) 

where     ,      are the Fourier coefficients of the term with spatial frequency components 

(m, n);                     (
  

  
 

  

  
) and                     (

  

  
 

  

  
); Lx 

and Ly are the dimensions of the domain (S); and M, N the maximum values of indices m and 

n, respectively. The presence of negative frequency coefficients  in Eqn. (4) is explained by 

the number of aliased high frequencies generated by m and n values lying well below Nyquist 

frequency for typical strain field resolutions presented in this paper, and was discussed in 

detail in[16]. Due to the even/odd symmetry of the cosine/sine functions, only one of the two 

indices m and n needs to take negative values. In this case we have chosen index m to take the 

values from 0 to N whilst index n runs from –N to N. The constraint   | |    ensures that 

m and n in the sine part of the expansion cannot be zero at the same time, which would 

otherwise lead to a zero row in the coefficient matrix. In certain cases it may be permissible 

to omit the negative frequencies, i.e. the lower limit on the summation over n can be 0 rather 

than –N. This is the case for the numerical application of Section 4, where the stiffness 

distribution contains a limited range of spatial frequencies. The more general case, such as 

that considered in Section 5, requires both positive and negative spatial frequencies. A lower 

limit on n of –N, as specified in Eqn. (4), was used in this case. The total number of unknown 

Fourier coefficients in Eqn. (4) is 

                  (5) 

for the case where the lower limit on n is –N, and 

                 (6) 

when the lower limit is 0. 

                                                 
2
 The assumption that ν is a known constant is reasonable in many cases, but where it is not, a second Fourier 

series expansion of the variable νQxx can be performed. This leads to a second set of Fourier coefficients that 

need to be solved for as part of the analysis. 
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Repeated application of Eqn. (2) with a total of NF different virtual fields yields a set of 

simultaneous equations that can be written in matrix form as 

     (7)  

in which 

  

(

 
 
 

∫      

 

 ∫          

 

  ∫          

 

 

   

∫       

 

 ∫           

 

  ∫           

 

 
)

 
 
 

 (8) 

  

(

 
 
 

    

 
    

 
    

 )

 
 
 

 (9) 

  

(

 
 
 

∫(    
         

    )  

 

 

∫(    
          

     )  

 )

 
 
 

 (10) 

and 

          (        )   
     (        )   

     
   

 
      

    
 (11) 

 

where superscript j denotes the j-th virtual strain or displacement field. As described in [16] 

   
  and    

  are chosen from a set of cosine waves of unit amplitude, with spatial frequency 

components p = 0,…,M; q = –N,…,N (giving (M+1)(2N+1) independent virtual fields), and a 

set of corresponding sine waves (in which the trivial case p = q = 0 is excluded), giving an 

additional (M+1)(2N+1)–1 fields. The total number of chosen cosine and sine virtual fields 

will therefore be equal to NF = 2(M+1)(2N+1) – 1, which is the required number to determine 

uniquely the unknown Fourier series coefficient vector Y. The   
  and   

  fields are calculated 

from these chosen    
  and    

  fields, and the    
  field in turn from   

  and   
 . Equation (7) is 

then inverted to solve for the vector X containing the desired Fourier coefficients am,n and bm,n 

that describe the unknown stiffness distribution. 

ngtru
ongtho@ya

hoo.fr



7 

 

 

3. Adaptation of the F-VFM to unknown boundary conditions problems 

This section considers the case where the traction vector T is not specified on the boundary 

and therefore vector Y in Eqn. (7) cannot be evaluated. Adaptation of the general F-VFM is 

required; this can be done in (at least) three different ways, which we call the ‘experimental 

traction’, the ‘windowed traction’ and the ‘Fourier-series traction’ approaches hereafter. 

 

3.1. The ‘experimental traction’ approach 

This approach uses the elastic constitutive law of the material, whose spatially-varying 

coefficients are already going to be estimated as part of the analysis, to convert the measured 

strains around the boundary into equivalent tractions. The matrix Y will then be modified 

from its original formula in Eqn. (10). An attractive feature of this approach is its simplicity: 

no extra variables from the unknown tractions are needed as they are expressed as a function 

of the existing (unknown) stiffness Fourier coefficients.  

Equilibrium of an arbitrary length element on the boundary, lying at angle θto the y axis as 

shown in Fig. 1, requires the edge tractions to balance the internal strains as follows:  

   (                                    
   

 
        )    

   ( 
   

 
         

   

 
         

   

 
        )    

(12) 

in which Tn and Tt are respectively the normal and tangential traction vectors on a (local) 

length element. The formulae of Eqn. (12) are derived from the parametric equations of 

Mohr’s circle [23]. Table 1 shows the formulae for Tn and Tt for the particular values of θ 

corresponding to the four edges of the rectangular domain, and the formulae for Tx and Ty 

(global) computed from Tn and Tt (local) through the relation: 

                 

                 
(13) 

Combining Eqns. (4), (12), (13) and (10) allows the Y vector to be written as 

      (14) 

where 
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(

 
 
 

∫      

 

 ∫          

 

  ∫          

 

 

   

∫       

 

 ∫           

 

  ∫           

 

 
)

 
 
 

 (15) 

and 

              
         

    
 (16) 

Substituting vector Y in its new form into Eqn. (7) leads to the homogeneous system of 

equations  

      (17) 

with 

        (18) 

Equation (17) has the trivial solution X = 0. Normalisation of the stiffness distribution by its 

dc (i.e., average) term      is however an option to produce a non-trivial solution to the 

homogeneous system of equations (17) as follows. With such a normalisation (see, e.g. [24]-

chapter 3), the dc term of the Fourier stiffness solution vector becomes 1. Matrix M1 of size 

NF×NF can thus be split up into a column vector  ̅ of size NF×1 and a sub-matrix  ̅ of size 

NF×(NF –1). The column vector  ̅ is the first column of matrix M1 which contains data 

corresponding to the unit dc term, and sub-matrix  ̅ contains the rest of the data. The column 

vector  ̅ is then brought to the right side of Eqn. (17), resulting in the non-homogeneous and 

over-determined system of equations  

 ̅ ̅   ̅ (19) 

whose normalised solution  ̅ can be computed in a least-squares sense using e.g. the Moore-

Penrose inversion algorithm
3
 [25]. The formulae for the elements of the matrices in Eqn. (19) 

are as follows: 

                                                 
3
 The Moore-Penrose inversion is implemented in MATLAB using command pinv. 
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  ∫           

 

 ∫           
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 (20) 

 ̅   

(

 
 
 

∫      

 

 ∫      

 

 

∫       

 

 ∫       

 )

 
 
 

 (21) 

 ̅  
 

    

                (22) 

 

3.2. The ‘windowed traction’ approach 

The term ‘windowing’ in spectral analysis refers to the process of multiplying the data by a 

function (the window function) that normally decays smoothly towards zero at the ends of the 

signal so as to reduce ‘leakage’ from the spectral peaks. The proposed ‘windowed traction’ 

approach in the F-VFM also involves applying a smoothly varying function to the virtual 

displacements, but the reason now is somewhat different. Provided the window function is 

zero on the entire boundary, the virtual work becomes zero over the boundary regardless of 

the tractions. Knowledge of the tractions is no longer necessary in the stiffness identification. 

As with window functions used for spectral analysis, continuity of the function is required to 

ensure the applicability of Eqn. (1). This approach has previously been used with the classical 

VFM [13, 14]; a mathematical description adapted for the F-VFM is presented below. 

The windowed virtual displacement fields  ̂ 
  and  ̂ 

  are defined by  ̂ 
          

  and 

 ̂ 
          

  where        is the window function that is chosen to be zero on the 

boundary. In the case of a rectangular domain it is convenient to define   as a product of 

two 1-D functions:                  , where    is zero at    
  

 
 and    is zero at 

   
  

 
. The matrix Y of external virtual work in Eqn. (10) can therefore be written  
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 ̂  

(

 
 
 

∫(   ̂ 
        ̂ 

    )  

 

 

∫(   ̂ 
     

    ̂ 
     

)  

 )

 
 
 

   (23) 

The matrix equation (7) thus has the homogeneous form 

 ̂    (24) 

with 

 ̂  

(

 
 
 

∫  ̂     

 

 ∫  ̂         

 

  ∫  ̂         

 

 

   

∫  ̂      

 

 ∫ ̂          

 

  ∫ ̂          

 

 
)

 
 
 

 (25) 

where  

 ̂      (        )  ̂ 
  (        )  ̂ 

  
   

 
     ̂ 

  (26) 

The windowed virtual strains   ̂ 
 ,   ̂ 

  and   ̂ 
  are obtained from the corresponding windowed 

virtual displacements  ̂ 
  and  ̂ 

  by differentiation.  

The homogeneous matrix equation (24) can then be solved by implementing the 

normalisation by the dc term a0,0 as described in the ‘experimental traction’ approach above. 

The over-determined matrix equation after the normalisation is 

 ̂̅ ̅   ̂̅ (27) 

in which  ̂̅ is the sub-matrix of the normalised matrix  ̂ in Eqn. (25) formed by removing its 

first column, and  ̂̅ the column vector equal to the first column of matrix  ̂. The choice of 

different window functions will be discussed in Section 4 where the ‘windowed traction’ 

approach is applied to a specific case. 

 

3.3. The ‘Fourier-series traction’ approach 

In the F-VFM adapted by the ‘Fourier-series traction’ approach the components Tx and Ty of 

the traction vector T are represented as 1-D Fourier series along the boundary, whose 
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coefficients can be determined together with the 2-D Fourier stiffness coefficients through a 

matrix inversion. The mathematical interpretations of the ‘Fourier-series traction’ approach 

are presented in this section. 

In the case of a domain without corners (i.e., with no discontinuities in the edge normals) a 

suitable parameterization is as follows: 

      ∑       
  

 

 

   

 ∑       
  

 

 

   

                           

(28) 

      ∑       
  

 

 

   

 ∑       
  

 

 

   

                           

 

where   is the distance along the boundary from an arbitrary starting point on the boundary; L 

is the perimeter of the domain;   is the maximum spatial frequency measured around the 

boundary;      ,    and    are the Fourier coefficients to be determined as part of the 

identification;            
  

 
 and            

  

 
. 

When the domain has corners across which the tractions will be discontinuous, the boundary 

can be split into sub-boundaries between adjacent corners with an expansion of the form 

given by Eqn. (28) on each sub-boundary. In the problems considered in Section 4, the 

domain is rectangular and the following parameterization consisting of eight 1-D Fourier 

series was therefore used:  

  
[ ]     ∑  

[ ]      
   

  

  

   

 ∑  
[ ]      

   

  

  

   

 

                   (   
[ ]    

[ ]  )
 

 

(29) 

  
[ ]     ∑  

[ ]      
   

  

  

   

 ∑  
[ ]      

   

  

  

   

 

                    (   
[ ]    

[ ]  )
 

 

where superscript i is the edge index (i = 1,..,4);        ,        ; and Li and Ki are 

respectively the length and number of cosine/sine terms for the i-th edge. 
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The substitution of these traction terms into Eqn. (10) results in a Y vector that can be 

decomposed into the product of a coefficient matrix  ̃ and an unknown vector of traction 

coefficients  ̃ as follows: 

   ̃ ̃ (30) 

where  

 ̃  ( ̃     ̃      ̃     ̃  )
 
 (31) 

 ̃  ( ̃    ̃    ̃    ̃ ) (32) 

Sub-vector  ̃  (   
[ ]    

[ ]    
[ ]    

[ ]  )
 

 within vector  ̃ contains the coefficients of 

the traction Fourier series applied to edge i, and sub-matrix  ̃  is defined by 

 ̃   

(

 
 
 

 ∫  
             

  

 ∫  
             

  

 ∫  
             

  

 ∫  
             

  

 

     

 ∫  
              

  

 ∫  
              

  

 ∫  
              

  

 ∫  
              

  

 

)

 
 
 

 

(33) 

With the Fourier parameterisation of the tractions, the resolution matrix equation (7) now 

involves not only the unknown vector   of the Fourier stiffness coefficients but also the 

unknown vector  ̃ of the Fourier traction coefficients. By combining coefficient matrices   

and  ̃ together into a single matrix    and the two unknown vectors   and  ̃ into a single 

column vector   , the equation may be reformulated in homogeneous form as 

       (34) 

with 

   ( |(  ̃)) (35) 

   (  |  ̃)
 
 (36) 

The normalisation of the equation by the dc term      of the Fourier stiffness may be 

implemented as presented in Section 3.1. The first column of matrix   
, denoted  ̅ , can thus 

be taken to the right hand side of Eqn. (34) leaving sub-matrix  ̅  which contains the rest of 

the data. The resulting non-homogeneous and over-determined system of equations 

ngtru
ongtho@ya

hoo.fr



13 

 

 ̅  ̅   ̅  (37) 

can then be solved as described in Section 3.1.  

 

4. Validation of the adapted F-VFM approaches with numerical data 

Results of the three adapted F-VFM approaches from Section 3 are presented in this section. 

Numerical strain fields from a forward finite element model were used to validate the 

algorithms, rather than experimental fields, because of the difficulty in obtaining 

experimental traction distributions around the boundary. The deformation fields were then 

fed into the adapted F-VFM equations to recover both the stiffness distribution and the 

traction profiles. 

 

4.1. Plate of ‘egg-box’ stiffness pattern under non-uniform biaxial loads 

The numerical model for this section consisted of a thin square plate of size Lx×Ly = 10×10 

mm
2
 and of thickness t = 1 mm. The traction distributions were applied to the edges of the 

plate in both horizontal and vertical directions with a stepped stress profile pointing outwards, 

as shown in Fig. 2. The magnitudes of the steps in the stress profile are in the ratio of 1:2, 

being 0.5 and 1 MPa respectively. The material was chosen to be linear elastic isotropic with 

the reference elastic modulus distribution of an ‘egg-box’ pattern defined by: 

             (
  

  
 

 

  
)       (

 

  
 

  

  
)        (38) 

and a constant Poisson’s ratio ν = 0.3. Plane stress conditions are applicable in this case since 

the plate thickness is relatively small compared to the other dimensions. The plane-stress 

reference stiffness distribution    
    is calculated from the reference modulus using Eqn. (3) 

and the non-dimensional distribution  ̅  
    is deduced by dividing by the dc term, i.e. 

 ̅  
    

   
   

     
            (

  

  
 

 

  
)           (

 

  
 

  

  
)   (39) 

The plate was meshed using 1000×1000 linear quadrilateral (QUAD4) elements, then 

analysed by the commercial finite element package MscMarc™2010. The three numerical 

strain components ϵxx, ϵyy and ϵss provided by the forward analysis were used as the input to 
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the adapted F-VFM approaches, with traction information excluded. In what follows, the 

reconstructed (normalised) stiffness maps are compared to the normalised stiffness  ̅  
   . 

 

4.2. Identification of ‘egg-box’ stiffness distribution and traction profiles by 3 adapted-F-

VFM approaches 

Stiffness identification from the ‘experimental traction’ approach was achieved by computing 

the normalised solution vector  ̅ defined in Eqn. (22), through a matrix inversion of the 

normalised matrix Eqn. (19). The stiffness map determined by the ‘experimental traction’ 

approach is displayed in the top row of Fig. 3 with the choice of M = N = 20 cosine/sine 

terms in the stiffness Fourier series, resulting in a total of 880 unknown coefficients 

(excluding the dc term which is 1 due to the normalisation). The reconstructed pattern is 

disturbed by a number of horizontal and vertical fringes. This artefact consistently occurs at a 

spatial frequency equal to that of the highest spatial frequency in the modulus expansion; a 

simple procedure was described in [16] to remove it by convolution with a square kernel of 

size equal to the pitch   of the fringes, where   
  

 
 mm. One drawback is that any point 

within a distance p/2 from the edges of the map is influenced by the stiffness values outside 

the region of interest, which are unknown and here assumed to be zero. This ribbon of low 

magnitude data is therefore masked out, giving the figures in the middle column of Fig. 3. 

The effect of different window functions on the stiffness distributions recovered by the 

‘windowed traction’ approach was investigated. The differences were not very significant, so 

only the results obtained from the use of one of them (the cosine window function        

   
  

  
   

  

  
) are presented, as shown in the middle row of Fig. 3. Other potential window 

functions which can be used in this application include polynomial window function 

          
  

 
    

  

 
 , Hann window function                  

   

  
    

   
   

  
  or sinc window function             

   

  
      

   

  
 . More information on how 

to select appropriate window functions can be found in [26]. 

The results of the ‘Fourier-series traction’ approach were achieved with the assumptions that 

no shear traction component is found on any edge of the plate, and the 4 normal traction 

distributions are identical, meaning that only a single Fourier series representing the normal 

traction profile is required. This use of a priori information helps reduce the number of 
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variables involved. A value K = 20 was chosen, leading to a total of 921 unknown 

coefficients, compared with the 880 variables required by the two other approaches. The 

identification results from this approach are shown in the bottom row of Fig. 3. 

Whilst traction profiles of the ‘experimental traction’ and ‘windowed traction’ approaches are 

recovered by using Eqn. (12), those of the ‘Fourier-series traction’ approach are reconstructed 

by using Eqn. (28). The traction results are shown in Fig. 4 together with the reference 

traction profile. 

 

4.3. Noise sensitivity of the F-VFM-adapted approaches  

In order to simulate the effect of the noise on the performance of the F-VFM, the numerical 

displacement components ux and uy were modified by a number of additive white noise 

patterns, with standard deviation σ ranging from 10
-3

 mm (low noise level) to 10
-2

 mm (high 

noise level). The noise was added to the displacements, rather than the strain fields, as the 

three strain components are correlated with each other through the displacement-strain 

relations. For comparison, the ranges of displacements (i.e., minimum to maximum across the 

full field) were 0.680 mm and 0.684 mm for the noise-free ux and uy fields, respectively. For 

each of ten noise levels, 100 noise patterns were generated and the identification of stiffness 

distribution was therefore carried out a total of 1000 times. 

The derivative ∂uj ⁄ ∂x (where j = x or y) at any given point (x, y) was estimated from the uj 

values over a square region of size Ns×Ns pixels centred on (x, y). This was done by least 

squares fitting a first order polynomial to the displacement data along each row of the square, 

and then averaging the Ns resulting best-fit gradients over all the rows. The derivative with 

respect to y was carried out in the same way but with the least squares fitting carried out 

along the columns of the square and the gradients averaged over the columns. Two gradient 

kernels of size 7×7 and 13×13 pixels were investigated. Both are small compared to the pitch 

of the highest frequency Fourier coefficient (p = 50 pixels) and therefore introduce relatively 

little additional blurring to the recovered stiffness distribution. 

The ‘egg-box’ stiffness distributions reconstructed from noisy strain data of σ = 5×10
-3

 mm 

(medium noise level) by 3 approaches are depicted in Fig. 5. A more uniform pattern of the 

stiffness error map is produced by the ‘windowed traction’ approach, compared to those from 

the other approaches, with a lower root mean square error (0.005 versus 0.031 and 0.007 

from the ‘experimental traction’ and ‘Fourier-series traction’ approaches, respectively, at the 
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medium level of noise). The corresponding traction distributions determined from the 

reconstructed stiffness are shown in Fig. 6. The windowed traction approach slightly 

underestimates the Tx tractions, and the experimental traction approach slightly overestimates 

them. In both cases, the unfiltered stiffness distribution was used because the filtered 

distribution has a missing band around the border as described earlier in section 4.2. The 

calculated tractions were then smoothed by convolving with a 1-D moving average filter of 

size 50 pixels. The deviations between the recovered and reference tractions can therefore be 

seen as due to a combination of edge effects (to which Fourier methods are generally prone) 

and 1-D spatial smoothing as opposed to the 2-D spatial smoothing as used in the calculation 

of the stiffness distribution. The closest agreement is given by the Fourier series traction 

approach which is also the smoothest of the three distributions. The lower noise level is not 

surprising as the representation of the tractions with a limited range of spatial frequencies has 

filtering implicitly built in to the method. Figure 7 presents the mean and standard deviation 

values of the stiffness errors (in MPa) at different gradient kernel sizes and different noise 

levels. In this figure, the ‘known traction’ results refer to the situation where the tractions on 

the boundary of the plate are known (which are actually brought directly from the numerical 

model of the plate), and the reconstruction of stiffness distributions of the plate with noisy 

data were undertaken as shown in details in [16]. As would be expected intuitively, at lower 

noise levels there is less difference in the stiffness errors when using either the small or large 

kernel, with the discrepancies in stiffness errors increasing at higher noise levels. At the 

lower noise level, the mean values of the stiffness error distributions seem to be less sensitive 

to the kernel sizes, and become more sensitive to kernel size at higher noise levels, as 

presented by wider error bars.   

 

5. Application of the adapted F-VFM approaches to experimental data 

In this section, one of the adapted F-VFM approaches, the ‘windowed traction’, is applied to 

experimental data from a Brazilian test on a circular aluminium disc. The diameter and 

thickness of the disc were 36 mm and 6 mm, respectively. A vertical compressive load of 9 

kN was applied to the top and bottom of the disc, as shown in Fig. 8. The material is 

considered elastic isotropic in this case, which can be characterised by its elastic modulus E, 

or stiffness Q. The Poisson’s ratio was assumed to be known, with a typical reference value 

of 0.3. The in-plane displacement field of the disc was determined by a well-known grid 
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method [27] from which the three in-plane strain components were obtained by 

differentiation [27]. Only a part of the dataset within a rectangular region of interest (ROI) is 

used in this application, covering an area of ~25.44×18.24 mm
2
 (equivalent to x/D = –

0.35…0.35 and y/D = –0.25…0.25). Experimental strain fields within the ROI are presented 

in Fig. 9 and compared with the corresponding strain fields computed analytically from 

Hertzian contact theory [28]. 

The unknown stiffness distribution of the disc is expanded by a Fourier series as in Eqn. (4) 

with M = N = 15 cosine/ sine terms in its representation, resulting in a total of 991 variables 

by Eqn.(5), or 990 after normalisation of the stiffness by the dc term. In this application the 

material is known to be homogeneous and well-characterised by a single modulus value. 

Performing the analysis with such a large number of variables, and on data from just a single 

load case, thus provides a useful test of the numerical stability of the proposed technique in a 

practical application.  

As the tractions on the edges of the ROI are unspecified, the stiffness distribution was 

reconstructed using the ‘windowed traction’ approach, as presented in Section 3.2. The 

smoothing was done by convolution with an equally-weighted square mask of size 7×7 

pixels, the side of which equals the pitch of the highest spatial frequency of the reconstructed 

stiffness distribution. Cross-sections of the calculated normalised stiffness along the top, 

middle and bottom of the ROI are plotted in Fig. 10(a). As would be expected for a sample 

with constant modulus, these show a normalized stiffness of unity with only small 

fluctuations (approximately 10.4% root mean square variation) across the ROI. Experimental 

tractions distributed over the top and bottom edges of the ROI can then be recovered using 

the reconstructed stiffness and the input strain fields by Eqns. (12) and (13).  

Direct comparison with the analytical traction distributions requires the latter to be 

normalised by the dc term Q0 of the reconstructed stiffness distribution. The in-plane stress 

distribution in a circular disc of radius R according to the Hertz theory (see, e.g. [29]) is 

     
  

   
              

  

   
              

  

   
       (40) 

in which P is the compressive load, D = 2R the disc’s diameter, t the disc’s thickness, and the 

non-dimensional functions f, g and h are defined by 

        (
       

            
 

       

            
 

 

  
) (41) 
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        (
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Normalised versions of the analytical traction distributions on the top/bottom edge of the ROI 

computed from the corresponding stress fields can be written as 

  ̅
   

 
   

   

  
  

  

     
       

(42) 

  ̅̅ ̅
   

 
   

   

  
  

  

     
       

where superscript i = 1,2 stands for the top or bottom edge, respectively, of the ROI. The 

factor 2P/(Q0πDt) in Eqn. (42) is an unknown, but it can be determined from the 

experimental strain value    
   

 at the centre of the ROI through the classical stress-strain 

relation: 

 
   
    

 

  
(   

        
   )   

   

    

  

     
 (43) 

or 
  

     
  

    

   
   
   

 (44) 

Subsequently,   ̅
   

and   ̅̅ ̅
   

 over the top and bottom edges of the ROI (at locations y/D = 

±0.25) are determined using Eqn. (42) and then presented in Fig. 10(b) and 10(c) 

respectively. Considering the differences between the experimental and analytical input strain 

fields in Fig. 9, the agreement between the analytical and recovered traction distributions can 

be considered reasonable. 

 

6. Conclusions 

Three approaches to extending the F-VFM to deal with the problem of unknown boundary 

conditions on two-dimensional geometries have been developed. The approaches, which we 

call the ‘experimental traction’, the ‘windowed traction’ and the ‘Fourier-series traction’ 

approaches, reconstruct spatial distributions of the stiffness within the domain of interest and 
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of the traction components around its perimeter. In each case, the distributions can only be 

recovered up to a scale factor of the average stiffness.  

Applications of the three approaches to numerical data have been presented, involving a 

biaxially-loaded sample with a stepped distribution of edge tractions. In the absence of noise, 

all three approaches resulted in accurate reconstructions of both stiffness and tractions, with 

identification error from the ‘windowed traction’ approach far less than those of the two other 

approaches. Sensitivity analyses of the approaches to noise show a root mean square 

identification error of ~14×, 2.1×, and 1.9× in recovered stiffness distribution for the 

‘experimental traction’, the ‘windowed traction’ and the ‘Fourier-series traction’ approaches, 

respectively, compared to the case where the tractions are known, at high noise level. 

Computation time using the fast algorithm [30] was in each case very close to the value of 2.5 

s required by the known-traction reconstruction algorithm for a nearly thousand degree of 

freedom problem and 1000×1000 pixel input strain fields
4
. All three approaches can also be 

applied to the case of non-rectangular domains. In view of the superior noise performance of 

the ‘windowed traction’ approach, this is recommended as the best of the three methods 

investigated here. When this approach was applied to experimental data from a circular disc 

under diametral compression loading, reasonable agreement between theory and experiment 

for both the stiffness and traction distributions was achieved. 

  

                                                 
4
 The computation was implemented on an Intel® Core

TM
 i7 CPU 2.79 GHz desktop PC with 8GB of memory, 

using the MATLAB programming language. 
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Table 1: Traction components for particular values of angle θ 

θ Tn Tt Tx Ty 

0 (        )    
   

 
       (        )    

   

 
       

π/2 (        )     
   

 
       

   

 
       (        )    

π (        )    
   

 
        (        )     

   

 
       

3π/2 (        )     
   

 
        

   

 
        (        )    

  

ngtru
ongtho@ya

hoo.fr



23 

 

  

 

Figure 1. Traction components on an arbitrary edge of a 2-D domain inclined an angle θ about the 

vertical direction. 
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Figure 2: A square plate with an ‘egg-box’ stiffness distribution subject to biaxial loading with 

stepped stress profile in all directions.  
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Figure 3: Reconstruction of a normalised ‘egg-box’ stiffness pattern of a plate under unknown 

boundary tractions, with noise-free input strain fields from a finite element model. Top, middle and 

bottom rows show respectively results from the ‘experimental traction’, ‘windowed traction’ and 

‘Fourier-series traction’ approaches. Left, middle and right columns show respectively the 

reconstructed stiffness patterns, the distributions after ripple removal, and the errors in recovered 

stiffness with respect to the normalised reference stiffness pattern. 
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Figure 4: Traction profiles (a) Tx and (b) Ty calculated from noise-free strain maps from a plate with 

an ‘egg-box’ stiffness distribution by three approaches.  
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Figure 5: Reconstruction of a normalised ‘egg-box’ stiffness pattern of a plate under unknown 

boundary tractions, with noisy input strain fields from a finite element model. Top, middle and bottom 

rows show respectively results from the ‘experimental traction’, ‘windowed traction’ and ‘Fourier-

series traction’ approaches. Left, middle and right columns show respectively the reconstructed 

stiffness patterns, the distributions after ripple removal, and the errors in recovered stiffness with 

respect to the normalised reference stiffness pattern. Displacement-gradient kernel size = 13×13 

pixels throughout.  
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Figure 6: Traction profiles (a) Tx and (b) Ty calculated from noisy strain maps from a plate with an 

‘egg-box’ stiffness distribution by three approaches. 
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Figure 7: Mean error (a, b) and standard deviation of the error (c, d) in the recovered stiffness 

distribution for the 2-D ‘egg-box’ stiffness pattern. The differentiation from noisy displacement fields 

was carried out with kernel sizes of 7×7 (a, c) and 13×13 (b, d) pixels. In (a) and (b), markers indicate 

the mean, and error bars the standard deviation in the mean. 
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Figure 8: Schematic of an aluminium circular disc of diameter 36 mm under compressive load with a 

highlighted region of interest (ROI) of size Lx×Ly = 25.44×18.24 mm
2
 within which the strain fields 

are extracted. 
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Figure 9: (a, b, c) Full-field experimental strain field components of a circular disc under diametral 

compression loading. (d, e, f) Experimental strain field components within the ROI. (g, h, i) 

Corresponding theoretical strain field components computed from the Hertz contact theory. In each 

sub-figure, the horizontal and vertical axes represent respectively x/D and y/D. The columns from left 

to right contain the components    ,     and    , respectively. 
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Figure 10: (a) Stiffness profiles at particular cross sections reconstructed by the F-VFM. (b), (c) 

Recovered non-dimensional traction profiles Tx (in blue) and Ty (in red) on the top edge (b) and the 

bottom edge (c) of the ROI compared to their counterparts from Hertz theory. 
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