

Energy-Aware IP routing over SDN

Abstract— The routing protocols play a vital role in saving

energy, especially by minimizing the time a packet takes to travel

from source to destination. The aim of energy-aware routing

protocols is to select a route that engages routers in such a way

that the overall energy consumption is minimized. In this paper a

relationship between resource utilization and energy consumption

is stated, further, a resource-aware dynamic routing algorithm for

SDN is proposed. The contribution of this paper is a queuing

theory-based approach that measures the average waiting time of

nodes and links based on their utilization and finds a path that

costs the least time. The paper also proposes a framework for

implementing routing algorithm over an SDN. Performance of the

algorithm is verified using a GNS3 based implementation with an

Opendaylight controller.

Keywords—Resource aware routing, SDN

I. INTRODUCTION

Energy awareness techniques in routing algorithms are

in the limelight of the research community for a while. For the

last few decades, it is evident that Moor’s law is broken, and

devices are being more and more powerful. However, on the

flip side, they are becoming more power hungry, and the

advancement in battery capacity is not coping up with the rate.

Therefore, designing energy efficient software has become a

trend in the research community to meet the green objective.

Contribution from several fields has made it a very rich domain.

In [1], the authors present how energy savings can be optimized

by offloading application using Microsoft’s MAUI framework.

But when the local energy is saved by executing an intense part

of program remotely, communication cost comes in which is

proportional to the routing time. Routing algorithm plays a vital

role in the energy savings schemes. Routing protocols

developed for homogeneous networks such as Ad-hoc On-

Demand Distance Vector (AODV), doesn’t work for the

heterogeneous environment, as the resource utilization of

network devices affects the efficiency. Hence, Resource-Aware

Routing for Low powered and Lossy Networks (RPL), was

standardized (RFC 6550) [2] which also formulates the node

cost calculation metric. Link cost calculation is typically

depending on the nature & type of the network, however, there

are some generalized techniques discussed in [3][4].

Software Defined Networking (SDN) [5] is also

becoming the de facto standard of the modern networking. It

decouples the control and data plane. Control plane (CP) is a

logically centralized entity hosted by one or many devices

called Controllers, it instructs the traffic forwarding rules to the

Data Plane (DP) which constitutes switches, which only

forwards. CP bridges with the DP with OpenFlow [6] protocol

and switches register the instructions in OpenFlow Tables.

This paper has designed and developed an energy-

aware routing algorithm that exploits application offloading.

Further, it proposes a resource-aware routing algorithm for

SDN, which monitors the resource utilization of network

devices (nodes) and channels (links), using a push agent and

fetches topology and flow table information from the controller.

Using Link Queue Modelling [10] and Stochastic Network

Calculus [11], it guarantees a route that avoids busy nodes and

uses unutilized ones. Results show the validity of the algorithm.

The rest of the paper is organized as follows, Section

II presents the state of the art, section III describes the problem

statement, Section IV introduces the algorithm, Implementation

details and simulation results are shown in Section V and we

conclude on Section VI.

II. RELATED WORKS

In battery powered networks such as WSN, energy-aware

routing is one of the key areas of researchers. There is a wide

spectrum of work that has been done on traditional wired &

wireless networks. Han Bo in his paper [7] has applied energy

awareness in SDN based WSN. Energy-aware routing

optimizes total energy utilization of the network by prioritizing

the power healthy devices like line powered routers [8] Or

steering traffic in such a way that engages minimum network

devices [9]. The other way of optimizing energy utilization is

selecting devices for a traffic with higher efficiency. Therefore,

the resource awareness idea comes in, where a routing path

involves more underutilized devices.

Most researchers have contributed to the RPL protocol in Low

powered Lossy networks. The authors in the articles [12], [13]

addressed and solved some of the bottlenecks of native RPL by

adding mixed mode operation, adaptively, hierarchical routing

etc. and applied on heterogeneous wireless M2M & IoT

domains. Advantageous over traditional networking for

lowering down the control message overhead. Also, a push

agent-based implementation would replace the negotiation

mechanism used in RPL and a generalized resource metric to

replace the threshold based discrete MOP domain. The work of

D. Lee [14] resembles us, the author proposes a proactive k-

Saptarshi Ghosh, Tasos Dagiuklas, Muddesar Iqbal

School of Engineering, Division of Computer Science & Informatics, London Southbank University, UK

Email: {ghoshs4, tdagiuklas , m.iqbal }@lsbu.ac.uk

shortest path approach, and the only limitation for this solution

would be dealing with a loosy network.

A. Contributions

This paper proposes a Temporal Resource-aware Routing

Algorithm (STR-RA) for SDN. That contributes the following

a. An algorithm has designed and developed to determine the

node and link utilization. This has been accomplished

through a push agent (Shellmon-client) based mechanism

where the agent runs on every Open-V-Switches (OVSs) of

the SDN and updates a remote server (SellMon-server)

about the node and link utilization. The collected data are

normalized by the client.

b. A technique, called Stochastic Temporal Edge

Normalization (STEN), has been introduced. It is a

stochastic network calculus-based model that normalizes

the node costs by distributing it to the edges in time domain.

c. Finally, using an optimization model proposed by [1], the

relationship between optimal saved energy and efficient

routing has been demonstrated both analytically and via

simulation.

III. PROBLEM STATEMENT

In this section, the problem formulation and the mathematical

modeling for the algorithm are presented.

A. System Model

Consider 𝐺(𝑉, 𝐸) is directed graph represent the network

topology. The network connects the switches with the

controller, which is not a part of this graph. 𝑉 = {𝑣𝑖|1 < 𝑖 < 𝑛}

is the vertex set and represents the open-flow switches (OVSs)

and 𝐸 = {𝑒𝑖𝑗
(𝑡)

|𝑎𝑑𝑗(𝑣𝑖 , 𝑣𝑗), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} . The function

𝑎𝑑𝑗(𝑣𝑖 , 𝑣𝑗) returns the weight associated with the edge at time

instance 𝑡. For distinct vertices pair (i.e. 𝑣𝑖 & 𝑣𝑗), the function

𝑎𝑑𝑗() returns the initial link cost and for identical vertices pairs

(i.e. 𝑣𝑖 & 𝑣𝑖) it represents a weighted self-loop and 𝑎𝑑𝑗()

returns the node cost. Cost calculation and metrics are

explained in later section. Since each vertex 𝑣𝑖 represents an

OVS, it connects a several hosts or end devices denoted by the

set 𝐻𝑖 = {ℎ𝑖,𝑗}. Each host ℎ𝑖,𝑗 typically contains its addressing

information (i.e. IP and MAC).

B. Relationship between Energy and Routing

Assume, an application requires a total of 𝐸 amount of energy

to run locally. Without loss of generality, it is assumed that part

of the application runs locally, and the rest is offloaded to it

remotely; Then, 𝐸 can be expressed as a sum of the energy

consumed for local execution (𝐸𝑙), remote execution (𝐸𝑟) and

data transfer (𝐸𝑡). From the source’s perspective 𝐸𝑟 = 0 as it is

not utilizing the source’s energy resources. Hence, the actual

energy saved by offloading the application partially, is 𝐸𝑙− 𝐸𝑡 ,

as the energy spent for data transfer acts as a penalty for the

saved energy.

Originally proposed by Microsoft in their article of MAUI

framework, formulates the optimal saved energy for a call

graph in a distributed application, with a constrained latency.

This section explains the original formulation and then state the

scope of advancement which is addressed in the following

sections.

The proposed solution is a 0-1 integer linear programming

problem (IPP). The objective function maximizes the energy

saved by executing a method remotely. The saved energy is the

difference of the total energy cost of local execution,

(𝐸𝑣
𝑙 | 𝑣 ∈ 𝑉) and the total data transfer cost for executing the

method, (𝐶𝑢,𝑣 | 𝑢, 𝑣 ∈ 𝑉 𝑎𝑛𝑑 𝑒𝑢,𝑣 ∈ 𝐸) .There are two

constrains for the above objective function. First, the total time

for the execution 𝑇𝑣
𝑙 + 𝑇𝑣

𝑟 must be within a certain latency𝐿.

Where 𝑇𝑣
𝑙 & 𝑇𝑣

𝑟 are the local and remote execution time of 𝑣 ∈
𝑉. Second, only remote-based methods can be offloaded for

remote execution. The formal representation is given below.

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ 𝐼𝑣

𝑣∈𝑉

× 𝐸𝑣
𝑙 − ∑ |𝐼𝑢 − 𝐼𝑣| × 𝐶𝑢,𝑣

𝑒𝑢,𝑣∈𝐸

(1)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, (∑(1 − 𝐼𝑣)

𝑣∈𝑉

× 𝑇𝑣
𝑙 + 𝐼𝑣 × 𝑇𝑣

𝑟)

+ ∑ (|𝐼𝑢 − 𝐼𝑣| × 𝐵𝑢,𝑣) ≤ 𝐿

𝑒𝑢,𝑣∈𝐸

 (2)

 𝑎𝑛𝑑, 𝐼𝑣 ≤ 𝑟𝑣 ∀𝑣 ∈ 𝑉 (3)

Where, 𝐼𝑣 is an integer that is equal to 0 for local execution and

1 for rethe mote. 𝑟𝑣 Represents methods marked as

“remotable”, and 𝐵𝑢,𝑣 is the state transfer time from 𝑢 to𝑣.

It can be clearly inferred from equation 2 that the latency

satisfiability constraint is linearly dependent on the execution

time 𝑇𝑣
𝑙 & 𝑇𝑣

𝑟 and state transfer time 𝐵𝑢,𝑣 . further, remote

execution and state transfer time is proportional to the network

delay. Hence a routing protocol that selects the shortest path

that takes least time to than its length or hop count, has a higher

Figure 1 : System Model and reference topology

Commented [TD1]: Title in the label is missing

probability to meet the latency satisfiability constraint.

Eventually optimizing the saved energy, defined as equation 1.

Stating the relationship between the routing protocol and

energy savings, the following section discusses the design cost

calculation and design of our proposed algorithms.

C. Cost calculation of nodes

Cost of a node is calculated by cumulating its various resources’

utilization. In addition to the parameters used in the original

draft of RFC 6550 (RPL), we have introduced a robust cost

calculation function that incorporates more resource parameters

such as (memory and CPU frequency, core count etc.). Various

parameters and their symbols are listed below.

𝑓𝑐 : Frequency of the CPU per core

𝑓𝑚: Frequency of the RAM

𝑁𝑐: Total number of Cores

𝑁𝑚: Total volume of RAM

𝑈𝑐: Percentage of processer utilization

𝑈𝑚: Percentage of memory utilization

𝑈̅𝑏: Percent of utilized battery (100 for line sourced)

𝑅𝑏: Rate of battery usage (1 for line sourced nodes)

Let 𝑍𝑛 be the node utilization factor, a higher 𝑍𝑛 means less

occupied node. Each node represents an OVS. In a virtualized

heterogenous environment, resource allocation is unbounded.

Therefore, a node of 20% resource utilization with a dual core

CPU is equally busy, that of a 10% utilized with quad core. The

same applies to memory utilization. Hence the percent of

utilization is not enough to decide the load of the system, rather

counting the free clocks. For a battery powered device, the

fitness can be judged by how long the remaining power can

last? There is no point of choosing a node that has adequate

CPU and memory resource, but the battery is about to run out.

Therefore, we introduced a cutoff period𝑈𝑏
𝑚𝑖𝑛, as the remaining

battery time approaches the cutoff, 𝑍𝑛 must be diminished

significantly. 𝑍𝑛 Is expressed formally below.

𝑍𝑛 = 𝛼(𝑓𝑐 × 𝑁𝑐)(1 − 𝑈𝑐) + 𝛽(𝑓𝑚 × 𝑁𝑚)(1 − 𝑈𝑚)

+ 𝛾 (
𝑈̅𝑏

𝑅𝑏

− 𝑈𝑏
𝑚𝑖𝑛)

𝑘

(4)

The first term is the total amount of unused CPU frequency, the

second term as unused memory, the third term is of order k

because, as
𝑈̅𝑏

𝑅𝑏
 (i.e. battery time remaining) tends to𝑈𝑏

𝑚𝑖𝑛, the

contribution of the term drops at order 𝑘 , which is a free

parameter. For our experiment we found a best match at, 𝑘 =
2, 𝛼, 𝛽 & 𝛾 Are weighing coefficients.

D. Cost calculation of edges

The edge cost is calculated by two factors: Link quality (𝐿𝑞)

and Energy cost (𝐸𝑐) and expressed as (Eq. 5),

𝑍𝑒 = 𝐿𝑞 − 𝐸𝑐

(5)

The following sections describe each factor.

1) Link quality calculation

The link quality of an edge specifies the reliability of the

channel. It considers the amount of free channel capacity, signal

strength, and average contention. The formal expression is the

same used in ARPANET [3] is given below.

𝐿𝑞 = 𝛼
𝐶 − 𝐵𝑎

𝐵𝑎

+ 𝛽
𝑅𝑆𝑆𝐼𝑚𝑎𝑥 − 𝑅𝑆𝑆𝐼

𝑅𝑆𝑆𝐼
+ 𝛾𝑁𝑐

(6)

 Where,

𝐶: Link capacity

𝐵𝑎: Available bandwidth

𝑅𝑆𝑆𝐼𝑚𝑎𝑥: Maximum signal strength (RSSI) value*

𝑅𝑆𝑆𝐼: received signal strength value*

𝑁𝑐 : Average contention

𝛼, 𝛽, 𝛾: Weighing components

*for wired devices, 𝑅𝑆𝑆𝐼𝑚𝑎𝑥 & 𝑅𝑆𝑆𝐼 are set to 1

The author [3] heuristically obtains the values of the weighing

components are, = 1, 𝛽 = 1, 𝛾 = 10 , on their experiments.

2) Energy Cost Calculation

Energy cost is only calculated when the device is battery

powered. The following set of the equation (eq. 7) is used for

calculation of the energy cost as per IEEE 802.15.4 [15] (Low

rate wireless networks).

𝐸𝑐 = 𝜂𝑡𝑥𝛼𝑡𝑥 + 𝜂𝑟𝑥𝛼𝑟𝑥
(7)

Where, 𝜂𝑡𝑥 & 𝜂𝑟𝑥 are the normalized energy costs for

transmission and reception respectively with 𝛼𝑡𝑥 & 𝛼𝑟𝑥 are

weighing components, set to 0 when line powered and 1 when

battery. 𝜂𝑡𝑥& 𝜂𝑟𝑥 Can be further stated as (eq. 8 and eq. 9),

𝜂𝑡𝑥 = [(𝐶𝑡𝑥−𝑑𝑎𝑡𝑎 + 𝐶𝑟𝑥−𝑎𝑐𝑘)𝐸𝑙𝑖𝑛𝑘]𝑥 [1 + (1 −
𝐸𝑡𝑥−𝑟𝑒𝑠

𝐸𝑡𝑥−𝑖𝑛𝑖𝑡

)]
𝑦

(8)

𝜂𝑡𝑥 = [(𝐶𝑟𝑥−𝑑𝑎𝑡𝑎 + 𝐶𝑡𝑥−𝑎𝑐𝑘)𝐸𝑙𝑖𝑛𝑘]𝑥 [1 + (1 −
𝐸𝑟𝑥−𝑟𝑒𝑠

𝐸𝑡𝑥−𝑖𝑛𝑖𝑡

)]
𝑦

(9)

Where,

𝐶𝑡𝑥 , 𝐶𝑟𝑥 : are the energy consumption during transmission and

reception respectively.

𝐸𝑡𝑥−𝑖𝑛𝑖𝑡 , 𝐸𝑟𝑥−𝑖𝑛𝑖𝑡 : are the initial energy of the transmitter and

receiver.

𝐸𝑡𝑥−𝑟𝑒𝑠, 𝐸𝑟𝑥−𝑟𝑒𝑠 : are the remaining energy of the transmitter

and receiver.

𝐸𝑙𝑖𝑛𝑘 : The expected number of transmission represented as

follows (eq. 10).

𝐸𝑙𝑖𝑛𝑘 = ∑ 𝑖(1 − 𝑃𝑅𝑅)𝑖𝑃𝑅𝑅

𝑘

𝑖=0

(10)

Where, 𝑘 is the maximum number of retransmission and PRR

represents the packet reception rate of a link.

𝑥 & 𝑦 : are the weighing factors, if 𝑥 = 𝑦 = 0 then the

shortest path comprises minimum hops and if 𝑥 = 1, 𝑦 = 0

then the shortest path comprises minimum energy.

E. Queueing Model of the network

The basis of the proposed algorithm is the theory of stochastic

network calculus (SNC) [11]. SNC renders a network as a

collection of interconnected queues, where each node and edge

are modeled as a queue. However, our proposed algorithm is a

simplified use case of the theory.

In our reference graph 𝐺(𝑉, 𝐸) representing a network

topology, there are switches represented as nodes and links as

edges. Now each node has a weighted self-loop, represents the

nodes cost 𝑍𝑛 and edges too weighted with edge costs 𝑍𝑒. The

cost calculations are explained in section C & D.

Assume if a packet arrives on the switch 𝑣𝑖 at time 𝑇0, called

arrival time (AT) and after being processed it leaves at time 𝑇𝑘

then the interval (𝑇𝑘 − 𝑇0) = 𝑇𝑞 is called service time or

queueing time (QT). The QT is proportional to the queue size

which is proportional to the load of the system. Similarly, the

edges can also be treated as a queue. We can generalize the two

costs 𝑍𝑛 & 𝑍𝑒 and express them as QT. Therefore, a path which

is an alternating sequence of nodes and edges can also be a

sequence of queues and the path cost be the sum of QTs (i.e.

the total time a packet takes to traverse from the source node to

the destination). Figure 2 depicts the queueing model of figure

1 where the weights of each edge and self-loop becomes the

length of the corresponding queues. Each queue a point of entry

and exit called rear and front (denoted as hollow and solid

circles respectively on the figure2). For depiction simplicity, it

is assumed that the links are simplex, i.e. 𝑒𝑖,𝑗 can only get data

from 𝑣𝑖 to 𝑣𝑗 not vice versa.

The queueing system can be heterogeneous, i.e. each queue

may run a different scheduling mechanism, and therefore, it is

obvious to make a generalization. As mentioned earlier, the

queue size is proportional to the processing load for the nodes

and traffic load for the edges. The queue size also proportional

to the QT, the mean of QT is also called average waiting time

(AWT). Hence choosing a least time-consuming path can also

be a sequence of queues such the sum of AWT is least among

the possible alternatives, which inherently choose nodes and

edges which are comparatively under-loaded. Here we present

the relationship between AWT and Queue size.

1) AWT of nodes
Since the packets are arriving from many sources and the

service time depends on the system load which depends on

several random causes, therefor 𝐴 & 𝐵 has been chosen as

distribution agnostic. Also, we assume the problem as an

unbounded buffer problem with single server hence 𝑘 = ∞

and𝑐 = 1. This makes the queuing model as 𝐺/𝐺/1.
From the Little’s rule,

𝑊 = 𝑊𝑞 +
1

𝜇
= (

𝐿𝑞

𝜆
+

1

𝜇
) = 𝑂(𝐿𝑞)

 (11)

Where,

𝑊 : AWT of the system

𝑊𝑞: AWT of the queue

𝐿𝑞 : mean number of requests in the queue

𝜆 : mean rate of interval

𝜇 : mean service rate

From the approximated value of 𝐿𝑞 for 𝐺/𝐺/1 queues derived

by Marchal,

𝐿𝑞 = 𝑂(𝜌2, 𝜎𝑠
2, 𝜎𝑎

2, 𝜇2, 𝜆2)

(12)

Where,

𝜌 ∶ Utilization of the server

𝜎𝑠
2, 𝜎𝑎

2 : variance of the service & inter-arrival time respectively

Hence, from equation 4, 11 & 12,

𝑊𝑛𝑜𝑑𝑒 = 𝑂(𝐿𝑞) = 𝑂(𝜌2) = 𝑂 (
1

𝑍𝑛
2

)

(13)

Therefore, as the system goes busy, 𝑍𝑛 decreases and 𝑊

(AWT) of the nodes increases quadratically (eq. 13).

2) AWT of edges

The AWT of edges are relatively simpler to calculate. Since the

channel is FIFO, we consider the mean round trip time RTT as

AWT which is inversely proportional to the edge cost.

Therefore, from (eq. 5),

𝑊𝑒𝑑𝑔𝑒 = 𝑂(𝑅𝑇𝑇) = 𝑂 (
1

𝑍𝑒

)

 (14)

F. Stochastic Temporal Edge Normalization (STEN) concept

Section E discussed the queue modeling of the graph. But there

lies a problem finding the shortest path. All the shortest path

algorithms assume the graph to be simple (i.e. no self-loop or

Figure 2 Queuing model of the network

parallel edges). Our queue modeled graph has associated

weighted self-loops. Before applying any of the shortest path

algorithms, there is a need to normalize the loops by removing

them. Once removed its weight must be distributed among the

incident edges of the node where the loop was.

Figure 3 shows the normalized version of Figure 2. All the

loops |𝑒𝑖𝑖| are set to zero, instead, their values are distributed

among the adjacent edged of the node𝑣𝑖. The coefficient 𝛼𝑗
𝑖 is a

rational number between [0,1] that denotes a fraction of|𝑒𝑖𝑖|,

such that ∑ 𝛼𝑗
𝑖 = 1𝑗 . It specifies the next-hop probability of a

switch 𝑣𝑖 distributed over its incident edges. This edge

normalization process is temporal as it changes time-to-time

and stochastic because the fraction is probabilistic and

distribution agnostic.

Once normalized, the graph will be re-aligned, the busy nodes

will be put farther, and the free nodes will be put closer.

Consequently, running any shortest path algorithm will choose

a path with minimum path length, which in other words it

comprises freer nodes than the busy ones.

The normalization function ℵ transforms a graph with self-loop

to one with a normalized edge. ℵ Is defined formally below

(eq. 15),

ℵ(𝐺(𝑉, 𝐸)) → 𝐺′(𝑉, 𝐸′)

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, |𝑒𝑖𝑗|→ |𝑒𝑖𝑗| + 𝛼𝑘
𝑖 |𝑒𝑖𝑖| + 𝛼𝑘

𝑗
|𝑒𝑗𝑗|

 𝑎𝑛𝑑, |𝑒𝑖𝑖| = 0 ∀𝑒 ∈ 𝐸|

(15)

IV. PROPOSED ALGORITHM

This section discusses the proposed algorithm’s design and

analysis. Time complexity 𝑇 of a routing algorithm can be

expressed as (Eq. 16)

𝑇 = 𝑁𝑟(𝑇𝑐 + 2𝑇𝑝 + 𝑇𝑢)

(16)

Where 𝑇𝑐 , 𝑇𝑝& 𝑇𝑢 are mean cost calculation, propagation &

update time respectively and 𝑁𝑟 is the mean number of

rerouting. Though in SDN, the complexity is far less as routing

is performed by the controller, that simultaneously configures

flow to the switches. This reduces 𝑇𝑝 = 𝑂(|𝑉|2) to𝑂(1). A

proactive K-shortest path mechanism may suffer in a resource

aware scenario, as the node costs changes frequently, it must

recalculate the entire routing table again every time in a time

complexity of 𝑂(|𝑉|4) . Thus, we opt for a purely reactive

algorithm that selectively normalizes edges whose incident

vertices’ cost have changed.

1) Algorithm design

Algorithm 1: Shortest path generation for eligible pairs

Input: Graph 𝐺(𝑉, 𝐸) - Topology from SDN Controller

 𝑍𝑛|𝑣
(𝑡)

 & 𝑍𝑒|𝑙
(𝑡)

 - Utilization ∀𝑣 ∈ 𝑉 𝑎𝑛𝑑 ∀𝑙 ∈ 𝐸 at time, 𝑡.

Output: Set of Routes 𝑅𝑖𝑗
(𝑡)

Steps:

1. While (true) {

2. Set 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑡𝑒𝑚𝑝 ← 𝜙

3. Normalize 𝐺 : 𝐺′ = ℵ(𝐺)

4. For all vertex pair (𝑣𝑖 , 𝑣𝑗) ∈ 𝑉(𝐺′) × 𝑉(𝐺′) {

5. If (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸′ {

6. If min(𝑒′𝑖𝑘) + min(𝑒′𝑘𝑗) + min(𝐸′) < |𝑒′𝑖𝑗|

7. 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑜𝑢𝑡𝑒 ∪ 𝑒′𝑖𝑗

8. Δ𝑒′𝑖𝑗 : change in edge weight

9. If Δ𝑒′𝑖𝑗 > min(𝑒𝑖𝑘
′) + min (𝑒′𝑘𝑗)

10. 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑜𝑢𝑡𝑒 ∪ 𝑒′𝑖𝑗

 }

11. Else 𝑟𝑡𝑒𝑚𝑝 ← 𝑟𝑡𝑒𝑚𝑝 ∪ 𝑒′𝑖𝑗

 }

12. If 𝑟𝑜𝑢𝑡𝑒 ≠ 𝜙

13. 𝑟𝑜𝑢𝑡𝑒 ← 𝑟𝑜𝑢𝑡𝑒 ∪ 𝑟𝑡𝑒𝑚𝑝

14. For all (𝑣𝑖 , 𝑣𝑗) ∈ 𝑟𝑜𝑢𝑡𝑒

15. 𝑅𝑖𝑗 ← 𝑅𝑖𝑗 𝑈 𝑑𝑖𝑗𝑒𝑘𝑠𝑡𝑟𝑎(𝑣𝑖 , 𝑣𝑗)

16. For all 𝑟𝑖𝑗 ∈ 𝑅𝑖𝑗 call Algorithm 2

17. Sleep(Timeout)

}

Algorithm 1 takes a graph 𝐺(𝑉, 𝐸) as input, normalizes it using

equation (15), for all eligible node pairs it runs Dijkstra’s single

source shortest path algorithm. A route between 𝑣𝑖 & 𝑣𝑗 at time

𝑡 is denoted as 𝑟𝑖,𝑗
(𝑡)

 . Each of which represents a sequence of

nodes{𝑣𝑘}. All such routes constitute the set𝑅𝑖𝑗
(𝑡)

= {𝑟𝑖𝑗
(𝑡)

}. A

function 𝑠𝑢𝑐𝑐(𝑣𝑘) = 𝑣𝑘+1|𝑣𝑘 ∈ 𝑟𝑖𝑗
(𝑡)

 , 𝑖 ≤ 𝑘 < 𝑗 on a node for a

certain route returns the successor node, 𝑠𝑢𝑐𝑐(𝑣𝑗) = 𝜙 .

Algorithm 2 translates each 𝑟𝑖𝑗
(𝑡)

∈ 𝑅𝑖𝑗
(𝑡)

 into a set flow

entry 𝐹𝑖𝑗
(𝑡)

= {𝑓𝑘|𝑘 ∈ 𝑉} , to configure OVSs involve in the

route𝑟𝑖𝑗 . Both source & destination IP addresses for flow match

haven been used with output port as action. From Figure 3, at

time 𝑡 let an arbitrary route 𝑟1,5
(𝑡)

= {𝑣1, 𝑣2, 𝑣5} , the

corresponding flow entries will be (Table 1),

Figure 3: After normalizing, node costs are diminished and get

added with the link costs.

Table 1: Example of flow entries for 𝑟1,5
(𝑡)

OVS Match Action

 Source IP Destination IP

𝑣1 𝐻1 𝐻5 𝑜𝑢𝑡: 𝑃(𝑠𝑢𝑐𝑐(𝑣1))

𝑣2 𝐻1 𝐻5 𝑜𝑢𝑡: 𝑃(𝑠𝑢𝑐𝑐(𝑣2))

 Where 𝐻𝑖 is the set of IP addresses, local to OVS 𝑣𝑖 . 𝑃(𝑣𝑗)

returns the port number of 𝑣𝑖 connects𝑣𝑗. The size of the flow

set can be expressed as, |𝐹𝑖𝑗
(𝑡)

| = (𝐻𝑖 × 𝐻𝑗 × 𝑑) , where 𝑑

denotes the diameter of 𝐺. Hence, it can face space allocation

problem for a network with large number of end-devices. A

lookup table method such as Network Address Translation

(NAT) can be a good solution to restrict the size at 𝑂(𝑉).

Algorithm 2: Configure OVSs with Flow entries

Input: Route 𝑟𝑖𝑗 ∈ 𝑅𝑖𝑗

Output: Flow entry 𝐹𝑖𝑗

Steps:

1. For all 𝑣𝑘 in 𝑟𝑖𝑗{

2. If 𝑠𝑢𝑐𝑐(𝑣𝑘) ≠ 𝜙{

3. 𝑜𝑣𝑠 ← 𝑣𝑘

4. 𝑠𝑖𝑝 ← 𝐻𝑖 = {ℎ𝑖}

5. 𝑑𝑖𝑝 ← 𝐻𝑗 = {ℎ𝑗}

6. 𝑝𝑜𝑟𝑡 ← 𝑝(𝑠𝑢𝑐𝑐(𝑣𝑘))

7. 𝑜𝑣𝑠. 𝑎𝑑𝑑𝐹𝑙𝑜𝑤(
𝑛𝑤𝑠𝑟𝑐 = 𝑠𝑖𝑝
𝑛𝑤𝑑𝑠𝑡 = 𝑑𝑖𝑝
𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑜𝑢𝑡𝑝𝑢𝑡: 𝑝𝑜𝑟𝑡)

 }

 }

2) Complexity Reduction & Analysis

Running Dijkstra’s algorithm for all pair of vertices would

cost𝑂(|𝑉|4). To reduce it, algorithm 1 only chooses those pair

of vertices which are eligible. meaning they are potentially

replaceable by an alternate path. The eligibility criteria are

listed below,

a. If 𝑒𝑖𝑗 is an edge between two adjacent vertices (𝑣𝑖 , 𝑣𝑗) and

the sum of minimum weighing incident edges of the subjected

vertices and the minimum weighing edge of the entire graph is

less than |𝑒𝑖𝑗|, i.e. (Eq. 17)

min
𝑖, 𝑘 ∈ 𝐸′

(|𝑒′
𝑖𝑘|) +

min
𝑗, 𝑘 ∈ 𝐸′

(|𝑒′
𝑘𝑗|) +

min
e

(𝐸′) < |𝑒′𝑖𝑗|

(17)

b. If the change in the value of a direct edge 𝑒𝑖𝑗
′ ,denoted as

Δ𝑒𝑖𝑗
′ exceeds the sum of minimum weighing incident edges of

the subjected vertices. (Eq. 18)

Δ𝑒𝑖𝑗
′ >

min
𝑖, 𝑘 ∈ 𝐸′

(|𝑒𝑖𝑘
′ |) +

min
𝑗, 𝑘 ∈ 𝐸′

(|𝑒𝑘𝑗
′ |)

(18)

c. All indirect vertex pair, i.e. (𝑣𝑖 , 𝑣𝑗) |𝑒𝑖𝑗 ∉ 𝐸 are eligible.

This doesn’t reduce the asymptotic upper bound of the runtime,

but the lower-bound significantly, when the eligible edges are

few.

V. IMPLEMENTATION & RESULTS

This section discusses the Implementation, methodology, and

results. We implemented the test bed using GNS3 network

emulator, OVSs are hosted by Docker containers.

OpenDaylight (ODL) beryllium SR4 was used as an SDN

Controller. MySQL Server is used for middleware & database

management. We developed three apps (Shellmon, route,

TopoSense) for the application layer.

A. Experimental setup

Each OVS runs Shellmon Client and sends event-driven

resource updates to Shellmon Server. The TopoSense app

retrieves topology and flow table information from ODL using

RESTConf protocol from nodes/topology and nodes/inventory

resources respectively and updates to the database. Route-App

fetches data from the database, run algorithm 1 & 2, to generate

a graph with resource information and shortest path for eligible

edges. Each shortest path then gets configured to the OVS using

OpenFlow packet out messages from the controller. Figure 4

depicts the complete data-flow.

B. Methodology

This section describes the methodology we followed in order

during the experiment.

i. A non SDN (Quagga based) topology was built &

configured with the reference topology (Figure 1). The end

to end (E2E) throughput between two hosts has been tested

using iperf while overloading an intermediate router with

stress tool. The experimental result shows the throughput

falls in a quadratic rate both for RIP & OSPF, which

matches the expected result (Eq. 13).

ii. The proposed technique has been implemented using an

SDN platform depicted in Figure 4, keeping the topology

same. Results show a linear characteristic compared to the

exponential rise.

GNS3-VM Server

OVS
Containers

MySQL Server

OpenDaylight
Controller

Topology

1. Deploy Topology

2. Add remote
controller

TopoSense App
 Builds Network

Graph

3. Fetch Topology & Flow Table

ShellMon Server
App

4. Real time
Recourse
Utilization

5. Update Flow Table &
Resource Data

Routing App

6. Fetch Graph
 &

Utilization data

7. Routed Topology

8. OVS Configuration

Figure 4: Experimental Setup and Dataflow Architecture

C. Results

Figure 6 shows the result, with CPU threads along horizontal

axis vs the moving average plot of throughput achieved. a pair

of the quadratic fitted curve also confirms the characteristic

equation for RIP & OSPF.

The utilization vs E2E delay characteristics is shown in figure

5. The initial delay for the proposed STR-RA algorithm is due

to control packer exchange between OVS & ODL and the apps

to generate the data structure. The delay touches the minima

immediately after the initialization. After thread count exceeds

60 it finds & switches to a different path with larger hop count

that causes a slight hike.

VI. CONCLUSION

This paper states how energy total consumption of a network

depends on the resource utilization of its devices. Therefore, a

resource-aware routing protocol is proposed that monitors both

the node and link utilization dynamically. The routing

algorithm uses average waiting time of a path as a metric, which

is modeled using stochastic network calculus. an SDN

framework for the algorithm is proposed, which does dynamic

translation of the shortest paths into flow entries. Finally,

results confirm the performance comparing RIP & OSPF.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.

Chandra and P. Bahl, "MAUI", Proceedings of the 8th international

conference on Mobile systems, applications, and services - MobiSys '10,

2010.

[2] "RFC 6550 - RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks", Tools.ietf.org, 2012. [Online]. Available:

https://tools.ietf.org/html/rfc6550. [Accessed: 30- Apr- 2018].

[3] K. Kowalik, B. Keegan and M. Davis, "RARE - Resource Aware Routing

for mEsh", 2007 IEEE International Conference on Communications,

2007.

[4] V. Gungor, C. Sastry, Z. Song and R. Integlia, "Resource-Aware and

Link Quality Based Routing Metric for Wireless Sensor and Actor

Networks", 2007 IEEE International Conference on Communications,

2007.

[5] "RFC 7426 - Software-Defined Networking (SDN): Layers and

Architecture Terminology", Tools.ietf.org, 2015. [Online]. Available:

https://tools.ietf.org/html/rfc7426. [Accessed: 30- Apr- 2018].

[6] OpenFlow Switch Specification. 2018, pp. 12-24.

[7] H. Bo, W. Muqing, Z. Min and L. Wenxing, "An energy aware routing

algorithm for software defined wireless sensor networks", 2017

IEEE/CIC International Conference on Communications in China

(ICCC), 2017.

[8] S. He, K. Xie, W. Chen, D. Zhang and J. Wen, "Energy-Aware Routing

for SWIPT in Multi-Hop Energy-Constrained Wireless Network", IEEE

Access, vol. 6, pp. 17996-18008, 2018.

[9] J. Manjate, M. Hidell and P. Sjodin, "Can Energy-Aware Routing

Improve the Energy Savings of Energy-Efficient Ethernet?", IEEE

Transactions on Green Communications and Networking, pp. 1-1, 2018.

[10] W. Jin, A link queue model of network traffic flow. 2013, pp. 3-8.

[11] M. Fidler and A. Rizk, "A Guide to the Stochastic Network

Calculus", IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp.

92-105, 2015.

[12] J. Guo, P. Orlik, K. Parsons, K. Ishibashi and D. Takita, "Resource

Aware Routing Protocol in Heterogeneous Wireless Machine-to-Machine

Networks", 2015 IEEE Global Communications Conference

(GLOBECOM), 2015.

[13] J. Guo, P. Orlik and K. Ishibashi, "Resource aware hierarchical routing in

heterogeneous wireless IoT networks", 2016 Eighth International

Conference on Ubiquitous and Future Networks (ICUFN), 2016.

[14] D. Lee, P. Hong and J. Li, "RPA-RA: A Resource Preference Aware

Routing Algorithm in Software Defined Network", 2015 IEEE Global

Communications Conference (GLOBECOM), 2015.

[15] "IEEE Standard for Low-Rate Wireless Networks."

Figure 6: E2E Throughput falling under RIP & OSPF, when one of

the intermediate router gets overloaded

Figure 5 Comparison between RIP, OSPF & proposed STR-RA

in Utilization vs Delay characteristics

