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Abstract

Parameter learning is an important aspect of learning in Bayesian networks. Although the maximum likelihood algorithm
is often effective, it suffers from overfitting when there is insufficient data. To address this, prior distributions of model
parameters are often imposed. When training a Bayesian network, the parameters of the network are optimized to fit the
data. However, imposing prior distributions can reduce the fitness between parameters and data. Therefore, a trade-off
is needed between fitting and overfitting. In this study, a new algorithm, named MiniMax Fitness (MMF) is developed to
address this problem. The method includes three main steps. First, the maximum a posterior estimation that combines
data and prior distribution is derived. Then, the hyper-parameters of the prior distribution are optimized to minimize
the fitness between posterior estimation and data. Finally, the order of posterior estimation is checked and adjusted to
match the order of the statistical counts from the data. In addition, we introduce an improved constrained maximum
entropy method, named Prior Free Constrained Maximum Entropy (PF-CME), to facilitate parameter learning when
domain knowledge is provided. Experiments show that the proposed methods outperforms most of existing parameter
learning methods.
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1. Introduction

A Bayesian network (BN) [1] is a joint probability distribution model representing a set of stochastic variables. In
particular, a BN consists of a directed acyclic graph that represents the dependent relationship between variables and a
numerical section that specifies the conditional probability distribution for each variable. Over the last 30 years since its
introduction, BNs have been developed further, and have become a powerful tool with many applications, including fault
diagnoses [2], target tracking [3], robot control [4], gene analysis [5], ecosystem modeling [6], signal processing [7], and
educational measurement [8]. In general, BN learning can be divided into two parts: structure learning and parameter
learning; structure learning involves finding the optimal directed acyclic graph, while parameter learning involves specifying
the conditional probability distributions.

In practice, when performing parameter learning, sufficient samples are required, depending on the complexity of the
BN. If the data is sufficient, BNs can be easily constructed using traditional methods such as the maximum likelihood
(ML) method [9]. However, the ML method tends to overfit when there is insufficient data [10]. Unfortunately, collecting
abundant data is a difficult task under certain circumstances, such as, in the cases of earthquake prediction [11], parole
assessment [12], and rare disease diagnosis [13]; in such cases, BNs constructed using the ML method will suffer from over-
fitting. To avoid over-fitting, prior distributions of model parameters are often imposed. In particular, imposing certain
prior distributions will decrease the likelihood of the parameters and therefore reduce the fitness between parameters
and data. However, if parameter estimation is tremendously biased toward the prior, the estimation will suffer from
underfitting. In this paper, to avoid both over-fitting and under-fitting, we apply the Minimax algorithm to achieve the
tradeoff. By applying the Minimax algorithm, we define a novel prior. Unlike the familiar subjective prior, such as flat
prior, reference prior, Haldane prior, or Jeffreys prior, the defined prior is objective, which can be written as

θpriorijk =

{
1, Nijk = minNijk′ , k

′
= 1, 2, ..., ri

0, Nijk ̸= minNijk′ , k
′
= 1, 2, ..., ri,

where θpriorijk denotes the hyper-parameters of prior distribution and Nijk denotes the number of samples, in which the
variable Xi adopts the value k and the parent nodes Xπ(i) adopt the configuration state j. The above prior is extreme but
makes sense. Maximum likelihood estimation is biased against the least observed event. However, when the available data
is limited, maximum likelihood estimation is not trustworthy. Therefore, through the proposed prior, the least observed
event becomes less biased and thus the parameter estimation is more acceptable.

Apart from imposing quantitative prior, qualitative domain knowledge also improves parameter estimation. To utilize
both data and domain knowledge, we further introduce an improved constrained maximum entropy method. Compared
with the traditional constrained maximum entropy method, by our method, domain experts do not need to specify prior
strength, which is hard to provide and also has considerable effect on the parameter estimation. The remainder of the
paper is organized as follows: In Section 2, the works related to parameter learning and Minimax algorithm application
are introduced. A basic discussion of BNs and BN learning is presented in Section 3. In Section 4, the details of the
proposed methods are described. In Section 5, a set of experiments are presented to highlight the performance of the
proposed methods. Finally, conclusion and directions for future research are presented in Section 6.

2. Related Works

The methods for BN parameter learning using small data sets can be categorized into two types: constraint-based
methods and non-constraint-based methods. As evident, non-constraint-based methods are methods that do not consider

∗Corresponding author
Email address: cxg2012@nwpu.edu.cn (Xiao-guang Gao)

Preprint submitted to International Journal of Approximate Reasoning March 8, 2019



parameter constraints. Among these non-constraint-based methods, Cooper and Herskovits [14] suggested setting hyper-
parameters of prior distribution parameters to be 1, which is referred to as uniform prior distribution. In addition, a type
of non-informative prior distribution called Jeffrey’s prior [15, 16] was proposed by Harold Jefferys, which sets the hyper-
parameters of prior distribution parameters to be 0.5. Isozaki et al. [10] proposed a parameter learning method called
minimum free energy method. In this method, a free energy function formed using the Kullback-Leibler divergence and
an entropy function are defined; a hyper-parameter called data temperature was used to control the proportion between
the Kullback-Leibler divergence and entropy function. Subsequently, the required parameters were calculated.

However, it is common to learn parameters with constraints when the data available is insufficient. Wittig and Jameson
[17] defined a violation term and applied it as a penalty term for the log-likelihood function, thus obtaining a modified
likelihood function; this modified likelihood function was considered the objective function of the optimization model
in their study. Finally, the optimization model was optimized using adaptive probabilistic networks. In another study,
Altendorf et al. [18] considered monotonicity constraints. They initialized the parameters using ML estimation first. If all
the constraints were satisfied, the ML estimation was considered the final parameter; otherwise, a penalty term was defined
to penalize the likelihood function. Finally, the penalized likelihood function was optimized using the gradient descent
algorithm. Zhou et al. [19] studied Altendorf’s method and suggested that the optimization of the penalized likelihood
function using gradient descent algorithm caused unacceptably poor parameter estimation results when the data count
was zero or extremely small, and the reason for this was that gradient descent started at a random point. To address
this problem, they introduced a flat prior distribution to the penalized likelihood function. Further, Feelders et al. [20]
also proposed a parameter learning algorithm that first employed the ML estimation and then elicited parameter orders
from the parameter constraints. Finally, the isotonic regression algorithm was applied to regulate the initial parameters
and the regulated parameters satisfying the parameter orders were elicited from the parameter constraints. Campos et al.
proposed the constrained ML method [21] and the constrained maximum entropy method [22]. The constrained ML method
constructed a convex optimization model that maximized the likelihood function subject to the parameter constraints.
Next, the optimization model was optimized using the convex optimization methods. The constrained maximum entropy
method also constructed an optimization model subject to parameter constraints, and an entropy function combining
the prior distribution and the data set was defined. Next, an optimization model containing the entropy function was
constructed. As in the case of the constrained ML methods, the model was optimized using the convex optimization
algorithm. Chang et al. [23] proposed a qualitative MAP method and method involved sampling a certain number
of possible parameters from among the parameter constraints using the rejection-acceptance sampling method. Then,
the mean values of the sampled parameters were calculated and considered as prior distribution parameters. The final
parameters were calculated by combining the data set and prior distribution parameters. It is important to note, however,
that the final parameters may not satisfy the parameter constraints in this case. To address this violation, Guo et al. [24]
proposed a further constrained qualitative MAP method. After the original qualitative MAP estimation, an optimization
model combining the final parameter and the parameter constraints was constructed; thus, the model ensures that the
optimized parameters satisfy the parameter constraints.

In fact, Minimax algorithm has already been applied on parameter estimation of various statistical models. For
example, Bickel [25] studied the estimation of the mean of a normal distribution with known variance. Given prior
knowledge that the mean lies in a known interval, the Minimax estimation is Bayes with respect to a least favorable
prior distribution concentrating on a finite number of points. Zou et al. [26] considered the problem of estimating the
parameter n of the binomial distribution under the assumption of both infinite and finite parameter spaces. Furthermore,
the Minimax property of some estimators is investigated. Besides, Takimoto et al. [27] used the Minimax strategy for on-
line density estimation with a Gaussian of unit variance. Interestingly, Silander et al. [28] applied the Minimax algorithm
on the parameter estimation of Bayesian networks. In the paper, Minimax regret algorithm was used to maximize and
minimize the regret of parameter distribution for data. However, in that paper, the parameter estimation was formulated
as a non-Bayesian estimation and no pior was assumed and incorporated into the estimation. In this paper, we apply
the Minimax algorithm to maximize and minimize the fitness of posterior estimation to data and introduce a new prior.
Experiments show that the proposed prior improves the parameter estimation of Bayesian networks.

3. Preliminaries

3.1. BN

A BN is a joint probability distribution model of stochastic variables X = (X1, X2, · · · , Xn). A BN consists of
a directed acyclic graph in which each node corresponds to a stochastic variable and the arcs reflect the qualitative
dependence between them. In addition, the network includes conditional probability tables (CPTs). Each element of
the CPTs can be represented as p(Xi|Xπ(i)) for each node Xi given its parent nodes Xπ(i). In practice, θijk is used to
represent p(Xi = k|Xπ(i) = j) when node Xi adopts the state k and its parent nodes adopt the configuration state j. For
node node i, we assume that it has ri different states, and its parent nodes have qi different configuration states. The
jth row of the CPTs can be represented as (θij1, θij2, · · · , θijri), while the kth column of the CPTs can be represented as
(θi1k, θi2k, · · · , θiqik).

3.2. Parameter Learning

Parameter learning entails estimating CPT values from a data set for a known structure. In this study, we assume
that there is no latent variable and no missing value in the data set. In data set D, let Nij denote the number of samples
in D in which the parent nodes Xπ(i) adopt the configuration state j. Let Nijk denote the number of samples in D in
which the variable Xi adopts the value k and the parent nodes Xπ(i) adopt the configuration state j. Usually, to facilitate
the parameter learning of BNs, two assumptions are often employed, which are stated as follows:

Assumption 1 For data set D that has N instantiations (D(1), ..., D(N)), the instantiations are assumed to be in-
dependent and identically distributed. The counts of observations in the data set (Nij1, ..., Nijri) follows multinomial
distributions so that

P (Nij1..., Nijri) = Nij !

ri∏
k=1

θ
Nijk

ijk

Nijk!
, (1)
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where Nij =
∑ri

k=1 Nijk.
Assumption 2 Parameters (θij1, ...θijri) are assumed to be independent of each other and follows Dirichlet distributions

so that

P (θij) =
Γ(

∑ri
k=1 αk)∏ri

k=1 Γ(αk)

ri∏
k=1

θ
αijk−1
ijk , (2)

where (αij1, ..., αijri) are the hyper-parameters of Dirchlet distributions. Γ(x) is the Gamma function, which is defined as
Γ(x) =

∫∞
0

tx−1e−tdt.
For parameter learning of BNs, the ML estimation is the most common parameter learning algorithm, which is defined

as a maximization problem of the data likelihood, which is written as

logP (D|θ) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklogθijk. (3)

Therefore, the maximum likelihood estimation can be given by

θML
ijk =

Nijk

Nij
. (4)

However, when there is insufficient data, models constructed by ML estimation usually suffer from overfitting. An
effective technique to overcome overfitting is to impose prior distributions on model parameters. Then, the parameter
estimation amounts to infer from the posterior distribution, which is a combination of data statistics and prior distributions
and can be written as follows:

P (θ|D) =
P (D|θ)× P (θ)

P (D)
. (5)

The log form of the posterior distribution can be expressed as

logP (θ|D) = logP (D|θ) + logP (θ)− logP (D), (6)

where P (D|θ) is the data likelihood function, P (θ) is the prior distribution function, and P (D) is a constant. As the
Dirichlet distribution is a natural conjugate of the multinomial distribution [29], it is the most convenient way to convey
the prior on parameters. With a Dirichlet prior, the log form of the prior distribution function can represented as

logP (θ|G) =
n∑

i=1

qi∑
j=1

ri∑
k=1

αijk log θijk + log β, (7)

where β is a constant that is used to normalize the parameters of the prior distribution. Then, the log form of posterior
distribution can further written as

logP (θ|D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

(Nijk + αijk) log θijk + c, (8)

where c = − logP (D) + log β. Finally, the maximum a posterior estimation of parameter θijk can be computed as

θMAP
ijk =

Nijk + αijk

Nij + αij
. (9)

In the maximum a posterior estimation, hyper-parameter αijk is often called the equivalent sample size corresponding
to Nijk [23]. The prior distributions can overcome overfitting, because αijk increases the data size. However, because of
the difficulty in specifying the value of αijk, αijk is often manually set to different values. For example, αijk = 1 represents
the non-informative uniform prior [14] and αijk = 0.5 represents the non-informative Jeffreys prior [15, 16].

3.3. Inequality Relationship

In general, qualitative statements from domain experts can be translated into one of the following parameter constraints
[18, 23]:

(1) Range constraint:
0 ≤ αijk ≤ θijk ≤ βijk ≤ 1 (10)

It defines the upper and lower bounds of a parameter and it is commonly used in practice. In addition, domain experts
find it convenient to provide such constraints.

(2) Intra-distribution constraint:
θijk ≤ θijk′ , ∀k ̸= k′ (11)

It describes the comparative relation between two parameters referring to the same parent configuration node state j
with different states k and k′ of a child node.

(3) Cross-distribution constraint:
θijk ≤ θij′k, ∀j ̸= j′ (12)

It defines the comparative relation between two parameters referring to the same child node state k with different
parent configuration node states j and j′.

(4) Inter-distribution constraint:
θijk ≤ θi′j′k′ ,∀i ̸= i′, j ̸= j′, k ̸= k′ (13)

It describes the comparative relation between two parameters referring to different nodes.
(5) Approximate-equality constraint:

θijk ≈ θi′j′k′ ,∀i ̸= i′, j ̸= j′, k ̸= k′ (14)
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It defines the close relation between any two parameters. Because the form of the above-mentioned constraints is not
convenient for further calculation, it needs to be transformed into the following form:

| θijk − θi′j′k′ |≤ ε, ∀i ̸= i′, j ̸= j′, k ̸= k′ (15)

where ε is a very small value.

4. The Methods

4.1. MiniMax Fitness Method

In this paper, to avoid both overfitting and underfitting of estimation to data, we optimize the following model that
incorporates the prior

maxmin
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijklogθ
posterior
ijk . (16)

The above model can be further written as

max
α

min
θprior
ijk

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog
Nijk + α ∗ θpriorijk

Nij + α
. (17)

In the above model, α and θpriorijk are variables tuning the overall fitness of posterior estimation to data. First, to avoid
overfitting of posterior estimation to data, the following model is optimized

min
θprior
ijk

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog
Nijk + α ∗ θpriorijk

Nij + α
. (18)

Theorem 1 The minima of model given by Eq. 18 is

θpriorijk =

{
1, if Nijk = minNijk′ , k

′
= 1, ..., ri

0, if Nijk ̸= minNijk′ , k
′
= 1, ..., ri.

(19)

Please see the proof of Theorem 1 at Appendix A.
Proposition 1 The Mini-Max Fitness estimation is more efficient than Maximum Likelihood estimation when the equiv-
alent sample size satisfies

0 < α <

2Nij

∑
k

N2
ijk − 2N2

ijNijm

N2
ij −

∑
k

N2
ijk

.

Please see the proof of Proposition 1 at Appendix D.
Then, since θpriorijk has been determined, to avoid underfitting of posterior estimation to data, the following model is

optimized

max
α

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog
Nijk + α ∗ θprior∗ijk

Nij + α
(20)

where θprior∗ijk denotes the optimal value of θpriorijk , which is determined according to Theorem 1. As function

f1(α) =

ri∑
k=1

Nijklog
Nijk + α ∗ θprior∗ijk

Nij + α
(21)

is a strictly decreasing function (see Appendix C), function

f2(α) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog
Nijk + α ∗ θprior∗ijk

Nij + α
(22)

is also a strictly decreasing function. Therefore, model given by Eq. 23 is maximized when the prior strength α is zero.
However, in that case, the proposed algorithm evolves into maximum likelihood estimation, which has been demonstrated
to be overfitting when the available data is insufficient. Therefore, prior strength α ought to be larger than zero, in order
to avoid overfitting. In fact, when α takes a greater value, it reduces more over-fitting. To determine the value of α, we
determine the α value by cross-validation. After determining θpriorijk and α, the parameters of posterior distribution can
be computed as

θposteriorijk =
Nijk + α ∗ θpriorijk

Nij + α
. (23)

However, applying prior in Eq. 21 may cause the order of the hyper-parameters of posterior distribution to differ from
the order of the statistical counts from data. For example, if the statistical counts from data is (Nij1, Nij2, Nij3), the order
of the statistical counts from data is Nij1 > Nij2 > Nij3. Applying the prior distribution in Eq. 17, the hyper-parameters

of posterior distribution will be given by
Nij1

Nij+α ,
Nij2

Nij+α ,
Nij3+α
Nij+α . If Nij3 + α > Nij2, the order of the hyper-parameters of

posterior distribution will differ from the order of the statistical counts from data. To address the above problem, the
following algorithm has been proposed, which is referred to as the MiniMax Fitness (MMF) algorithm.
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Step 1: Count the numbers of observations Nijk and Nij from the data set and determine the prior θpriorijk according
to Theorem 1.

Step 2: Normalize the prior θpriorij .

Step 3: Compute the parameter estimation θposteriorijk according to Eq. 24.

Step 4: Check the numerical order of θposteriorijk and the numerical order of Nijk. If the two orders agree, then stop
the algorithm. If not, go to Step 5.

Step 5: Reset the prior by the following rule

θpriorijk =

{
1, if θposteriorijk = min θposteriorijk′ , k

′
= 1, ..., ri

0, if θposteriorijk ̸= min θposteriorijk′ , k
′
= 1, ..., ri.

Then, go to step 2.

4.2. Prior Free Constrained Maximum Entropy Method

Minimax Fitness algorithm applies to estimation when there is no parameter constraints. In fact, in some cases,
domain experts can provide certain knowledge on unknown parameters added as supplement to the insufficient data. The
knowledge could be converted into parameter constraints, which are helpful to improve the parameter estimation. To
make full use of sample data and domain knowledge, in this part, we present an improved constrained maximum entropy
method, called Prior Free Constrained Maximum Entropy (PF-CME) method. For the constrained maximum entropy
estimation[22], prior strength α has to be specified by domain experts on the basis of empirical study or cross-validation.
In fact, the overall constrained maximum entropy estimation is very sensitive to the prior strength and changing α has
a considerable effect on the estimation. To address that problem, we provide a solution that the prior strength α is
optimized as a variable of the model formulated as follows

max
α,θprior

ijk

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk + α× θpriorijk

Nij + α
log

Nijk + α× θpriorijk

Nij + α

subject to Ω(α, θpriorij ).

(24)

In the above model, along with prior parameter θpriorijk , prior strength α is optimized to maximized the overall entropy

model. It is worth noting that, apart from prior parameter θpriorijk , the overall posterior estimation
Nijk+α×θprior

ijk

Nij+α also

oughts to satisfy the parameter constraints.
As the model given by Eq. 27 is non-convex, existing techniques, such as Convex Optimization, fail to solve the above

problem. In this paper, we use the Sequential Quadratic Programming (SQP) to optimize the model. Then, the procedure
of Prior Free Constrained Maximum Entropy method is summarized as follows:

Step 1: Count the numbers of observations Nijk and Nij from the data set and generate parameter constraints from
domain knowledge.

Step 2: Set the initial solution of θpriorijk using Hit-and-Run sampling method1 to make sure that the initial solution
satisfies the parameter constraints. Besides, set the initial solution of prior strength α as a value greater than zero.

Step 3: Optimized the model given by Eq. 27 and determine the optimal value of θpriorijk and α.

Step 4: Compute the parameter estimation θposteriorijk according to Eq. 26.

5. Experiments

We evaluated the learning performance of the proposed algorithm in terms of learning accuracy and learning efficiency.
The learning accuracy was evaluated using the Kullback-Leibler (KL) divergence [30], which indicates the divergence
between the learned distribution and the true distribution. The learning efficiency was evaluated using the learning time.
Learning algorithms implemented in the experiments are listed in Table 1. Among the algorithms, models in CO, CML,
CME and FC-QMAP were optimized by Sedumi solver2. We perform experiments on four typical benchmark networks.
The size of the networks varies from small, medium, large, to considerably large. The information regarding these networks
is listed in Table 2.

Table 1: Algorithms implemented in the experiments

Abbreviation Full name Constraint-based (Yes/No)
MMF MiniMax Fitness No
CO Convex Optimization Yes
CME Constrained Maximum Entropy Yes
CML Constrained Maximum Likelihood Yes

PF-CME Prior Free Constrained Maximum Entropy Yes
MAPu Maximum A Posterior with a Uniform Prior No
SNML Sequential Normalized Maximum Likelihood No

FC-QMAP Further Constrained Qualitatively Maximum a Posterior Yes

1http://freesourcecode.net/matlabprojects/59958/uniform-distribution-over-a-convex-polytope-in-matlab
2http://cvxr.com/cvx/doc/solver.html
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Table 2: Details of BNs used in the experiments

Asia Alarm Hailfinder Andes
Nodes 8 37 56 223
Edges 8 46 66 338

Parameters 18 509 2656 1157
Size Classification Small Medium Large Considerably Large

5.1. Experiment Setting

The experiments were performed on an Intel Core i7-3770 CPU, 3.40 GHz, and 16 GB RAM. Data were randomly
sampled based on true CPTs using a MATLAB program called samplebnet3 and constraints were generated by the following
rules: (1) Range constraints are generated as [θlower

ijk , θupperijk ], where θlower
ijk = max(0, θ∗ijk − τ1), θ

upper
ijk = min(1, θ∗ijk + τ2),

where θ∗ijk is the true parameter, and τ1 and τ2 are two values around 0.2. (2) Inequality constraints are generated as
θij1k1 ≥ θij2k2 if (θij1k1 − θij2k2) ≥ 0.2. Therefore, when j1 = j2 and k1 ̸= k2, the generated constraint is the intra-
distribution constraint. When j1 ̸= j2 and k1 = k2, the constraint is the cross-distribution constraint. (3) Approximate-
quality constraints are generated as θijk ≈ θi′j′k′ if | θijk − θi′j′k′ |≤ 0.05.

5.2. Parameter Learning under Different Sample Sizes

First, we examined the learning performance of different methods using different sample sizes. The sample sizes varied
from 50, 100, 150, 200, to 250. In the experiments, the maximum constraint number for each node was set to 5. We
perform 50 repeated experiments. The average KL-divergence and running time for different networks are summarized in
Tables 3 and 4, respectively.

Table 3: Average KL divergence of different algorithms under different sample sizes

MAPu SNML MMF CO CML CME FC-QMAP PF-CME

(a) Asia network
50 1.410±0.009 1.371±0.007 1.331±0.003 0.071±0.011 0.053±0.009 0.113±0.011 0.038±0.000 0.030±0.003
100 1.319±0.036 1.298±0.034 1.278±0.035 0.038±0.002 0.042±0.002 0.070±0.004 0.033±0.002 0.024±0.005
150 1.143±0.187 1.098±0.217 1.060±0.237 0.031±0.004 0.037±0.004 0.045±0.006 0.020±0.006 0.018±0.004
200 1.077±0.241 1.044±0.263 1.011±0.284 0.033±0.010 0.025±0.006 0.026±0.006 0.019±0.004 0.012±0.002
250 1.065±0.234 1.034±0.257 1.004±0.278 0.031±0.008 0.022±0.002 0.020±0.003 0.017±0.006 0.010±0.003
(b) Alarm network
50 0.429±0.023 0.434±0.021 0.411±0.014 0.345±0.014 0.342±0.012 0.334±0.013 0.318±0.015 0.307±0.016
100 0.371±0.025 0.377±0.022 0.358±0.021 0.299±0.013 0.296±0.012 0.290±0.012 0.239±0.014 0.218±0.015
150 0.332±0.026 0.339±0.026 0.313±0.017 0.271±0.018 0.268±0.018 0.257±0.017 0.208±0.011 0.191±0.017
200 0.294±0.014 0.301±0.024 0.277±0.017 0.240±0.010 0.237±0.019 0.209±0.015 0.187±0.015 0.178±0.016
250 0.281±0.015 0.287±0.016 0.264±0.018 0.232±0.012 0.229±0.017 0.161±0.014 0.165±0.014 0.157±0.014
(c) Hailfinder network
50 0.448±0.016 0.497±0.014 0.424±0.019 0.311±0.023 0.312±0.013 0.261±0.017 0.256±0.018 0.235±0.018
100 0.326±0.010 0.367±0.010 0.320±0.015 0.238±0.012 0.239±0.012 0.242±0.013 0.201±0.012 0.193±0.015
150 0.265±0.017 0.300±0.007 0.264±0.014 0.204±0.011 0.205±0.012 0.196±0.019 0.189±0.016 0.184±0.019
200 0.229±0.017 0.259±0.007 0.233±0.015 0.184±0.012 0.185±0.013 0.182±0.015 0.162±0.017 0.146±0.014
250 0.203±0.017 0.229±0.007 0.208±0.011 0.169±0.010 0.170±0.012 0.157±0.013 0.135±0.015 0.120±0.018
(d) Andes network
50 0.118±0.013 0.109±0.019 0.107±0.017 0.058±0.005 0.062±0.007 0.071±0.006 0.048±0.008 0.042±0.005
100 0.078±0.016 0.071±0.010 0.070±0.015 0.040±0.006 0.043±0.005 0.052±0.004 0.046±0.003 0.033±0.002
150 0.059±0.010 0.054±0.013 0.053±0.011 0.031±0.004 0.034±0.002 0.046±0.006 0.039±0.005 0.029±0.004
200 0.049±0.015 0.045±0.009 0.044±0.008 0.027±0.003 0.029±0.004 0.033±0.005 0.032±0.006 0.024±0.005
250 0.042±0.012 0.039±0.010 0.038±0.008 0.023±0.005 0.025±0.003 0.031±0.003 0.028±0.005 0.020±0.003

3https://github.com/bayesnet/bnt/tree/master/BNT
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Table 4: Running time (seconds) of different algorithms under different sample sizes

MAPu SNML MMF CO CML CME FC-QMAP PF-CME

(a) Asia network
50 0.000±0.000 0.000±0.000 0.008±0.001 0.137±0.008 0.219±0.007 0.240±0.008 0.155±0.007 0.017±0.006
100 0.001±0.000 0.001±0.000 0.013±0.000 0.140±0.006 0.222±0.009 0.244±0.010 0.211±0.008 0.019±0.004
150 0.001±0.000 0.001±0.000 0.017±0.000 0.141±0.006 0.223±0.009 0.245±0.010 0.268±0.009 0.019±0.003
200 0.001±0.000 0.001±0.000 0.021±0.001 0.140±0.005 0.221±0.007 0.243±0.008 0.321±0.007 0.019±0.003
250 0.002±0.000 0.002±0.000 0.026±0.001 0.139±0.003 0.222±0.005 0.244±0.006 0.374±0.008 0.020±0.003
(b) Alarm network
50 0.000±0.000 0.000±0.000 0.005±0.001 0.028±0.005 0.044±0.008 0.048±0.009 0.068±0.008 0.034±0.006
100 0.000±0.000 0.000±0.000 0.008±0.001 0.028±0.005 0.044±0.008 0.048±0.009 0.111±0.009 0.034±0.006
150 0.001±0.000 0.001±0.000 0.011±0.001 0.028±0.004 0.043±0.007 0.047±0.007 0.150±0.008 0.032±0.005
200 0.001±0.000 0.001±0.000 0.014±0.001 0.028±0.004 0.043±0.007 0.047±0.007 0.190±0.007 0.031±0.005
250 0.001±0.000 0.001±0.000 0.018±0.002 0.029±0.004 0.043±0.006 0.047±0.006 0.232±0.009 0.032±0.006
(c) Hailfinder network
50 0.000±0.000 0.000±0.000 0.004±0.000 0.012±0.001 0.017±0.002 0.019±0.002 0.060±0.005 0.052±0.007
100 0.000±0.000 0.000±0.000 0.008±0.001 0.013±0.001 0.018±0.002 0.020±0.002 0.105±0.008 0.054±0.009
150 0.001±0.000 0.001±0.000 0.011±0.001 0.013±0.001 0.019±0.002 0.021±0.002 0.147±0.009 0.055±0.010
200 0.001±0.000 0.001±0.000 0.015±0.001 0.014±0.001 0.020±0.002 0.022±0.002 0.195±0.010 0.060±0.010
250 0.001±0.000 0.001±0.000 0.018±0.001 0.014±0.001 0.020±0.001 0.022±0.001 0.235±0.010 0.054±0.008
(d) Andes network
50 0.000±0.000 0.000±0.000 0.003±0.004 0.027±0.040 0.042±0.007 0.046±0.008 0.050±0.004 0.068±0.009
100 0.000±0.000 0.000±0.000 0.004±0.006 0.026±0.039 0.040±0.006 0.044±0.007 0.066±0.006 0.065±0.010
150 0.000±0.001 0.000±0.001 0.006±0.009 0.026±0.040 0.040±0.006 0.044±0.007 0.085±0.008 0.063±0.009
200 0.000±0.001 0.000±0.001 0.007±0.011 0.026±0.040 0.040±0.006 0.044±0.007 0.103±0.008 0.062±0.006
250 0.001±0.001 0.001±0.001 0.009±0.013 0.026±0.040 0.040±0.006 0.044±0.007 0.123±0.009 0.063±0.010

Based on the results shown in Table 3, it can be inferred that, in general, as the number of sample increases, all the
parameter learning algorithms obtain better estimation. Among all the non-constraint-based methods (MAPu, SNML
and MMF), the presented MMF method is demonstrated to be most competitive. Besides, in most cases, the proposed
PF-CME method outperforms other constraint-based algorithms (CO, CML, CME, FC-QMAP). From Table 4, we can
observe that the proposed MMF method is slightly more time-consuming than other non-constraint-based methods. This
is attributed to the process of cross-validation required by the MMF method. However, the proposed PF-CME method is
more efficient than other constraint-based algorithms. This is interpreted that, the PF-CME model (Eq. 27) is optimized
by SQP approach while models of the rest algorithms are solved by Sedumi solver, which is less efficient than SQP.

5.3. Parameter Learning under Different Constraint Sizes

We performed a set of experiments under different constraint sizes. The sample size was set to 100. In the experiments,
the maximum constraint number for each node was set to 1, 2, 3, 4 and 5. We perform 50 repeated experiments. The
average KL divergence and running time for different networks are summarized in Tables 5 and 6, respectively.

Table 5: Average KL divergence of different algorithms under different constraint sizes

MAPu SNML MMF CO CML CME FC-QMAP PF-CME

(a) Asia network
1 1.187±0.150 1.127±0.187 1.104±0.196 0.883±0.131 0.886±0.128 0.814±0.162 0.760±0.152 0.643±0.103
2 1.187±0.150 1.127±0.187 1.103±0.196 0.655±0.125 0.643±0.124 0.616±0.114 0.584±0.117 0.567±0.101
3 1.187±0.150 1.127±0.187 1.103±0.196 0.517±0.117 0.510±0.101 0.390±0.104 0.383±0.111 0.350±0.009
4 1.187±0.150 1.127±0.187 1.103±0.196 0.328±0.102 0.320±0.128 0.372±0.131 0.347±0.104 0.286±0.007
5 1.187±0.150 1.127±0.187 1.104±0.196 0.305±0.116 0.298±0.112 0.301±0.109 0.268±0.105 0.274±0.009
(b) Alarm network
1 0.353±0.009 0.358±0.009 0.331±0.013 0.307±0.015 0.306±0.015 0.318±0.024 0.348±0.008 0.314±0.022
2 0.353±0.009 0.358±0.009 0.334±0.012 0.299±0.013 0.299±0.014 0.308±0.024 0.290±0.001 0.259±0.025
3 0.353±0.009 0.358±0.009 0.335±0.010 0.289±0.023 0.288±0.023 0.301±0.024 0.281±0.015 0.246±0.072
4 0.353±0.009 0.358±0.009 0.335±0.012 0.292±0.015 0.290±0.015 0.292±0.026 0.276±0.007 0.231±0.004
5 0.353±0.009 0.358±0.009 0.334±0.017 0.273±0.017 0.270±0.016 0.284±0.026 0.265±0.012 0.225±0.023
(c) Hailfinder network
1 0.322±0.006 0.364±0.006 0.311±0.000 0.234±0.002 0.234±0.002 0.247±0.005 0.229±0.010 0.220±0.006
2 0.322±0.006 0.364±0.006 0.314±0.001 0.232±0.001 0.232±0.001 0.244±0.009 0.226±0.007 0.217±0.009
3 0.322±0.006 0.364±0.006 0.317±0.007 0.231±0.000 0.230±0.001 0.243±0.006 0.224±0.009 0.216±0.004
4 0.322±0.006 0.364±0.006 0.312±0.004 0.230±0.002 0.230±0.003 0.241±0.007 0.223±0.006 0.214±0.007
5 0.322±0.006 0.364±0.006 0.319±0.003 0.228±0.000 0.229±0.000 0.239±0.008 0.221±0.007 0.212±0.008
(d) Andes network
1 0.256±0.001 0.235±0.000 0.231±0.001 0.202±0.003 0.199±0.004 0.167±0.005 0.148±0.006 0.146±0.005
2 0.256±0.001 0.235±0.000 0.229±0.003 0.184±0.009 0.180±0.009 0.153±0.007 0.135±0.007 0.131±0.008
3 0.256±0.001 0.235±0.000 0.228±0.003 0.179±0.005 0.173±0.004 0.146±0.000 0.128±0.002 0.125±0.008
4 0.256±0.001 0.235±0.000 0.230±0.000 0.173±0.007 0.165±0.007 0.139±0.000 0.121±0.004 0.119±0.007
5 0.256±0.001 0.235±0.000 0.230±0.002 0.168±0.003 0.157±0.002 0.132±0.000 0.115±0.008 0.113±0.004
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Table 6: Running time (seconds) of different algorithms under different constraint sizes

MAPu SNML MMF CO CML CME FC-QMAP PF-CME

(a) Asia network
1 0.001±0.000 0.001±0.000 0.012±0.001 0.136±0.009 0.156±0.007 0.147±0.006 0.172±0.005 0.014±0.007
2 0.001±0.000 0.001±0.000 0.012±0.000 0.137±0.006 0.177±0.007 0.153±0.009 0.192±0.008 0.016±0.003
3 0.001±0.000 0.001±0.000 0.012±0.000 0.138±0.005 0.195±0.008 0.166±0.007 0.205±0.006 0.016±0.003
4 0.001±0.000 0.001±0.000 0.012±0.000 0.138±0.005 0.208±0.009 0.179±0.005 0.206±0.006 0.016±0.003
5 0.001±0.000 0.001±0.000 0.012±0.000 0.140±0.005 0.221±0.007 0.196±0.007 0.213±0.004 0.017±0.003
(b) Alarm network
1 0.000±0.000 0.000±0.000 0.007±0.000 0.025±0.007 0.029±0.007 0.034±0.007 0.092±0.002 0.017±0.004
2 0.000±0.000 0.000±0.000 0.007±0.000 0.026±0.009 0.032±0.008 0.039±0.009 0.096±0.002 0.018±0.004
3 0.000±0.000 0.000±0.000 0.008±0.000 0.026±0.004 0.035±0.005 0.041±0.009 0.100±0.003 0.020±0.005
4 0.000±0.000 0.000±0.000 0.007±0.000 0.026±0.007 0.038±0.004 0.045±0.006 0.103±0.003 0.020±0.005
5 0.000±0.000 0.000±0.000 0.007±0.000 0.026±0.005 0.040±0.009 0.049±0.008 0.105±0.002 0.021±0.004
(c) Hailfinder network
1 0.000±0.000 0.000±0.000 0.004±0.000 0.006±0.001 0.006±0.001 0.006±0.000 0.047±0.013 0.010±0.001
2 0.000±0.000 0.000±0.000 0.004±0.000 0.006±0.001 0.007±0.000 0.007±0.001 0.048±0.014 0.010±0.001
3 0.000±0.000 0.000±0.000 0.004±0.000 0.006±0.000 0.007±0.000 0.007±0.000 0.049±0.015 0.010±0.002
4 0.000±0.000 0.000±0.000 0.004±0.000 0.006±0.000 0.007±0.001 0.007±0.001 0.049±0.016 0.011±0.001
5 0.000±0.000 0.000±0.000 0.004±0.001 0.007±0.001 0.008±0.000 0.008±0.000 0.048±0.016 0.010±0.002
(d) Andes network
1 0.001±0.000 0.001±0.000 0.011±0.002 0.072±0.007 0.062±0.007 0.065±0.008 0.154±0.011 0.011±0.001
2 0.001±0.000 0.001±0.000 0.011±0.001 0.081±0.004 0.064±0.006 0.074±0.005 0.166±0.010 0.011±0.001
3 0.001±0.000 0.001±0.000 0.011±0.001 0.088±0.008 0.066±0.004 0.077±0.007 0.171±0.013 0.012±0.001
4 0.001±0.000 0.001±0.000 0.011±0.002 0.092±0.009 0.073±0.008 0.080±0.004 0.177±0.009 0.012±0.001
5 0.001±0.000 0.001±0.000 0.012±0.001 0.097±0.005 0.074±0.004 0.085±0.010 0.183±0.012 0.013±0.001

Based on the results in Table 5, we can infer that, with the increase of parameter constraints, the estimation of
constraint-based methods were significantly improved while non-constraint-based methods were less affected. In addition,
MMF and PF-CME methods outperformed the other non-constraint-based and constraint-based methods, respectively.
It is worth noting that, for networks with higher in-degree or more parameters per node, such as Hailfinder network
( 265656 = 47.4 parameters per node), slight increase of parameter constraints has minor impact on the parameter estimation.
From Table 6, we can draw the conclusion that, with increasing constraints, the time consumption of most non-constraint-
based methods remained unchanged while that of constraint-based methods increased by different degrees. This can be
interpreted as, with more parameter constraints, models of constraint-based methods become more complex and thus it
is more time-consuming to optimize the models.

6. Conclusions

In this study, we described the parameter learning problem in Bayesian networks and proposed a method to address
the overfitting problem when the available data is insufficient. Though the imposition of prior distributions on model
parameters is helpful in overcoming overfitting, it also may lead to the parameters being less fitted to the data. This
subsequently affects parameter learning, wherein parameters are expected to fit the data. The Minimax algorithm is an
effective tool to balance fitting and overfitting. Based on the Minimax algorithm, we presented a Minimax Fitness (MMF)
algorithm. In addition, to utilize the domain knowledge, we also introduced an improved constrained maximum entropy
method, called Prior Free Constrained Maximum Entropy (PF-CME) method. Experiments on several benchmark net-
works show that the proposed MMF method outperforms mainstream non-constraint-based parameter learning algorithms
and PF-CME method outperforms most of the constraint-based learning methods.

For BN parameter learning, methods that does not require specification of prior strength or equivalent sample size
deserve more concern and investigation. In the future, we will further improve the proposed PF-CME method by defining
more constraints on prior strength.
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Appendix A

Theorem 1. The model

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog
Nijk + α ∗ θpriorijk

Nij + α

is minimized at

θpriorijk =

{
1, if Nijk = minNijk′ , k

′
= 1, ..., ri

0, if Nijk ̸= minNijk′ , k
′
= 1, ..., ri.

Proof. (1) First, we assume that Nij1 = minNijk′ , k
′
= 1, ..., ri. According to global parameter and local parameter

independence, the minimization of model is proportional to the minimization of following model

ri∑
k=1

Nijk log
Nijk + α ∗ θpriorijk

Nij + α
.

Suppose that we have two priors

θprior1ij = (θprior1ij1 , θprior1ij2 , θprior1ij3 , · · · , θprior1ijri
)

and
θprior2ij = (θprior2ij1 , 0, θprior2ij3 , · · · , θprior2ijri

),

where θprior1ijk = θprior2ijk , k = 3, 4, · · · , ri. As the above two priors satisfy
∑ri

k=1 θ
prior1
ijk =

∑ri
k=1 θ

prior2
ijk = 1, we have

θprior2ij1 = θprior1ij1 + θprior1ij2 ,

which means
θprior2ij1 > θprior1ij1 .

For simplicity, we define f(θpriorij ) =
∑ri

k=1 Nijk log
Nijk+α∗θprior

ijk

Nij+α . Then,

f(θprior2ij )− f(θprior1ij ) =

ri∑
k=1

Nijk log
Nijk + α ∗ θprior2ijk

Nij + α
−

ri∑
k=1

Nijk log
Nijk + α ∗ θprior1ijk

Nij + α

= Nij1 log
Nij1 + α ∗ θprior2ij1

Nij + α
−Nij1 log

Nij1 + α ∗ θprior1ij1

Nij + α
+Nij2 log

Nij2

Nij + α
−Nij2 log

Nij2 + α× θprior1ij2

Nij + α

= Nij1 log
Nij1 + α ∗ θprior2ij1

Nij1 + α ∗ θprior1ij1

−Nij2 log
Nij2 + α ∗ θprior1ij2

Nij2

= Nij1 log (1 +
α ∗ (θprior2ij1 − θprior1ij1 )

Nij1 + α ∗ θprior1ij1

)−Nij2 log (1 +
α ∗ θprior1ij2

Nij2
)

= Nij1 log (1 +
α ∗ θprior1ij2

Nij1 + α ∗ θprior1ij1

)−Nij2 log (1 +
α ∗ θprior1ij2

Nij2
)

< Nij1 log (1 +
α ∗ θprior1ij2

Nij1
)−Nij2 log (1 +

α ∗ θprior1ij2

Nij2
)

= α ∗ θprior1ij2 ∗ [ Nij1

α ∗ θprior1ij2

log (1 +
α ∗ θprior1ij2

Nij1
)− Nij2

α ∗ θprior1ij2

log (1 +
α ∗ θprior1ij2

Nij2
)]

As function g(x) = x ∗ log(1 + 1
x ) is an increasing function (see Appendix B) and

Nij1

α∗θprior1
ij2

<
Nij2

α∗θprior1
ij2

, we have

Nij1

α ∗ θprior1ij2

log (1 +
α ∗ θprior1ij2

Nij1
) <

Nij2

α ∗ θprior1ij2

log (1 +
α ∗ θprior1ij2

Nij2
),

which means
f(θprior2ij ) < f(θprior1ij ).

Likewise, for another pair of priors

θprior 2
ij = (θprior2ij1 , 0, θprior2ij3 , θprior2ij4 · · · , θprior2ijri

),

and
θprior 3
ij = (θprior3ij1 , 0, 0, θprior3ij4 , · · · , θprior3ijri

),

where θprior1ijk = θprior2ijk , k = 4, 5, · · · , ri, we can prove that

f(θprior3ij ) < f(θprior2ij ).

Finally, we can prove that, for priors

θ
prior(ri−1)
ij = (θ

prior(ri−1)
ij1 , 0, 0 · · · , 0, θprior(ri−1)

ijri
),
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and
θpriorriij = (1, 0, 0, · · · , 0),

we have

f(θ
prior(ri)
ij ) < f(θ

prior(ri−1)
ij ).

Now, we prove that, if Nij1 = minNijk′ , k
′
= 1, ..., ri, prior (1, 0, 0, · · · , 0) minimizes the model.

(2) Algebraically, we can prove that, prior

θpriorijk =

{
1, if Nijk = minNijk′ , k

′
= 1, ..., ri

0, if Nijk ̸= minNijk′ , k
′
= 1, ..., ri

minimizes the model. �

Appendix B

Proposition 1. Function

g(x) = x× log(1 +
1

x
)

is an increasing function.
Proof. Function g(x) has definition domains (−∞,−1) and (0,∞). And, the first and second derivatives of function g(x)
are

g(x)
′
= log(1 +

1

x
)− 1

x+ 1

g(x)
′′
= − 1

x(x+ 1)2
.

(1) In the definition domain (−∞,−1), as g(x)
′′
> 0, g(x)

′
is an increasing function. And because

lim
x→−∞

g(x)′ = 0,

therefore, g(x)
′
> 0 and g(x) is an increasing function in the domain (−∞,−1).

(2) In the definition domain (0,∞), as g(x)
′′
< 0, g(x)

′
is a decreasing function. And because

lim
x→∞

g(x)′ = 0,

therefore, g(x)
′
> 0 and g(x) is an increasing function in the domain (0,∞).

Appendix C

Proposition 2. Function

f(α) =

ri∑
k=1

Nijklog
Nijk + α ∗ θpriorijk

Nij + α
,

where

θpriorijk =

{
1, if Nijk = minNijk′ , k

′
= 1, ..., ri

0, if Nijk ̸= minNijk′ , k
′
= 1, ..., ri

is a decreasing function.
Proof. Suppose that NijK = minNijk′ , k

′
= 1, ..., ri, then, we have

θpriorijk =

{
1, if k = K

0, if k ̸= K.

Thus, function f(α) can be further written as

f(α) =

ri∑
k=1

Nijk log(Nijk + α ∗ θpriorijk )−
ri∑

k=1

Nijk log(Nij + α)

=

ri∑
k=1,k ̸=K

Nijk logNijk +NijK log(NijK + α)−Nij log(Nij + α).

Then, the first derivative of function f(α) is

f ′(α) =
NijK

NijK + α
− Nij

Nij + α

=
(NijK −Nij)α

(NijK + α)(Nij + α)
,

which means, f ′(α) < 0. Therefore, f(α) is a decreasing function.
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Appendix D

Proposition 3 The Mini-Max Fitness estimation is more efficient than Maximum Likelihood estimation when the equiv-
alent sample size satisfies

0 < α <

2Nij

∑
k

N2
ijk − 2N2

ijNijm

N2
ij −

∑
k

N2
ijk

.

Proof. The variance of Maximum Likelihood estimation is computed as

D(
Nijk

Nij
) =

1

n
(E(

N2
ijk

N2
ij

)− (E(
Nijk

Nij
))2)

=
1

n
(E(

N2
ijk

N2
ij

)− 1

r2i
)

.
The variance of Max-Min Fitness estimation is computed as

D(
Nijk + αθ∗ijk

Nij + α
) =

1

n
(E(

(Nijk + αθ∗ijk)
2

(Nij + α)2
)− (E(

Nijk + αθ∗ijk
Nij + α

))2)

=
1

n
(E(

(Nijk + αθ∗ijk)
2

(Nij + α)2
)− 1

r2i
)

.
We assume Nijm is the minimum observation among Nijk, (k = 1, 2, ...ri), then, the difference between the variance of

Max-Min Fitness estimation and the variance of Maximum Likelihood estimation is computed as

D(
Nijk + αθ∗ijk

Nij + α
)−D(

Nijk

Nij
)

=
1

Nij
E(

(Nijk + αθ∗ijk)
2

(Nij + α)2
−

N2
ijk

N2
ij

)

=
1

N2
ij

∑
k

(
(Nijk + αθ∗ijk)

2

(Nij + α)2
−

N2
ijk

N2
ij

)

=
1

N2
ij

(
(Nijm + α)2

(Nij + α)2
+

∑
k,k ̸=m

N2
ijk

(Nij + α)2
−
∑
k

N2
ijk

N4
ij

)

=

(Nijm + α)2N2
ij +N2

ij

∑
k,k ̸=m

N2
ijk − (Nij + α)2

∑
k

N2
ijk

(Nij + α)2N4
ij

=

N2
ijN

2
ijm + 2N2

ijNijmα+N2
ijα

2 +N2
ij

∑
k,k ̸=m

N2
ijk − (N2

ij

∑
k

N2
ijk + 2Nijα

∑
k

N2
ijk + α2

∑
k

N2
ijk)

(Nij + α)2N4
ij

=
(N2

ij −
∑

k N
2
ijk)α

2 + (2N2
ijNijm − 2Nij

∑
k N

2
ijk)α

(Nij + α)2N4
ij

=
α

(Nij + α)2N4
ij

((N2
ij −

∑
k

N2
ijk)α+ (2N2

ijNijm − 2Nij

∑
k

N2
ijk))

Since α
(Nij+α)2N4

ij
> 0, therefore, when

(N2
ij −

∑
k

N2
ijk)α+ (2N2

ijNijm − 2Nij

∑
k

N2
ijk) < 0

holds, which means,

α <

2Nij

∑
k

N2
ijk − 2N2

ijNijm

N2
ij −

∑
k

N2
ijk

,

D(
Nijk+αθ∗

ijk

Nij+α )−D(
Nijk

Nij
) < 0. Therefore, in general, when the equivalent sample size α meets the following requirement

0 < α <

2Nij

∑
k

N2
ijk − 2N2

ijNijm

N2
ij −

∑
k

N2
ijk

,

the proposed Max-Min Fitness estimation is more efficient than Maximum Likelihood estimation.
�
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