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Abstract

The false discovery rate (fdr) is a powerful approach to multiple testing. However, depen-

dence among test statistics is critical for fdr control. The way in which this dependence

structure is described represents the most prominent source of uncertainty of this statistical

theme. copulas play a relevant role among the techniques used to deal with uncertainty and

dependence. This paper contributes to fill an existing gap in the scientific debate by exploring

the connections between the literature on fdr and that on copulas. In particular, we aim at

attracting the interest of the scientific community on this topic by identifying suitable classes

of nonstandard copulas which ensure that fdr control can be attained for dependent test

statistics.

Key words : Copulas; Uncertainty; Dependent test statistics; Multivariate total positivity of

order 2; False discovery rate; Multiple testing.



1 Introduction

In a multiple testing framework, false discovery rate control (fdr) amounts to controlling the

expected proportion of errors among the rejected hypotheses. It was originally proposed by

Benjamini and Hochberg (1995) and it has become central in the multiple testing literature

(see, e.g., Yekutieli and Benjamini, 1999; Benjamini and Yekutieli, 2001; Storey, 2002; Sarkar,

2002, 2004; Farcomeni, 2007; Wu, 2008; Guo and Rao, 2008; Bodnar and Dickhaus, 2014, to

cite a few). Recent applications of the fdr span a vast spectrum of fields (see, e.g., Pawluk-

Koc et al., 2006; Bonissone et al., 2010; Fischer and Wermers, 2013; Glickman et al., 2014;

Li et al., 2018). Despite its importance and diffusion in the theoretical as well in the applied

literature, the fdr is far from being the only approach to multiple testing: other approaches

have been advocated in the literature, including control of the familywise error rate (fwer:

see, e.g., Simes, 1986; Sarkar and Chang, 1997; Lehmann and Romano, 2005), resampling-

based procedures (Westfall and Young, 1993), and interesting recent contributions related to

prior-free probabilistic inference (see, e.g., Dempster, 2008; Balch, 2012; Liu and Xie, 2014b,a).

This paper contributes to the development of a unifying perspective between copulas

(see, e.g., Nelsen, 2006) and fdr control in multiple testing with dependent test statistics. In

particular, we deal with one of the main source of uncertainty in multiple testing and describe

the dependence among m " 1 test statistics through copulas. Specifically, we identify wide

families of copulas such that the fdr control can be achieved by using existing procedures.

Copulas have been widely used for modelling the stochastic dependence among random

quantities, mainly in the context of empirical applications (see, e.g., Jondeau and Rockinger,

2006; Zimmer and Trivedi, 2006; Sriboonchitta et al., 2017). This explains the interest for this

methodological tool under a theoretical point of view, with a growing interest in constructing

new families of copulas and assessing their features (see, e.g., Demarta and McNeil, 2005; Du-

rante et al., 2008; Mesiar et al., 2010; Durante et al., 2017; Wisadwongsa and Tasena, 2018).

However, in the specific framework of multiple testing — where dependence plays a funda-

mental role — until recently the use of copulas has been only barely mentioned by Sarkar
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(2008b) and remains largely unexplored or, at least, not explicitly dealt with. Dickhaus and

Gierl (2013) and Stange et al. (2015) studied the use of copulas with reference to the fwer

control; Schmidt et al. (2014, 2015) dealt with copulas for the control of the type I error rates

in the context of adaptive designs; Cerqueti et al. (2011, 2012) and Bodnar and Dickhaus

(2014) investigated the use of copulas for fdr control. However, Dickhaus and Gierl (2013)

and Bodnar and Dickhaus (2014) adopt two perspectives which are radically different from

the target of the present paper, which is the critical description of the dependence among

test statistics in the light of fdr control. In fact, Bodnar and Dickhaus (2014) deal with

the assessment of the upper and lower bounds for the fdr when the stochastic dependence is

captured by an Archimedean copula, whereas Dickhaus and Gierl (2013) investigate simulta-

neous testing procedures that are able to control the fwer under some conditions and provide

a representation of the common critical testing threshold on the basis of the quantiles of a

special family of copulas. Finally, it is also important to give credit to He et al. (2017), where

an estimation procedure of a high dimensional Gaussian graphical copula model is proposed.

The high dimension of the problem leads to a multiple testing-fdr control issue, which is

efficiently dealt with. However, the subject of that paper is again far from what we aim at

dealing with here.

The statistical relevance of fdr control procedures is grounded on the fact that the prob-

ability of falsely rejecting true null hypotheses increases way over the nominal significance

level α when many hypotheses are simultaneously tested. On the other hand, generally a

researcher would like to identify as many true rejections (discoveries) as possible, while in-

curring in a small proportion of false positives. Statistical procedures that control the fdr

ensure that the fraction of falsely rejected hypotheses over total rejections — i.e., the false

positive proportion — remains on average below a pre-specified level q P p0, 1q. Benjamini

and Hochberg (1995) proposed the first procedure of this kind for independent test statis-

tics, which was labelled bh after the name of its authors. Later, Benjamini and Yekutieli

(2001) proved that the original bh procedure can be used to control the fdr not only in
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the presence of independent test statistics, but also in the case of positively dependent ones.

Building on Benjamini and Yekutieli (2001), a number of papers dealing with fdr control

under dependence appeared: a necessarily non exhaustive list includes Kwong et al. (2002),

Sarkar (2002), Cai and Sarkar (2006), Yekutieli (2008). In particular, the latter proposed

a direct generalization of the bh method, called separate subsets bh (ssbh) procedure. The

common idea contained in these papers is that the test statistics under the null have a form

of dependence that can be described as prds (positive regression dependence on each one

from a subset) or mtp2 (multivariate total positivity of order 2), where the latter implies the

former.

In this paper we start from the same viewpoint, but we deal with the mtp2 property within

the copula framework. The reason of this choice is motivated by the observation that the

required mtp2 property has been proved only with reference to a limited number of multivari-

ate distributions (see, e.g., Karlin and Rinott, 1980, 1981; Laradji, 2015, for some important

contributions). In contrast, by using copulas we can generalize the type of distributions

that can be considered by using general forms of dependence and/or nonstandard marginal

distributions (e.g., Dickey-Fuller: Dickey and Fuller, 1979). Furthermore, it is important to

notice that, even if all the test statistics under the null have the same marginal distribution

(e.g., normal), the joint distribution is not generally the multivariate version of the marginals,

therefore mtp2 multivariate distributions can be invoked only in very special circumstances.

Copulas offer a flexible solution by separating the margins from the dependence structure, thus

allowing the researcher to deal also with multivariate distributions having different and/or

nonstandard marginals.

It is well known that permutation symmetry is a distinguishing feature of some classes of

copulas that can be seen as a symmetry property. Such a property can be extended also to

classes of quasi-copulas (see, e.g., Arias-Garćıa et al., 2017). In this respect, Archimedean

copulas (for a survey we refer the reader to Schweizer and Sklar, 2005) and semilinear ones

(see Durante, 2007; Durante et al., 2008) are important examples of permutation symmetric
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copulas. However, in a multiple testing framework exchangeability may represent a severe

restriction of the dependence structure among the individual test statistics. Hence, in order

to make our analysis as general as possible, we discuss also the case of non-exchangeable sets

of test statistics, allowing for exchangeability only within peculiar subsets of the statistics.

Specifically, we start from the bivariate symmetric case; then we move to the case where

exchangeability is allowed only within subsets of the test statistics corresponding to the true

null hypotheses; finally, we generalize the discussion with reference to a family of multivariate

asymmetric copulas. For some insights on asymmetric copulas and their applications, see e.g.

Wei and Kim (2018); Wu (2014).

The rest of the paper is organized as follows. Section 2 gives preliminaries and notations.

Section 3, the core of the paper, contains the formalization of the connection between fdr

control and dependence of the test statistics through copulas. Section 4 collects a discussion

of the theoretical results and draws some concluding remarks.

2 Preliminaries and notation

To let this paper be self-contained, we firstly recall two important definitions on the stochastic

dependence which are useful in the fdr control framework.

Definition 2.1. Consider an increasing set1 D. The m-variate random variable w is assumed

to satisfy the positive regression dependency on each one from a subset I0 Ď t1, . . . ,mu (briefly,

prds on I0) if, for each i P I0, the conditional probability Prpw P D |wi “ xq is nondecreasing

in x.

Definition 2.2. Let f be the joint density function of the m-variate random variable w.

Then w is said to satisfy the multivariate total positivity of order 2 (or to be mtp2) if and

only if, for each x and y in Rm, it results:

f pxq ¨ f pyq ď f pmintx,yuq ¨ f pmaxtx,yuq

1A set D is said to be increasing when, if x P D and y ě x, then y P D.
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where the min and max operators have to be intended componentwise. If m “ 2, then mtp2

is briefly denoted as tp2 (total positivity of order 2).

A classical result in the theory of stochastic dependence states that if w is mtp2, then it

is also prds on each I0. Moreover, if tw1, . . . , wmu are mtp2, then the covariances σi,j ě 0,

for each i, j “ 1, . . . ,m.

Let p “ pp1, . . . , pmq
1 be the vector of the m p-values associated with the components of

the collection of m test statistics t “ pt1, . . . , tmq
1. Consistently with Yekutieli (2008), we

assume that the p-values in p are obtained by applying a monotone transformation of the

corresponding statistics in t. This assumption ensures that if the test statistics are mtp2, so

are the p-values (see, e.g., Sarkar, 2008a).

The bh procedure (Benjamini and Hochberg, 1995) is based on the sorted p-values pp1q ď

pp2q ď . . . ď ppm´1q ď ppmq. Let Hp0iq be the null hypothesis corresponding to ppiq and let k

be the largest i for which ppiq ď
i
m
q. If k ą 0, reject all Hp0iq i “ 1, 2, . . . , k. Benjamini and

Hochberg (1995) showed that for independent test statistics and any configuration of false

null hypotheses, the procedure controls the fdr at level q. Later, Benjamini and Yekutieli

(2001) proved that it is not necessary that the test statistics are independent: rather, the

prds property on the subset of the test statistics corresponding to the true null hypothesis

ensures that the bh procedure controls the fdr at a level not greater than q. Furthermore,

given that mtp2 implies prds on I0 @ I0, the dependence described by the mtp2 property

can be used instead of the prds on I0.

Let us now divide p into S ă m sub-vectors ps, with s “ 1, . . . , S. The vector of p-

values corresponding to the true null hypotheses will be denoted as p0, and the p-values in

ps corresponding to the true null hypotheses will be denote as ps0 . Let us assume that the

number of components of ps, p0 and ps0 are ms, m0 and ms
0, respectively. With a very intuitive

notation, the test statistics corresponding to ps, p0 and ps0 constitute vectors, that will be

indicated with ts, t0 and ts0, respectively.

The ssbh procedure (Yekutieli, 2008) runs into two steps as follows:
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1. For s “ 1, . . . , S, apply the bh procedure at level qms{m to test ps, and denote as rsBH

the sets of p-values (components of ps) corresponding to the rejected hypotheses.

2. Reject the null hypothesis corresponding to rssbh “
ŤS
s“1 r

s
BH .

Yekutieli (2008) proved that this procedure controls the fdr at level qm0

m
when, for each

s “ 1, . . . , S, the vector ps is prds on ps0. This condition is implied by assuming that

the ps’s are mtp2. The fact that the mtp2 does not need to hold globally ensures that

fdr control can be attained also in the presence of negative dependence, provided that the

subsets are appropriately selected. Furthermore, the quoted paper also states that ssbh is

less powerful than bh when S ą 1 by construction — it coincides with bh when S “ 1 —

and this property is independent from the dependence structure among the statistics, under

the obvious constraint that the fdr is controlled.

We deal here with mtp2 through the introduction of a very general dependence concept,

the so-called multivariate copula (or, simply, copula). We report the formal definition of this

instrument, and refer the interested reader to Nelsen (2006) for further details:

Definition 2.3. The function C : r0, 1sm Ñ r0, 1s is a copula if and only if:

(C2.3.i) Cpu1, . . . , umq “ 0 if u1 ˆ . . .ˆ um “ 0;

(C2.3.ii) Cpu1, . . . , umq “ uk̄ if uk “ 1, for each k ‰ k̄;

(C2.3.iii) Given the m-dimensional rectangle ra1, b1s ˆ . . .ˆ ram, bms Ď r0, 1s
m, then

2
ÿ

i1“1

. . .
2
ÿ

im“1

p´1qi1`...`imCpu1,i1 , . . . , um,imq ě 0,

where uj,1 “ aj and uj,2 “ bj.

The relevance of the concept of copula in describing stochastic dependence can be appre-

ciated from Sklar’s Theorem (Sklar, 1959). We adapt its enunciation to our specific notation

set:

Theorem 2.4. (Sklar, 1959) Let Fi1,...,ims be the joint distribution function of the ms-ple

pti1 , . . . , tims q, with i1, . . . , ims “ 1, . . . ,m. Define the margins as Fi1 , . . . , Fims . Then there
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exists a ms-variate copula Ci1,...,ims such that, for each x1, . . . , xms P R,

Fi1,...,ims px1, . . . , xmsq “ Ci1,...,ims pFi1px1q, . . . , Fims pxmsqq. (1)

If the margins Fi1 , . . . , Fims are continuous, then the copula Ci1,...,ims is unique. Conversely, if

Ci1,...,ims is a ms-variate copula and Fi1 , . . . , Fims are distribution functions, then the function

Fi1,...,ims defined in (1) is a ms-dimensional distribution function with margins Fi1 , . . . , Fims .

Theorem 2.4 points out that, given a set of random variables, the relationship between

joint and marginal distributions is stated through copulas.

The concept of permutation symmetric copulas plays a role also in this study. We report

the related definition below for the convenience of the reader, and refer to Ghiselli Ricci (2013)

for details:

Definition 2.5. The copula C : r0, 1sm Ñ r0, 1s is permutation symmetric if, for each per-

mutation % of t1, . . . ,mu, one has:

Cpu1, . . . , umq “ Cpu%p1q, . . . , u%pmqq.

Finally, for the sake of simplicity, in the rest of the paper we adopt set theory notation to

describe the vectors ps:

Notation 2.6. The p-value pi is contained in ps — i.e. pi P ps — if and only if pi is a

component of the vector ps. Moreover, ps “ H if and only if Ei P t1, . . . ,mu such that

pi P p
s. The cardinality of ps is the number of its components.

3 Main results

Although we focus on the ssbh procedure, it is worth noticing that all the results contained

in this Section can be easily written in terms of the original bh procedure which — as already
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stated above — can be mathematically viewed as a particular case of the ssbh by assuming

S “ 1.

Our first remark concerns a particular family of permutation symmetric copulas which

characterize the mtp2 property. Specifically, we firstly restrict to the important case of

subsets of cardinality 2, and then extend to the general setting.

Proposition 3.1. Consider s “ 1, . . . , S such that ms “ 2 and ms
0 ą 0. Moreover suppose

that, the dependence among the statistics in ts is described by a copula Cs such that:

Cspu1, u2q “ u1u2 ` θsφspu1qφspu2q, (2)

with θs P r´1, 1s and φs : r0, 1s Ñ r0, 1s satisfying the following conditions:

(C3.1.i) φsp0q “ φsp1q “ 0;

(C3.1.ii) φs is Lipschitzian in r0, 1s, i.e.: |φspu1q´φspu2q| ď |u1´u2|, for each u1, u2 P r0, 1s;

(C3.1.iii) φs is convex or concave in r0, 1s.

Then the level q ssbh procedure controls the fdr at level qm0{m.

Proof. Let ti and tj denote the individual statistics in ts. Amblard and Girard (2002) shows

that, if the dependence between ti and tj is described through the copula Cs in (2) and

Condition (C3.1.iii) holds, then tj is stochastically increasing in ti and ti is stochastically

increasing in tj, i.e. the following conditions hold:

$

’

&

’

%

P ptj ą xj | ti “ xiq is nondecreasing in xi, @xj;

P pti ą xi | tj “ xjq is nondecreasing in xj, @xi.
(3)

System (3) is equivalent to the tp2 property for the set ts (see Nelsen, 2006). Being ms
0 ą 0,

this outcome leads to the thesis, in virtue of Proposition 2.2 in Yekutieli (2008).

The importance of the bivariate case is associated to the fact that the copula defined in (2)

allows to derive an explicit expression for the correlation between the individual statistics in ts.
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Indeed, a straightforward computation provides that if the stochastic dependence between ti

and tj is described through copula Cs in (2), then the Spearman’s ρ between ti and tj, namely

ρi,j, can be written as:

ρi,j “ 12θs

ˆ
ż 1

0

φspξqdξ

˙2

. (4)

For a formal proof of the validity of (4), see Amblard and Girard (2002).

Notice also that copula (2) used in Proposition 3.1 may be viewed as a “perturbation” of

the product copula: when θs “ 0 the case collapses to independence. It is also worth noticing

that copula (2) is a generalization of the permutation symmetric Farlie-Gumbel-Morgenstern

(fgm) copula that holds when φspuq “ up1 ´ uq. However, a word of caution is in order

here. The fgm copula, as well as its studied variants, are known for implying only modest

dependence (see, e.g., Huang and Kotz, 1999): therefore, we cannot expect copula (2) to

accurately represent very strong dependence across the test statistics. As far as the “pure”

fgm copula is concerned, its dependence as measured by Kendall’s τ and Spearman’s ρ is

respectively 2θs{9 and θs{3 with ´1 ď θs ď 1. However, an appropriate choice of a function

φspuq ‰ up1´uq satisfying conditions in Proposition 3.1 allows to strengthen the typical weak

dependence structure of the fgm copula.

Furthermore, a recent invariance result due to Durante et al. (2010) allows us to transform

copula (2) by means of a suitable class of isomorphisms, again obtaining fdr control. In this

respect, the family of copulas Cs in Proposition 3.1 may be interpreted as a generator for the

dependence required to control the fdr.

We formalize this argument in the following Proposition:

Proposition 3.2. Consider s “ 1, . . . , S such that ms “ 2 and ms
0 ą 0. Moreover suppose

that, for each s, the dependence among the statistics in ts is described by a copula Cξ
s such

that:

Cξ
s pu1, u2q “ ξs

`

Cspξ
´1
s pu1q, ξ

´1
s pu2qq

˘

, (5)

where Cs is defined as in (2) of Proposition 3.1 and ξs : r0, 1s Ñ r0, 1s is an increasing
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bijection such that ξs ˝ exp : p´8, 0s Ñ r0, 1s is log-convex.

Then the level q ssbh procedure controls the fdr at level qm0{m.

Proof. Since Cs in (2) is a copula, then the assumptions on function ξs assures that also Cξ
s

in (5) is a copula. Hence, Proposition 3.1 and Theorem 3.1 in Durante et al. (2010) assure

that the dependence among the test statistics in ts is of tp2-type, and Yekutieli (2008) gives

the thesis.

Propositions 3.1 and 3.2 offer viable ways of selecting the couples in such a way that

the conditions for validly using the ssbh procedure are satisfied. It is important to notice

that the pairwise dependence introduced in the set up given by the family tpsus“1,...,S and

the definition of copulas (2) and (5) allow us to describe a system with both positively

and negatively correlated test statistics. This aspect meets a natural requirement on the

dependence structure of statistics in multiple testing.

There are two main limitations to the adoption of copulas (2) and (5). First, Propositions

3.1 and 3.2 refer to couples, i.e. subsets of cardinality 2; furthermore, as already stated, both

copulas (2) and (5) are permutation symmetric, and this aspect may be a very strong require-

ment, in that symmetric copulas are able to represent only a small range of dependencies.

However, it is worth noticing that permutation symmetry does not extend to the entire set

of test statistics t, which in general may collect m non-exchangeable individual tests.

It is possible to have a more general view of the results above by using a ms-variate

approach, with ms ą 2, in a not necessarily permutation symmetric framework for the subsets

of t. We first discuss the permutation symmetric ms-variate case, with ms ą 2, and then

provide a generalization to the nonsymmetric setting.

To deal with the ms-variate symmetric framework, it is useful to recall a generalization of

the monotonic property for functions:

Definition 3.3. A function

ψ´1 : r0,`8q Ñ r0, 1s (6)

10



is completely monotone in r0,`8q if and only if ψ´1 P C8p0,`8q X C0r0,`8q, and

p´1qn pψ´1q
pnq
pxq ě 0, @n “ 0, 1, 2, . . . ; @x P p0,`8q.

The copula of interest is the following:

Definition 3.4. Fix s “ 1, . . . , S and consider a function

ψs : r0, 1s Ñ r0,`8q (7)

such that ψ´1
s exists and is completely monotone in r0,`8q, ψ´1

s p0q “ 1 and lim
xÑ`8

ψ´1
s pxq “ 0.

An ms-variate Archimedean copula with generator ψs is a copula C
pψq
s such that

Cψ
s pu1, . . . , umsq “ ψ´1

s

˜

ms
ÿ

i“1

ψspuiq

¸

. (8)

Schweizer and Sklar (2005) proved that, when ms “ 2, a copula as in (8) is Archimedean

if and only if ψ´1
s is convex. This fact does not extend to the case of ms ą 2. However, the

condition of complete monotonicity for ψ´1
s can be weakened, even in the case of ms ą 2. A

sufficient condition for Cψ
s to be a copula is to replace the complete monotonicity with the

condition p´1qn pψ´1
s q

pnq
pxq ě 0, for each n “ 0, 1, . . . ,ms and x P p0,`8q. For a detailed

discussion on this topic, we refer to McNeil and Nešlehová (2009).

As we saw with reference to copulas (2) and (5), also the Archimedean copula Cψ
s in (8)

refers to the symmetric case of exchangeability for the subsets ts. Such a copula describes

the mtp2 property, hence being useful to control the fdr:

Proposition 3.5. Consider s “ 1, . . . , S such that ms
0 ą 0. Assume that, the dependence

among the statistics in ts is described by an Archimedean copula Cψ
s as in (8), with:

uk “ Fkpxkq, xk P R, @ k “ 1, . . . ,ms, (9)

where p´1qm
s
pψ´1

s q
pmsq

is log-convex.

Then the level q ssbh procedure controls the fdr at level qm0{m.
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Proof. Let t1, . . . , tms denote the individual statistics in ts. If the stochastic dependence in

ts is described as it was in the hypotheses, then Müller and Scarsini (2005) guarantees that

the mtp2 property holds among the individual statistics in ts. Hence, Proposition 2.2 in

Yekutieli (2008) gives the result.

The need to obtain a truly multivariate result motivates the formulation of Proposition

3.5, even if permutation symmetry continues to be a feature of the class of multivariate

Archimedean copulas involved. As with the bivariate case, it is worth noticing that the intro-

duction of the family of sets tpsus“1,...,S with the stochastic dependence structure formalized

in Proposition 3.5 allows us to describe a non-exchangeable system with both positively and

negatively correlated test statistics. In fact, the positive dependence condition modeled by

permutation symmetric copula (8) is required only for some statistics in t (the ones collected

in the ts’s such that ms
0 ą 0). Furthermore, the Archimedean copulas used in Proposition 3.5

are more flexible than the particular case of fgm copulas, in that they can represent cases

with both strong positive and negative dependence. In the case ms “ 2, Kendall’s τi,j for an

Archimedean copula related to pti, tjq takes the convenient form (see Genest and MacKay,

1986, Theorem 2).

τi,j “ 4

ż 1

0

ψspyq

ψ1spyq
dy ` 1 . (10)

The generalization to the permutation asymmetric framework can be obtained at the cost

of some mildly stronger assumptions, as recently explained by Cerqueti and Lupi (2016). We

give full details by first introducing an asymmetric copula constituting a generalization of the

Archimedean copula proposed in (8).

Definition 3.6. Fix s “ 1, . . . , S. Let us introduce Js P N and a set of ms ˆ Js functions

hjks : r0, 1s Ñ r0, 1s, j “ 1, . . . , Js; k “ 1, . . . ,ms (11)

such that:

(C3.6.i) hjks is differentiable in p0, 1q and strictly increasing in r0, 1s, for each j, k;
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(C3.6.ii) hjksp0q “ 0 and hjkp1q “ 1, for each j, k;

(C3.6.iii) 1
Js

řJs
j“1 hjkspxq “ x, for each k “ 1, . . . ,ms and x P r0, 1s.

Moreover, define

ψs : r0, 1s Ñ r0, 1s (12)

such that:

(C3.6.iv) ψs is ms ` 2 times differentiable in p0, 1q;

(C3.6.v) ψ
piq
s ą 0, for i “ 1, . . . ,ms;

(C3.6.vi) ψsp0q “ 0 and ψsp1q “ 1.

We define a non-exchangeable (Archimedean) copula as Cψ
NE : r0, 1sm

s
Ñ r0, 1s such that:

Cψ
NEpu1, . . . , umsq “ ψ´1

s

˜

1

Js

Js
ÿ

j“1

ms
ź

k“1

hjkspψspukqq

¸

. (13)

Copula (13) has been first introduced and explored by Liebscher (2008, 2011). It is worth

noticing that, as far as the copula’s definition is concerned, conditions (C3.6.iv) and (C3.6.v)

could be weakened. However, the stronger conditions proposed here allow us to use Cerqueti

and Lupi (2016, Theorem 3.3) and easily derive the following general result:

Proposition 3.7. Consider s “ 1, . . . , S such that ms
0 ą 0. Suppose that the dependence

among the statistics in ts is described by copula Cψ
NE in (13). Furthermore, suppose that hjks

is twice differentiable in p0, 1q, with

ź

k“k1,k2

”

h2jkspψspukqq pψ
1
spukqq

2
` h1jkspψspukqqψ

2
spukq

ı

ě

”

h2jk1s pψspuk1qqˆ

ˆ pψ1spuk1qq
2
` h1jk1spψspuk1qqψ

2
spuk1q

ı

ˆ h1jk2spψspuk2qqψ
1
spuk2q (14)

13



and

ź

k“k1,k2

h1jkspψspukqqψ
1
spukq ě

”

h2jk1spψspuk1qq pψ
1
spuk1qq

2
`

`h1jk1spψspuk1qqψ
2
spuk1q

ı

ˆ h1jk2spψspuk2qqψ
1
spuk2q , (15)

holds for each j “ 1, . . . , J , k1, k2 “ 1, . . . ,m, k1 ‰ k2, and s “ 1, . . . , S. Finally assume

that, for each s “ 1, . . . , S, one has:

`

ψ´1
s

˘pms`2q
pxq

`

ψ´1
s

˘pmsq
pxq ´

”

`

ψ´1
s

˘pms`1q
pxq

ı2

ě 0, @x P p0, 1q . (16)

Then the level q ssbh procedure controls the fdr at level qm0{m.

Proof. We adapt to our case the arguments of Cerqueti and Lupi (2016) to prove that copula

Cψ
NE in (13) describes a dependence of type mtp2.

First we observe that a long but straightforward computation proves that the density f

of Cψ
NE is log-supermodular, i.e.

logpfpuqq :“ log

ˆ

Bm
s

Bu1 . . . Bums

Cψs

NEpuq

˙

(17)

is supermodular (for the details, refer to Cerqueti and Lupi, 2016).

Therefore, Müller and Scarsini (2005) guarantee that Cψ
NE is mtp2.

Since ms
0 ą 0, then Yekutieli (2008) implies that the level q ssbh procedure controls the

fdr at level qm0{m.

Example 3.8. It is now worth providing an example of the shape of a copula satisfying

Proposition 3.7. To provide such an example, we deal with the bivariate case, i.e.: ms “ 2.

Specifically, a simple computation gives that

Cψ
NEpu1, u2q “ log

„

peu1 ´ 1qpeu2 ´ 1q

e´ 1
` 1



(18)
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Figure 1: A graphical representation of copula (18)

belongs to the family defined in (13) and fulfils the hypotheses listed in Proposition 3.7.

Indeed, fix s “ 1, . . . , S and Js P N. It is sufficient to define

hj1pxq “ hj2pxq “ x, x P r0, 1s, j “ 1, . . . , Js, (19)

and take

ψspukq “
euk ´ 1

e´ 1
, (20)

for each k “ 1, 2.

A graphical representation of copula (18) is offered in Figure 1. In order to give further

details on this copula, we can also simulate from a bivariate distribution based on copula (18)

with arbitrary marginal distributions. This can be achieved using conditional sampling, which

is a very general algorithm for bivariate copulas. In particular, in Figure 2 we report the

scatterplot of 10,000 samples from a joint distribution defined by copula (18) and t marginal

distributions with 3 degrees of freedom.

Copulas (2) and (5), and the copula defined by (8)–(9) are permutation symmetric, in

that they are invariant with respect to permutation of their univariate arguments. Such a
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Figure 2: Scatterplot of 10,000 samples from a joint distribution defined by copula (18) and
t3 marginal distributions.

symmetry is able to model a relatively small range of dependence structures on the involved

subsets of t which depend only on a small number of parameters. This is their main limitation,

implying that they are not particularly flexible in fitting multivariate data with a large number

of parameters. However, it is worth stressing once again that exchangeability does not extend

to the entire set t, which then may collect individual non-exchangeable test statistics.

For the sake of generality, we have provided some arguments on the extension to the

nonexchangeable case. Proposition 3.7 extends the fdr applicability to situations where

dependence can be well represented by asymmetric copulas. In this respect, Proposition 3.7

complements and extends Yekutieli (2008).

4 Discussion and concluding remarks

In multiple testing, a very relevant role is played by the analysis of the dependence structure

of the involved test statistics. In doing so, the uncertainty of the model is efficiently dealt
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with. Copulas are particularly suitable for this purpose; nonetheless, the role of copulas in

multiple testing has been scarcely investigated. This paper contributes to reduce this gap by

critically illustrating the relationship between copulas and control of the false discovery rate.

Benjamini and Yekutieli (2001) and Yekutieli (2008) (among others) showed that, in the

presence of dependent tests, a prds-type dependence among the test statistics under the null

is sufficient for controlling the fdr. Since mtp2 is a stronger condition that implies prds,

fdr is attained also if mtp2 holds.

A copula-based framework for the fdr control can bring three main advantages. First,

the mtp2 property has been proved to hold with explicit reference to a rather narrow set of

multivariate distributions, a prominent example being the multivariate normal distribution

with certain types of non-negative covariances (Karlin and Rinott, 1980, 1981): on the other

hand, copulas allow multiple testing under less restrictive assumptions on the multivariate

distribution of the test statistics. Second, even if the marginal distributions of the test

statistics under the null are known (e.g., normal), nevertheless the joint distribution of the

test statistics may not obey one of the multivariate distributions known to be mtp2 (e.g.,

multivariate normal): through Sklar’s theorem (Sklar, 1959), the copula approach deals with

the margins and with the dependence structure separately, thus allowing for greater flexibility

as far as the multivariate distribution is concerned, even permitting the use of test statistics

having non-standard (marginal) distributions (e.g., unit root tests; Phillips, 1997). Third,

Durante et al. (2010) proved that bivariate copulas maintain the tp2 property when they

are suitably distorted (i.e., transformed through an opportunely defined isomorphism): hence

copulas can be viewed as generators of couples of statistics which are mtp2, once a reference

copula of mtp2 type is identified and suitably distorted.

We stress again that the copulas we discuss in the presented Propositions are strongly

dependent on the index s “ 1, . . . S. In this context, one could also check a-priori if a

suitable collection of subsets of test statistics exists, whose dependence structure obeys to

one of the copulas described in the present paper.
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However, results remain valid, since the definition of ssbh procedure requires only the

existence of a collection of subsets for fdr control — and so having the required dependence

structure.

Moreover, this fact allows us to deal with fdr control in multiple testing in the relevant

case of heterogeneity — to be intended as highly diversified dependence structures between

the vectors ts — of the involved individual test statistics. In particular, since we impose a

copula-type dependence structure only to selected clusters of the p-values, and given that we

consider also non-Archimedean and asymmetric Archimedean copulas, by using the copula-

based theoretical framework we can represent not only situations in which the test statistics

are exchangeable and positively dependent, but also cases with non-exchangeable and nega-

tively correlated subsets of test statistics.
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The Indian Journal of Statistics, Series A 70 (2), 183–185.

Sarkar, S. K., Chang, C.-K., 1997. The Simes method for multiple hypothesis testing with pos-
itively dependent test statistics. Journal of the American Statistical Association 92 (440),
1601–1608.

Schmidt, R., Faldum, A., Gerß, J., 2015. Adaptive designs with arbitrary dependence struc-
ture based on Fisher’s combination test. Statistical Methods & Applications 24 (3), 427–447.

Schmidt, R., Faldum, A., Witt, O., Gerß, J., 2014. Adaptive designs with arbitrary depen-
dence structure. Biometrical Journal 56 (1), 86–106.

Schweizer, B., Sklar, A., 2005. Probabilistic Metric Spaces, 2nd Edition. Dover Publications,
Mineola, NY.

Simes, R. J., 1986. An improved Bonferroni procedure for multiple tests of significance.
Biometrika 73 (3), 751–754.
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