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Diet is a driving force in human evolution. Two species of Plio-Pleistocene
hominins, Paranthropus robustus and Australopithecus africanus, have derived
craniomandibular and dental morphologies which are often interpreted as
P. robustus having a more biomechanically challenging diet. While dietary
reconstructions based on dental microwear generally support this, they
show extensive dietary overlap between species, and craniomandibular and
dental biomechanical analyses can yield contradictory results. Using methods
from anthropology and engineering (i.e. anthroengineering), we quantified
the molar biomechanical performance of these hominins to investigate poss-
ible dietary differences between them. Thirty-one lower second molars were
three-dimensional printed and used to fracture gelatine blocks, and Bayesian
generalized linear models were used to investigate the relationship between
species and tooth wear, size and shape, and biomechanical performance.
Our results demonstrate P. robustus required more force and energy to fracture
blocks but had a higher force transmission rate. Considering previous dietary
reconstructions, we propose three evolutionary scenarios concerning the diet-
ary ecologies of these hominins. These evolutionary scenarios cannot be
reached by investigating morphological differences in isolation, but require
combining several lines of evidence. This highlights the need for a holistic
approach to reconstructing hominin dietary ecology.

1. Introduction

Diet is cited as the single most important factor underlying behavioural and
ecological variation in extant primates [1]. As such, dietary reconstructions pro-
vide biological data about extinct primates. Short-term dietary reconstructions
such as stable isotope and dental wear analyses provide data on behaviour and
ecology on a (set of) population(s), while long-term dietary reconstructions
such as morphological and biomechanical analyses provide data on the evol-
utionary history and functional adaptations of a species. Given their key role
in mastication and relative abundance in the fossil record, a key element for
reconstructing diet is postcanine dentition.

In Primates, the primary function of postcanine dentition is to decrease food
item size. The mechanical transfer of force and energy from teeth to food plas-
tically deforms and fractures the food, increasing its swallowability and
digestibility [2,3]. If postcanine dentition cannot break down the food effi-
ciently, primates are at risk of not obtaining enough calories for reproduction,
lactation and/or survival [4]. The postcanine dentition has evolved in response
to differences in extrinsic and intrinsic dietary properties to decrease food item
size while resisting failure through excessive wear and fracture [2,5]. Quantifi-
cation of tooth shape, size and biomechanical function allows researchers to
estimate the biomechanical properties of the foods an animal is adapted to
eat [2,6-10].

© 2021 The Author(s) Published by the Royal Society. All rights reserved.
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Two species of South African Plio-Pleistocene hominins—
Paranthropus  robustus and Australopithecus africanus—have
derived craniomandibular and dental morphologies that are
hypothesized to have evolved as biomechanical adaptations
to distinct diets. The two most common short-term recon-
structions for the Plio-Pleistocene mammals are stable carbon
isotope and dental microwear (texture) analyses. Within
herbivores, stable carbon isotope analyses inform on the
photosynthetic pathways of the plants consumed. In Plio-
Pleistocene continental Africa, this can be used to estimate
the relative amount of savanna resource incorporated into an
animal’s diet. These studies, therefore, offer little information
on the biomechanical properties of the foods consumed by
P. robustus and A. africanus [11,12]. However, stable carbon
isotope analyses suggest A. africanus may have consumed
slightly more savanna dietary resources than P. robustus
[13-17]. Dental microwear and dental microwear texture
analyses provide insight into dietary biomechanics by quanti-
fying differences in dental wear patterns, a product of dental
kinematics and kinetics, which are hypothesized to be a pro-
duct of bolus mechanical properties and dietary abrasives
(e.g. phytoliths, dust, grit) [18-23]. Primates with ‘tough’
diets (i.e. diets requiring high levels of work) tend to have
more scratches, while primates with ‘hard” diets (i.e. diets
requiring high forces) tend to have more pits, but the interpret-
ation of microwear data is debated [24-26]. Thus, P. robustus is
primarily reconstructed as consuming harder foods than
A. africanus, but with significant dietary overlap [27-30].

Long-term hominin dietary reconstructions often focus on
the form and biomechanical function of the masticatory appar-
atus. Paranthropus robustus’s relatively larger chewing muscles
and orthognathic craniomandibular complex would have
allowed it to produce a relatively higher bite force [31,32],
while its more robust craniomandibular features, larger
molars with strong, upright tooth roots and thicker enamel
would have made it more efficient at resisting those forces
[33-38]. Functional metrics of occlusal topography show
P. robustus’s molars were relatively flatter [39], higher relief
and morphologically better equipped to resist wear than
A. africanus’s [40]. Taken together, this suggests P. robustus
was better adapted to resist the biomechanical loads brought
on by mechanically challenging and/or harder foods [41].
Consistent with dental microwear studies, dietary recon-
structions based on an adaptationist framework conclude
P. robustus consumed more mechanically challenging and/or
harder foods. There is debate about whether these foods
were small and hard [42], low quality (requiring bulk feeding)
[43] or underground storage organs (USOs) [44], and whether
they were consumed regularly or seasonally [45,46]. Cranio-
mandibular biomechanical analyses yield results consistent
with the adaptationist interpretation [33,36,47,48].

Two occlusal dental biomechanics studies have
investigated the dietary biomechanics of P. robustus and
A. africanus, both of which focused on the ability of the two
species to process hard foods [9,49]. These studies found
P. robustus could fracture nuts with less force and energy
than A. africanus [9], but A. africanus could resist the stresses
induced by the point loads of small, hard objects more effi-
ciently [49]. These studies suffered from small sample sizes,
making it impossible to conclude if these differences were
species or specimen specific, and modelling assumptions, as
models of hard food item consumption are highly sensitive
to initial food item placement.

rsfs20200085—24/6/21—16:59-Copy Edited by: Not Mentioned

Here, we use an anthroengineering approach to investigate
the dental biomechanics of P. robustus and A. africanus. Anthro-
engineering is an interdisciplinary approach that uses theories
and methods from anthropology and engineering to address
questions within and across the respective disciplines. Here,
we are combining mechanical engineering with palaeoanthro-
pology to address a question concerning human evolution. We
hypothesize A. africanus’s more sloped molars will increase its
biting efficiency relative to P. robustus. If true, this would
imply A. africanus could have consumed the same foods as
P. robustus, but with less force or energy.

As a structure’s geometry and biomechanical function are
intrinsically linked, potential correlations between molar occlu-
sal topography and biomechanical function are investigated.
Experimental models of simple teeth (e.g. blade-like and
unicuspid teeth, like incisors and canines) show there is a
simple relationship between tooth shape and function that
can be derived from first principles, as there is only a single
or multiple symmetrical points of contact between the tooth
and the food item [10,50-54]. However, experimental and
finite element models have shown no simple relationship can
be derived using first principles for complex teeth (e.g. multi-
cusped bunodont molars that lack symmetry) due to multiple
points of contact causing an asymmetric transfer of force/
energy between the tooth and the food item [9,55]. Addition-
ally, the percentage of total force transferred by each point of
contact changes with food item size [56], adding an additional
layer of complication to the problem.

Because of this, little is known about the complex relation-
ship between molar shape and biomechanical function in
primates. Presumably, functional metrics of occlusal topo-
graphy (e.g. dental topographic metrics [8]) are linked to
biomechanical performance, which is why primates with
diets high in fibre or chitin have sharper teeth with relatively
longer shearing crests—to improve cutting ability—while
primates that consume hard foods have duller teeth—to
improve crushing/grinding ability [6,57]. It is, therefore,
possible some dental topographic metrics, like those used to
quantify tooth sharpness or cutting ability (i.e. angularity [58]
and Dirichlet normal energy (DNE) [8,59]) are correlated with
metrics of biomechanical performance, like force or energy to
fracture a food item. Currently, time consuming and potentially
complex experiments/simulations are needed to elucidate the
biomechanical function of complex teeth [9,60-62]. If a relation-
ship between molar occlusal topography and biomechanical
function can be established, it will allow for molar function to
be estimated without the need for modelling.

2. Material and methods
2.1. Sample

As intact dental rows are rare in the hominin fossil record, we
focus on a single tooth to expand our sample size and allow
for statistical analysis. Lower second molars were chosen because
(i) they are morphologically representative of the postcanine den-
tition [63,64], (ii) there is a strong relationship between M, shape
and diet in Primates (e.g. [6,8,57,65,66]) and (iii) the relationship
between tooth shape and diet is stronger in mandibular than
maxillary teeth [67].

The sample in this study was from [40], with the exception
that TM1600 was excluded due to large levels of dentin exposure.
Briefly, 88 M,s were considered and 31 relatively unworn Mys
were chosen for analysis (A. africanus =17, P. robustus = 14; see
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Figure 1. Lightly (MLD2) and moderately (STW3) worn A. africanus lower
second molars considered for analysis. Although the fine features on the
occlusal surface have been removed from STW3 due to wear, it still retains
its general shape (e.g. cusp number and height).

electronic supplementary material, table S1). While we recognize
our A. africanus sample here consists of some individuals classi-
fied as A. prometheus by Clarke and Kuman [68], we have not
chosen to make the distinction between A. africanus and A. pro-
metheus here. Relatively unworn molars with wear scores less
than 6 [69] were chosen as dental wear changes tooth shape
(figure 1) [40,58,70]. No antimeres were used.

2.2. Dental replicas

Digital surfaces of the teeth created for [40] were used to create
dental replicas. Microcomputed tomography (microCT) scans
were used to create digital representations of the teeth using a
BIR Actis 300/255 FP or SkyScan 1172 microCT scanner at
resolutions of 14-91 mm (see electronic supplementary material,
table S1). MicroCT scans were processed in Avizo 8.1 (FEI,
Hillsborough, USA) by thresholding, removing any matrix or
bone touching the outer surface of the enamel cap, using the
‘smooth labels’ command (size =3, 3D volume), and generating
surfaces (smoothing type: existing weights). Surfaces files were
imported into Geomagic Studio 2013 (3D Systems, Morrisville,
USA), where the outer surface of the enamel cap was isolated
and edited (e.g. smoothed, reconstructed and/or erasure of
cracks; electronic supplementary material, table S1). When
necessary and possible, portions of missing enamel were manu-
ally repaired in Geomagic Studio. Enamel caps were then
imported into CloudCompare [71] and oriented into the anato-
mically correct position (i.e. how they would normally sit
within the mandible), using fossils with portions of the mandible
preserved as guides. Specimen specific deviations from the pro-
cedure detailed in this section can be found in the electronic
supplementary material, table S1.

Enamel caps were reimported into Geomagic Studio and a
rectangular column 2+cm in height was drawn under each
enamel cap. The rectangle’s cross-sectional dimensions were
altered such that, if the tooth was viewed from the occlusal surface,
the rectangle could not be seen (figure 2). Portions of the rectangle
closest to the enamel cap were deleted and attached to the enamel
cap to create a water-tight volume using the ‘Fill holes’ function
(‘partial’ and ‘bridge’ subfunctions). Accession IDs were engraved
on the rectangle to allow for specimen identification after 3D print-
ing. Teeth were then 3D printed in an Objet Eden 350 printer
(Stratasys) using RGD720 at a resolution of 16 pm.

RGD720 is a nearly colourless, rigid transparent Poly]Jet photo-
polymer (Young’s modulus = 2-3 GPa [72]). Although significantly
more compliant than enamel/dentin, and therefore likely to
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Figure 2. Experimental setup, showing a 3D printed tooth in the grips of the
FLS Il tester, above a gelatine block. Note: the blue rectangular base of the
FLS II tester under the bronze round base (*) was used as the cutting guide
for gelatine blocks.

deform under high forces, that was not a concern as the proxy
food item used (gelatine) did not incur high reaction forces [73].

2.3. Dental function

The dental biomechanical function was quantified using the
dental replicas and proxy food items. Proxy food items were
used to reduce the variation between trials [60,74]. Gelatine
blocks were chosen as a proxy food item as their flat surfaces,
hyperelastic behaviour and deformable nature meant they
would mould to the occlusal surface of the tooth and be insensi-
tive to initial food item placement. The results from these
experiments better reflect whole-tooth biomechanical function.
Preliminary trials were run to investigate the mechanical proper-
ties of gelatine, and ways to increase its energy release rate.
Results from these trials are presented in electronic supple-
mentary material, table S2. The final procedure used for all
experiments is presented below.

Gelatine blocks were made by mixing 200.0 g (+0.1g) of
sucrose into 100 ml (+1 ml) of water in a sterilized beaker (70%
ethanol). The solution was placed on a heated plate with a mag-
netic stirrer (200°C, 250 RPM) until the sucrose was dissolved.
Meanwhile, a magnetic stirrer 75.0 g (+0.1 g) of gelatine was
soaked in 400 ml (=1 ml) of water for 10 min. The swollen gela-
tine mixture was then heated and stirred (200°C, 250 RPM)
until all the gelatine was dissolved. The sucrose solution was
added to the gelatine solution and stirred for 2-3 min (200°C,
250 RPM). The mixture was then poured into two square,
sterilized (70% ethanol) Pyrex glass containers with lids and
placed in the fridge for at least 12 h. Prior to experimentation,
gelatine blocks were cut into squares using the base of the
FLS II tester as a guide and immediately used for experi-
mentation (figure 2). Gelatine blocks were 47.5 mm wide and
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Figure 3. (a) Five biomechanical trials for SK1 (Paranthropus robustus) and STW560D (Australopithecus africanus). The dotted horizontal line is present to highlight
the nonlinearity of the force—displacement curves. (b) Hypothetical force—displacement curves that fit the equation F = x/\n, where the fracture occurs at a constant
force and displacement in all curves. The area under the r-shaped curves is larger than the area under the J-shaped curves, indicating relatively more energy is

needed to reach failure. From darkest to lightest curves, n=1/3, 1/2, 1, 2 and 3.

21.05+0.67 mm thick (1 =74 blocks) and had an energy release
rate of 28.13 £7.06 ] mm™2 (n =12 trials, wedge test).

Dental replicas were placed in the grips of a motorized FLS II
portable mechanical tester (Lucas Scientific) and lowered into the
gelatine blocks until fracture at a constant displacement of
5.7 mm min~" (figure 2). As in previous experiments, masticatory
kinematics was simplified and modelled as a simple translation
of the tooth in the occlusal direction [9,50,53,75,76]. Force
and displacement were recorded at a data acquisition rate of 50
samples/second. Five trials were performed per dental replica.
Experimental results were imported to Microsoft Excel 2016,
where displacements were transformed such that a displacement
of 0 mm corresponded to a force of 0.2 N. This is to compensate
for the fact that the tooth and block were not in contact at the
start of the experiment. All data past the maximum reaction
force were removed. Both force and displacement at failure
were recorded, and energy to failure was calculated using the
right-hand rule from calculus.

The force-displacement curves produced during experi-
mentation exhibited nonlinearity (figure 3); this is common
in biological materials. This nonlinear relationship can be
approximated with the following equation:

F=kx" +F (2.1)

where F is the force, k is the effective stiffness, x is the displace-
ment, 1 is a dimensionless coefficient quantifying curve shape
and F is the initial force (here, 0.2 N). When n =1, the curve is
linear. When n>1, the force-displacement curve resembles
an upper-case J and is thus referred to as ‘J-shaped,” but when
n <1, the force—displacement curve resembles a lower-case r is
thus referred to as ‘r-shaped’ [77,78] (figure 3). Assuming failure
occurs at a given load and displacement, ‘J-shaped’ curves resist
force more efficiently, displacement less efficiently and require
less energy to fail than ‘r-shaped.’

During these compression tests, changes in n occur because of
changes in increase in density that occur as the material is com-
pressed, where the material is applying a lower (in the case or
r-shaped curves) or higher (in the case of J-shaped curves) reaction
force per unit of displacement as the material is compressed. To
solve for k and 7 requires the equation for work (W):

W= Jde (2.2)

Combining equations (2.1) and (2.2) and substituting 0.2 for
Fy gives

W= ka” +0.2 dx

kxn+l

W= l+0.2x+C
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We can assume that C =0 because, when x =0, W=0 as there
is no work for zero displacement. Therefore

_E-02 _+0'12 % L 0.2x
! (2.3)
. (F-0.2)x B
T W_02x
and
F-02
k=— (2.4)

where k has units of N m™. If the curve is linear (n=1), k has
units of N m™, the units commonly used to describe stiffness
in elastic bodies. Maximum force, the corresponding displace-
ment and energy to failure were used to calculate n and k
using equations (2.3) and (2.4).'

Mastication is both force (i.e. bite force) and displacement
(i.e. gape angle, tooth position and jaw length) limited. Given
P. robustus has been proposed to have a more mechanically chal-
lenging diet than A. africanus, we hypothesize natural selection
acted to produce a tooth morphology in P. robustus that could
transmit forces more efficiently and fracture foods with relatively
less force/energy than A. africanus: this is in concordance with
the results from [9]. As such, we expect the force transmission
rate to be higher in P. robustus, and the force/energy to fracture
to be lower.

When force-displacement curves are linear, the force trans-
mission is dictated solely by the effective stiffness of the system
(k). In nonlinear curves, force transmission can be estimated by
taking the derivative of force relative to displacement (i.e. the
rate at which force is transmitted per unit displacement). The
derivative of equation (2.1) is

— = nkx"!

dx 23)

where the force transmission rate has units of N m™". An interest-
ing property of the force transmission rate is its dependence on n
(figure 4). At very low displacements, force transmission rates
are highest when n <1 (r-shaped force-displacement curve) as
the exponent for displacement, n —1, is negative. As displace-
ment increases, linear force-displacement curves (1 = 1) provide
the highest force transmission rate for a short time. When n=1,
force transmission rate is determined solely by k (dF/dx=k).
As displacement increases, and for all displacements>1 (mm
in this case), force transmission rates are highest when n>1
(J-shaped). This implies that, if a food requires a very small dis-
placement to fail, teeth that produce r-shaped curves will be
the most efficient at transmitting forces, but if a food requires a
larger displacement to fail (here, any displacement greater than
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Figure 4. The effect of n on force transmission rate. At very low displace-
ments, teeth that produce r-shaped force—displacement curves (n<1)
have the highest force transmission rate. At mid-level displacements, teeth
that produce linear force—displacement curves (n=1) have the highest
force transmission rate. At high displacement, teeth that produce j-shaped
force—displacement curves (n > 1) have the highest force transmission rate.

approx. 1 mm), teeth that produce J-shaped curves will be the
most efficient at transmitting forces.

Here, we used displacement at fracture to calculate the force
transmission rate.

2.4, Dental shape, size and wear

We used previously published data for tooth shape, size and wear,
which is briefly described here [40]. Tooth shape was quantified
with dental topographic metrics, which are correlated to ecological
categories of diet in extant primates [8]. The metrics used here were
(i) DNE, a measure of surface curviness which has been used to
quantify tooth sharpness [6,59], (ii) relief index (RFI), a measure
of relative tooth height [65,79], (iii) orientation patch count rotated
(OPCR), a metric of dental complexity [80] and (iv) ambient occlu-
sion (PCV, portion de ciel visible or “portion of visible sky’), a metric
of morphological wear resistance [81]. Five percentage outliers
removal was used to calculate DNE (DNE 95% in [40]) to account
for taphonomic artefacts in scans that may artificially inflate
DNE. OPCR was calculated using 3D scans and is not directly com-
parable to values calculated using 2.5D scans, but the two
measurements are correlated [40,81]. Tooth size was quantified
using the projected outline area of the tooth [40,82]. Three metrics
(DNE, RFI, OPCR) and tooth size were calculated in MorphoTester
[82] and one (PCV) was calculated using CloudCompare [71].
Tooth wear was quantified using a modified method of Scott’s
dental scoring technique, where higher numbers indicate higher
levels of wear [40,58,69,79].

When performing dental topography, surface files must be
cropped to isolate the tooth for analysis. The cropping method
must be held constant within a study, ensuring homologous
portions of teeth are compared. The two most popular cropping
methods were used here: the basin cut off (BCO) and the entire
enamel cap (EEC) [8]. The BCO only considers portions of the
tooth occlusal to an imaginary plane drawn through the lowest
point on the occlusal basin. It thus only provides information
about the occlusal surface of the tooth, and thus may be more
related to food item breakdown than EEC, which considers the
entire outer surface of the enamel cap. However, during experi-
mentation, the sides of the tooth occasionally contacted the food
item (figure 5), and thus EEC, which captures these aspects of mor-
phology, may be more related to food item breakdown here. The
cropping method not only affects the dental topographic results,
but also tooth size, as the outline area is smaller when BCO is
used, as the cervical margin of the tooth is not included. Tooth sur-
faces must be represented by approximately the same number of
triangles, as several topographic metrics are sensitive to triangle
count [83]. Here, triangle counts of 20 000 were used here [40,84].

rsfs20200085—24/6/21—16:59-Copy Edited by: Not Mentioned

2.5. Biomechanical statistical analyses

It is recommended first principles be used to derive testable
hypotheses concerning the relationship between shape, size and
performance in evolutionary biomechanics [85]. As discussed,
this is not possible as there are no first principles relating complex
tooth shapes (e.g. multicusped molars) or dental topography to bio-
mechanical function [55,56,86,87]. Bayesian mixed-effects linear
models were used to investigate whether differences in biomecha-
nical performance existed between the two hominin species, and
whether tooth shape, size or wear played a role in biomechanical
performance. Mixed-effects models were used as they improve esti-
mates for repeat sampling, improve estimates for imbalance in
sampling, includes estimates of variation, and avoids averaging,
retaining the experimental variation [88].

Using protocol set out by McElreath [88], we created six sets
of equations, one for each biomechanical parameter (force,
energy and force transmission rate), as well as displacement, k,
and 7 as these are the parameters which drive the force trans-
mission rate. The map2stan function was used in R to predict
each biomechanical parameter using the following equation:

Biomechanical parameter = & + Qrial + ®specimen + B1 ¥ DNE
4 B, *RFI + B3+ OPCR + B, +PCV
+ Bs xsize + B¢ * wear

-+ B; * species

Where broad, weakly regularizing priors were used to esti-
mate o, Aspecimen (the random effect individual fossils), aia (the
random effect of trial number) and B;_,. Markov-chain Monte
Carlo (MCMC) estimation was used to estimate the posterior
probability distributions for each parameter (4 chains, 10000 iter-
ations, 2000 iterations warmup). If one or more parameter
appeared to be statistically insignificant, parameters were
removed and additional models were run. Models were run
using both BCO and EEC topographic results, and Watanabe-
Akaike information criteria (WAIC) were used to compare all
models and determine which set of parameters best predicted bio-
mechanical performance: models with higher weights perform
better. Random effects (trial, specimen), intercept (@) and species
were included in all models. All statistical analyses were run in
R v. 4.0.1 and RStudio using the rethinking package [88,89].

3. Results

As molars indented the gelatine blocks, the blocks conformed
to the shape of the tooth (figure 5). When compressed to
approximately 1/4 their thickness, cracks began to form in
the blocks near the sides of the cusps, where the gelatine
block was under tension (figure 54 and figure 6). While
cracks occasionally form at the cusp tips, they often form
next to the cusps, as the cusp tips are not sharp enough to
propagate cracks through the gelatine blocks, and instead
compress them. Eventually, crack(s) propagated through the
gel, reducing the reaction force and causing failure. Specimen
specific raw data are provided in figure 7 and electronic sup-
plementary material, table S3. Results show a large level of
overlap in biomechanical performance between A. africanus
and P. robustus, but some species-level differences are present.

Apart from predicting k, WAIC weights showed the best
Bayesian models for predicting biomechanical performance
included species and tooth size, but not dental topographic
parameters (table 1). Dental wear was important when pre-
dicting force, energy and k, but not displacement, n, or
force transmission rate. WAIC weights indicate there was
not always a clear best model for predicting biomechanical
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Figure 5. (a—e) Example of a 3D printed tooth (LM2, MLD2) indenting into and fracturing the gelatine blocks. Small fractures occurred in the gelatine blocks prior

to catastrophic failure (e.g. d) and at catastrophic failure (e), as indicated by the reflective surfaces within the gelatine block, radiating from the tooth. Orientation of

the tooth at time of fracture (f).

(a) . ()

(©)

Figure 6. (a—c) Hypothetical cusp fracturing a gelatine block. As the gelatine is compressed, areas of high tension occur on the surface of the gelatine (as indicated
by arrows and red areas in b). Ultimately, one or more of these areas fracture (c). Fractures can be small (e.g. figure 5d) or large, causing catastrophic failure.

performance. The best statistical models for predicting displa-
cement, k, n and force transmission rate used data gathered
using the BCO cropping method, while the best model for
predicting force and energy used data gathered using the
EEC cropping method, implying there is no single metric of
tooth size that is best for predicting biomechanical perform-
ance. Summary statistics for the posterior distributions are
available in table 2, electronic supplementary material,
figure S1 and table S4. The code for the models is presented
in electronic supplementary material, table S5.

Paranthropus robustus required more force and energy
than A. africanus to fracture the gelatine blocks and had
a higher force transmission rate (table 3). There were no
differences in displacement, k or n. For both species, tooth
size was positively correlated to displacement, force and
energy to fracture the gelatine blocks: every 1 mm? increase
in tooth size corresponded to 0.018 mm increase in displace-
ment, 0.134 N increase in force and 0.673 mJ increase in
energy to fracture. Larger teeth increased force transmission
rate and n, making the force-displacement curves more
J-shaped, but decreased k. Tooth wear increased the force
and energy to fracture the gelatine blocks. Dental topographic
metrics were never statistically significantly correlated to
biomechanical performance.

rsfs20200085—24/6/21—16:59-Copy Edited by: Not Mentioned

Species averages for all biomechanical metrics were esti-
mated using the best statistical models. As species averages
change with tooth size and/or wear, estimates for various
tooth sizes and/or wear stages are provided in the electronic
supplementary material. Excluding the exceptionally large Gon-
dolin molar, the range of tooth sizes using the EEC cropping
method was 157.538-236.895 mm” and 159.765-239.38 mm’
for A. africanus and P. robustus, respectively. Using the BCO crop-
ping method, the range of tooth sizes were 143.084-198.405 mm?®
and 138.175-225.071 mm? for A. africanus and for P. robustus,
respectively. As such, the biomechanical results presented here
are for a tooth size of 195mm? for force and energy and
175 mm? for displacement, k, n and force transmission rate.
A wear stage of 1 was used when needed.

Paranthropus robustus required an average of 31.7% more
force and 20.9% more energy to fracture the gelatine blocks
than A. africanus. P. robustus’s force transmission rate was
an average of 24.2% higher (table 3).

4. Discussion

Paranthropus robustus were relatively less efficient at fractur-
ing the gelatine blocks than A. africanus, requiring more
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Figure 7. Specimen means and standard deviations across the five trials. Fossil accession IDs are listed on the left. Grey circles are Australopithecus africanus, and
black X's are Paranthropus robustus. Error bars represent one standard deviation.

force and energy, but possessing a higher force transmission
rate, allowing there to be no differences in failure displace-
ment. Results indicate that, if P. robustus and A. africanus
consumed the same foods, P. robustus would have required
a similar gape but more force and energy, although there is
significant overlap in the results of the two taxa. This could
be accomplished by P. robustus having larger muscles and/
or higher mechanical advantage, which would require
P. robustus to have relatively thicker enamel to resist those
forces/energies [31-38].

Under this scenario, the differences in craniomandibular
morphology, relative tooth size and molar enamel thickness
between these two hominins may not indicate adaptations
to different diets, but rather adaptations to compensate for
differences in dental biomechanical performance. This con-
clusion cannot be reached by investigating morphological
differences in isolation and can only be seen by taking a
more holistic approach.

What is causing this difference in dental biomechanical
performance cannot be said for certain, but they are not
related to DNE, RFI, OPCR or PCV. Unfortunately, these
topographic parameters are uncorrelated to biomechanical
performance (e.g. figure 8). This is expected when the EEC
cropping method is used, as portions of the tooth that are
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not contacting the food item are being quantified. Yet, this
is unexpected when the BCO cropping method is used, as
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only the occlusal surface is being quantified. This runs con- Q1

trary to our understanding of these metrics [6,59,66,70,90].
Both DNE, a measure of surface curvature and metric of
dental sharpness, and OPCR, a measure of the number of
‘tools” on a tooth’s surface, are hypothesized to correlate
with masticatory efficiency [6,8,59,80,91-93]. Current hypoth-
eses concerning dental function speculate DNE and OPCR
are negatively correlated to force/energy to fracture foods:
we found no such correlation here. It is possible DNE and/
or OPCR are related to aspect(s) of biomechanical perform-
ance not captured by these experiments, such as chewing
efficiency (i.e. the ability to fracture food into smaller
pieces). Previous experimental results have shown chewing
efficiency is correlated with relative shearing crest length in
three species of small mammals [64,94,95], making it possible
it is also correlated to other aspects of tooth shape. However,
no research has shown a relationship between DNE or OPCR
and chewing efficiency. Results from this paper highlight our
lack of understanding of occlusal dental biomechanics in
multicusped complex teeth [8].

If natural selection is the primary evolutionary force respon-
sible for hominin molar morphology, dental biomechanical
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Table 2. Summary statistics for the posterior distributions for the fixed effects of the best models, according to WAIC results. p-values indicate the significance n
of the parameters, and values less than 0.05 are highlighted in italics. There were no differences between P. robustus and A. africanus in displacement, k or n.

P. robustus was coded as ‘1" and A. africanus as ‘0’

50 a positive value indicates P. robustus had higher values for that biomechanical metric.
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Table 3. Species averages for biomechanical metrics.

p-value
disp (mm) 0.094
force()vm o0t
..energy (mJ) S
k(N mm™) N 0857 -
force transmission rate (N mm™") 0.032 '

analyses reveal how natural selection acted on hominin molar
morphology in the past. Biomechanical analyses further
reveal the limitations of dental function, and therefore the
evolutionary constraints hominin molars would have been
functioning within.

Given data from this study, as well as dental microwear,

stable carbon isotope, and morphological dietary
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A. africanus
median (95% Cl)

P. robustus
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1927 (1.490-2.371)

reconstructions, we propose three possible evolutionary
scenarios concerning the biomechanical properties of the
foods consumed by P. robustus relative to A. africanus:

(1) P. robustus’s diet was more mechanically challenging
than A. africanus, and the selective pressure(s) related to
bite force/energy were relaxed in P. robustus.
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Figure 8. Raw data from experiments, showing energy versus tooth wear, size and four dental topographic parameters (EEC, triangle count = 20 000). Red circles

are P. robustus, blue triangles are A. africanus.

If P. robustus’s diet was more mechanically challenging
[27,28,33,96], results from this study suggest selection was
not acting on occlusal topography to increase biomechanical
performance during biting. This could be because having
lower bite force/energy did not increase reproductive fitness
within P. robustus, and therefore the selective pressures acting
on dental biomechanics were relaxed. Musculoskeletal ener-
getics and thereby force production are important when
energy expenditure represents a large portion of an animal’s
energy budget (e.g. locomotion). Relative to these larger
energy expenditures, it is possible the energy required to
grow and maintain larger chewing muscles and /or to process
foods was relatively unimportant in P. robustus [97]. Given an
infinite population and infinite amount of time, natural selec-
tion will optimize all aspects of morphology, regardless of the
strength of the selective pressure. If hypothesis 1 is true, it is
possible that, in the case of the South African hominins, the
population size was not large enough and/or not enough
time has passed for bite force/energy during mastication to
be optimized.

(2) P. robustus’s diet was more mechanically challenging, but
selective pressures acted on the aspect(s) of dental mor-
phology unrelated to bite force/energy in P. robustus.

As a result of natural selection acting on aspects of dental
morphology unrelated to masticatory function, P. robustus
evolved molars that were relatively inefficient at processing
foods. One aspect of dental morphology selection could
have been working on is molar enamel thickness. Molar
enamel thickness is an adaptation to both dietary and
environmental factors, and is highly correlated to primate
growth and development [598-101]. Within primates,
enamel thickness has been shown to be correlated with occlu-
sal topography [102,103], so it is possible changes in enamel
thickness in response to environmental and/or growth and
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development factors led P. robustus to have biomechanically
inefficient molars.

(3) P. robustus and A. africanus had diets with similar
biomechanical properties, and differences in cranioman-
dibular morphology and enamel thickness are present
to compensate for differences in molar morphology.

Finally, it is possible P. robustus and A. africanus had diets
with similar biomechanical properties, and morphological
differences are present to compensate for differences in
molar biomechanical performance. Despite large levels of
overlap, there are differences in dental microwear between
P. robustus and A. africanus. It is possible these differences
are not due to consuming different foods, but due to seaso-
nal, environmental and/or population-level variation in the
foods consumed (e.g. [23,104,105]). If true, this would
imply that there are no significant differences in the biome-
chanical properties of the foods consumed by these two
hominin species.

Our results show that, should P. robustus and A. africanus
have consumed the same foods, P. robustus would have required
more force and/or energy to breakdown these foods. This
would require P. robustus to have increased force/energy pro-
duction (e.g. orthognathism, larger chewing muscles) and
thicker enamel (to resist these forces). If hypothesis 3 is true, it
highlights the need to use a holistic approach to biomechanical
data to reconstruct the ecologies of extinct species.

5. Conclusion

We investigated differences in dental biomechanical function
between P. robustus and A. africanus. Contrary to our expec-
tations, we found P. robustus had molars that were less
efficient at processing our proxy foods than A. africanus.
Metrics of biomechanical performance were often correlated
to tooth size and wear, but uncorrelated to dental
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topographic metrics. When our results are interpreted in con-
dental
microwear and stable carbon isotope data, we see three
possible evolutionary scenarios could have occurred
(1) P. robustus had a more mechanically challenging diet,
but inefficient molars because of relaxed selective pressures,
(2) P. robustus had a more mechanically challenging diet,
but inefficient molars because the selection was acting on
other aspect(s) of dental morphology and (3) P. robustus
and A. africanus had diets with similar biomechanical proper-
ties, and differences in masticatory morphology are present in
P. robustus to compensate for having inefficient molars.

As with any study, ours has limitations, most of which
have to do with our species designations and modelling
assumptions. Species designations of the South African
material are complex. Some authors would suggest more
than one taxa is represented within our A. africanus sample
(e.g. [68], including A. prometheus, or assigning SK 843 to
Homo as has been done by some researchers, although the
assignment of the latter to Homo is debated [106]), while
others would argue the morphological variation in our
sample is due to taxonomic heterogeneity [107]. Within the
P. robustus sample, some of this heterogeneity may be due
to microevolution and that we are time averaging within
our sample [108]. The latter interpretation does not strictly
assume more than one species is represented by the P. robus-
tus or A. africanus material. We employ this latter, rather
conservative approach in this study, while being fully aware
of the caveats. This notwithstanding, several of our modelling
assumptions are worth noting. These include using isolated

junction with species averaged morphological,

molars instead of tooth rows, a proxy food item unrelated
to the foods possibly consumed by these hominins, 3D print-
ing molars in plastic, and therefore not having a sharp
enamel ridge, and simplification of masticatory kinematics
to a vertical motion. Given the general limitations of the
fossil record, and problems associated with producing
models of extinct animals, we must be careful with the
evolutionary conclusions that can be drawn.
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