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Abstract
This paper merges the statistical analysis of data regularities and decision support systems
for investors. Specifically, it discusses the Benford’s law as a decision support device for
financial investments. In particular, we illustrate the role of such a property of financial data
as risk predictor for financial markets. First of all, we show empirical evidence of accordance
between data on market index daily returns and Benford’s law. Then, we highlight that on
short time period (1 year) the deviations from Benford’s law are related to low risk and
positive trend periods; the p value of the χ2 test against the Benford’s distribution displays
some predicting power for the market average return and risk level.

Keywords Data regularity · χ2 test · Financial risk prediction · Statistical analysis

1 Introduction

Financial scientific community is paying growing attention to statistical methods for data
analysis. Such a scientific approach is grounded on the explosion of information technology
and the growing availability of large datasets. In general, financial market data exhibit various
kinds of structures and regularities. The assessment of the interrelations among such structures
allows facing the classical theme of market prediction by using peculiar properties of the
considered empirical samples as a decision support system. Thus, the assessment of data
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properties and regularities and their usefulness in explaining financial paths appear to be of
paramount relevance.

In this respect, du Jardin and Severin (2012) took into full consideration the relevant
theme of the inhomogeneous periodicity of the available data used for making financial pre-
diction. With this aim, the authors introduced the Kohonen map as a decision support system
for investors. In Fischer and Krauss (2018), the authors discussed how deep learning could
be applied to explore the persistence properties in the long run of the financial series, and
from there, the forecast of financial markets. In the same line and by following a differ-
ent approach, Oztekin et al. (2016) provided a general statistical framework for predicting
daily stock returns. The authors integrated different data analytical models to pursue their
scopes and tested their proposal on a wide range of daily data taken from the BIST 100
Index. Noakes and Rajaratnam (2016) examined the efficiency of the stock market on the
Johannesburg Stock Exchange (JSE). The authors considered the unique characteristics of
this market by making adjustments for thin trading, which occurs during the sample period
through a random number generator test. Avdoulas et al. (2018) dealt with stock return pre-
dictability by applying various modifications of a nonlinear model estimation and forecasting
optimization algorithm in the context of the Eurozone southern periphery stock markets; the
considered study has fundamental implications for the predictability of “PIIGS” markets
and—more generally—for market efficiency. Guerard et al. (2021) used data mining tests
and several modern regression techniques for modelling expected returns in global markets.
Akyildirim et al. (2021) tested the predictive power of intraday returns of the twelve major
cryptocurrencies using different methodologies, including logistic regression, random forest
classification algorithms, support vector machines and artificial neural networks. The authors
have identified the most performing and robust method for predicting future daily returns
through numerical experiments. Very recently, Jana et al. (2021) proposed a model for pre-
dicting the one-day ahead price of Bitcoin by integrating appropriate alternate components.
The intent of Jana et al. (2021) is to support investors in making good financial choices,
hence obtaining high earnings. Of particular originality is Venkatesh et al. (2014), where the
authors applied data clustering and neural networks to provide a forecast of the cash demand
in the ATMs. Neural networks are exploited even earlier by Desai and Bharati (1998) to
study the predictive power of economic and financial variables by replacing the linear regres-
sion method with neural network models (nonlinear regression technique). The authors used
within-sample and out-of-sample data to make and validate the predictions. A fully nonpara-
metric smoother with the covariates (a machine learning technique) was applied by Kyriakou
et al. (2021) to evaluate the performance of benchmarks of long-term stock returns, to obtain
future forecasts useful for investors in determining the values of financial instruments. They
used earnings-by-price ratio, inflation, short interest rate, long interest rate, dividend-by-price
ratio, and term spread as predictors. More generally, it is evident that the tools for predicting
the returns and prices of financial instruments are fundamental for investors. The deepening
of the characteristics and properties of the historical series and of the available informa-
tion are crucial in the analytical process that supports the financial decision system. A good
forecast is a decision-making tool and is a key component to successful investing and risk
management.

In the field of data mining and decision analytics, the compliance of financial data with
specific functional laws might be viewed as a decision support system for investors and
institutions. Some relevant contributions are worth to be mentioned in this field. In Huang et
al. (2008), the authors presented Zipf’s law as a device to be used by auditors for detecting
frauds. The ability of Zipf’s law as a valuable tool to detect the presence of frauds has also
been confirmed by Pietronero et al. (2001). Detection systems have been studied by many
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researchers who have sought innovative solutions based on different data mining techniques
such as machine learning, neural networks and clustering analysis (see, e.g., Bernard et al.,
2019; Boros et al., 2011; Duan et al., 2009; Jiang et al., 2018; Ngai et al., 2011).

This paper presents a decision support system contextualization of data regularity for the
case of financial investments decisions.

As a premise, we point out that how investors and institutions take a position in a financial
market strongly depends on the considered assets’ risk profiles and the overall market. This
evidence explains why the theme of financial risk assessment is a classical issue in finance,
and a special focus is clearly pointed to risk forecasting (see, e.g. the excellent monograph
Alexander, 2008 but also the recent contributions in Borges, 2010; Castellano et al., 2020;
Cooper et al., 2014; Cooper et al., 2021, Gu & Peng, 2019; Kürüm et al., 2018, Meng &
Taylor, 2020). We move from this premise and treat here the peculiar issue of explaining how
data regularity can be helpful in predicting the market risk. In so doing, we are in line with
some important contributions dealing with the forecast of market risk as a relevant target in
the field of decision support systems (see, e.g. D’Ecclesia & Clementi, 2021; Feldman &Xu,
2018; Groth & Muntermann, 2011; Huang & Kou, 2014; Al Janabi, 2013).

As a data regularity, we are here interested in Benford’s law (BL, hereafter). As we will
show in the literature review presented in the next section, such a law is quite popular in
the environment of fraud detection but quite neglected as a device for market data analysis.
Indeed, to the best of our knowledge, no attention has been paid to the informative content
of BL for risk assessment. This paper moves some steps to fill this gap. Specifically, we aim
at exploring the predictive properties of this law when applied to the daily returns of a stock
index. In so doing, we advance the proposal that BL can also be exploited for long-term
forecasting of financial risk.

The reasons behind the usefulness of BL for risk management can be found in the infor-
mative content of BL. Specifically, in the context of financial markets, the violation of BL
for daily prices and volumes might be associated with exogenous shocks or socio-economic-
political instability, which can modify the evolution of such financial quantities. In this
respect, it is worth mentioning the exhaustive discussion in Riccioni and Cerqueti (2018).
The authors analyze long series of daily volumes and prices of 4166 stocks listed in important
international stock markets.

This said—and in line with the literature on BL, see the next section—the analysis of
the risk on the basis of the validity of BL points the attention to the possible connection
between the occurrence of exogenous events having an impact on the financial markets and
risk management. More in detail, we here aim to present a framework for stating how the
effect of such events, observed through possible deviations of the financial time series from
the BL, can provide information on the future evolution of the risk level of the considered
financial quantities. It is essential to notice that a full explanation of how events impact the
validity of BL is out of the scope of the present paper—such a challenging theme deserves
more targeted research. However, the methodology proposed in this paper may represent a
preliminary step for focusing more attention on the causality effect between external events
and financial risk management.

To sum up, our method is useful for risk forecasting and can provide information on how
exogeneous shocks—which can modify the compliance with the BL of a given financial time
series—can be used for forecasting financial risk.

Our approach can be considered an alternative to those presented in the existing literature
in financial risk management. Perhaps the studies that are closer to our perspective are those
evaluating the impact of events like news announcements on prices’ volatility (see, e.g. Neely,
2011 and references therein). However, the quoted papers adopt an event study approach,
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where the event is isolated and its role is fully identified. Our perspective is radically different
in that we do not need to identify the specific external events affecting a financial time series.
Therefore, the proposed method appears to be more general in that it does not require a
preliminary knowledge of the external events affecting the financial time series for risk
management.

For our purpose, we consider the series of the daily returns of S&P 500, for about 30 years
(from Mar-21-1988 to Mar-21-2018).

Our analysis is carried out under three different perspectives: first, we consider the overall
sample and check the validity of the BL for the leading digit. After this step, in-sample and
out-of-sample experiments in a moving-window framework have been implemented. The
investigation target lies in assessing the risk level of the considered returns conditioned on
compliance with the BL.

The obtained findings can be synthesized in saying that risk grows as compliance with
BL becomes more evident. This outcome has the noteworthy consequence that BL can be
interpreted as a risk assessment instrument for financial returns.

The rest of the paper is organized as follows. Section 2 provides a literature review on
BL and its applications. Section 3 describes the used dataset, along with its main statisti-
cal features, and the methodologies employed for the analysis. Section 4 is devoted to the
description of the empirical results and to their discussion. This section also contains some
further elaborations in the light of performing robustness checks of the results. Last section
offers some conclusive remarks.

2 Literature review on the Benford’s Law

BL—which has been introduced by Newcomb (1881) and formalized by Benford (1938)—
is one of the most interesting properties of a large set of data. It provides the expected
frequencies of the digits in tabulated data and highlights that the lowest digits appear the
largest part of time. In fact, BL asserts that the frequency of the leading digit of the values
of a dataset decreases with the value of the digit and reaches its maximum when the digit is
“one”. We recall that the first leading or significant digit—in brief, the first digit—is nothing
but its first digit, by excluding zero. For example, the first significant digit of 7899 is 7, while
that of 0.0329 is 3. For the first digit, BL states that:

P(first digit = n) = log10

(
1 + 1

n

)
, n = 1, . . . , 9, (1)

where P(first digit = n) is the probability that a number has the first digit equals to n, log10
being the logarithm in base 10. The property (1) can also be generalized to digits beyond the
first (see Hill, 1995c for more details).

The pioneering work of Benford shows that the first significant digits of a wide set of
randomly collected data satisfy the property in formula (1). Thus, an immediate question can
be stated: what about the meaningfulness of the randomly collected data which deviate from
BL? The response is questionable (refer to Hill, 1995a for some theoretical suggestions). A
paper that created debate in the scientific world was the recent work by Mir and Ausloos
(2018) who compared the first two papers, in Refs. Newcomb (1881) and Benford (1938),
where the BL was discovered, to the story of “A sleeping beauty,” in the sense that they have
been forgotten in a sort of deep sleep for more than 100 years the former one and almost 50
years the latter one.
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This said, one can conjecture that non compliance with BL means that data have suffered
from some sort of manipulation. Such a property explains why BL has been used in the
contexts of economics and finance to investigate whether data have been manipulated and
result, therefore, unreliable.

In the context of accounting, Hill (1995a, b, c, 1998) devoted many of his studies to
investigate the particular phenomenon of BL and was the first who applied it to assist in
detecting fraud in accounting data. Nigrini, in Nigrini (1996, 1999, 2012), was inspired
by Hill (1995a, b, c, 1998) and focused his research on the possibility of turning BL into a
real tool able to detect the falsification and the frauds in accounting and auditing (whether
these are arithmetic errors and errors in calculation or misapplication of the appropriate
accounting standards, or frauds, such as the alteration of records or documents, the lack of
enforcement of accounting standards, the omission of some results or finally recording non
existent transactions). This type of study has evolved over the years, and nowadays, the BL is
a standard tool to support the identification of tax fraud in the US. In the same environment
of financial audit, Bhattacharya et al. (2011) discussed BL as a decision support system for
detecting frauds and the presence of tax evasion.

Another management application concerns the validation of self-reported data from the
employees of a company. As shown by Hales et al. (2008, 2009), the use of BL can provide a
low-costmethod to detect internal datamanipulation, and so it allows to improve the operating
performances of a firm.

In macroeconomics, it is worth mentioning some relevant papers dealing with the applica-
tion of BL. Nye and Moul (2007) studied the GDP data, in particular those contained on the
Penn World Tables. Tödter 2009 applied BL to regression coefficients and standard errors in
empirical economics, hence constructing an indicator of fraud in economic research. Günnel
and Tödter (2009) have dealt with the study of the forecast of GDP growth and inflation of
German consumer prices. Rauch et al. (2011) examined the abnormal data of national and
financial accounts of the EU countries from 1999 to 2009. Rauch et al. (2011), detected the
quality of macroeconomic data relevant to the deficit criteria reported to Eurostat by the EU
member states. Michalski and Stoltz (2013) tested the hypothesis that “a country may want
to hide its true state of the world to prevent capital outflows or attract inflows” examining the
balance of payments data for 103 countries between 1989 and 2007. Mir (2016) applied BL
on the illicit financial outflows from developing countries. Holz (2014), instead, deepened
data from the National Bureau of Statistics of China to measure the quality of the Chinese
GDP. Rauch et al. (2014) have compared government social security statistics with deficit
related data reported by the EU member states to Eurostat. Some contributions have tested
the law on the aggregate of income taxes of municipalities and Italian regions for the period
between 2007 and 2011 (seeMir et al., 2014; Cerqueti&Ausloos, 2015, Ausloos et al., 2017).
Deleanu (2017) analyzed a 2003–2007 dataset of indicators of compliance and efficiency in
combatting money laundering collected by Eurostat.

In finance, BL represents a useful tool for verifying the efficiency of financial indexes.
Ley (1996) checked daily returns of two American stock indexes (i.e. the S&P for the period
from 1926 to 1993 and the Dow Jones for the period from 1900 to 1993), observing that BL
holds for both stock indexes. Clippe and Ausloos (2012) proposed the analysis of the validity
of BL on a set of financial data. Corazza et al. (2010) investigated the trend of S&P 500 stock
quotations. De Ceuster et al. (1998) analyzed any psychological barriers at the Dow Jones 30
Industrial Average, the Financial Times—Stock Exchange 100 and the Nikkei Stock Average
225. Other studies tested the validity of the law on the sovereign credit default swap markets
(see e.g. Realdon, 2008; Ausloos et al., 2016). Patton et al. (2015) provided a deep exploration
of the reliability of voluntary disclosures of performance in the context of hedge funds by

123



Annals of Operations Research

applying several instruments, including BL. Juergens and Lindsey (2009) studied trading
volume for Nasdaq market makers around analyst recommendation changes issued by an
analyst at the same firm. Alali and Romero (2013) started to study 10-years data concerning
financial accounting data using a large sample of US public companies. Karavardar (2014)
applied BL to investigate the Istanbul stock exchange. Nigrini (2015) dealt with daily returns,
daily volumes, expected returns and abnormal returns, discussing the approach of dividing
a population into a subset and analyzing the compliance of BL on these subsets. Carrera
(2015), instead, in the context of policy management, analyzed exchange rates. Shi et al.
(2018) decided to apply BL on ten industrial sectors of the main developing countries over
a period of fourteen years, focusing their attention on reported financial data. Riccioni and
Cerqueti (2018) have tried to interpret the international financial markets (it has been the first
time for a global context) through the analysis of volumes and adjusted closing prices of all
stock indexes listed on the stock exchange of several countries from listing day to November
2014. Abrantes-Metz et al. (2012) highlighted the usefulness of BL for comparing the Libor
with other short-term borrowing rates to investigate potential anticompetitive behaviour in
real markets.

So, we are witnessing remarkable popularity of the BL among financial data scientists
and economists so that, in commenting on the important paper by Sudjianto et al. (2010) on
financial frauds assessment, Hand (2010) states: I was surprised that Sudjianto et al. (2010)
did not mention Benford’s law.

3 Materials andmethods

3.1 Dataset

The investigated dataset collects the daily returns of the S&P 500 index from Mar-21-1988
to Mar-21-2018, for a total amount of 7561 observations. The data downloaded from the
Bloomberg data provider concern the S&P 500 Total Return index, which includes dividends.

As a premise, we state that we have complied with the terms of service for the Bloomberg
platform.

Let Pt be the closing price of the index on day t . To preserve the time scale, returns are
computed taking into account the number of calendar days between observations, so the
return of trading day t is

rt = ln (Pt ) − ln (Pt−1)

dt
,

where dt is the number of calendar days between the trading days t − 1 and t .
Table 1 shows some statistical characteristics of the considered sample. Prices are also

shown, for the sake of completeness. Figure 1 describes the time-evolutions of the daily
prices and returns over the considered period.

Table 1 confirms the stylized facts on the index prices and returns, which are broadly
stable with a small number of very relevant outliers. The mentioned outliers are referred
to the distribution of the whole sample. The number of observations beyond three standard
deviations from the average is around 1.68%, on the whole sample, and 1.25% on the annual
sliding windows used in the paper. We have carefully checked those data: generally, they
are unexpected returns, often located at the beginning of a rise in volatility; moreover, we
can exclude they result from error in the data sampling. We do not eliminate those data
from our analysis, because “anomalous” returns are the subject of our study, as elements
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Table 1 Statistical characteristics
of daily returns and prices

Statistical characteristics Daily prices Daily returns

Minimum 254.51 −0.094595

Maximum 5585.55 0.1024541

Mean 1765.25 0.0003307

Median 1670.62 0.0004237

Standard deviation 1167.98 0.0096108

Skewness 0.9155747 −0.2107351

Kurtosis 3.4290946 11.96854

Data of the S&P 500 Total Return index. The considered period ranges
from Mar-21-1988 (prices) and Mar-22-1988 (returns) to Mar-21-2018
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Fig. 1 Time series of the daily prices and returns of the S&P 500

of the financial risk. Back to Table 1, we observe a wide range in prices that reflects the
overall growth of the index value along the considered time period. Prices also exhibit a
positive skewness with tails tending towards smaller data and low concentration of values.
All these features are consistent with the non-stationarity of the price time series, and the
fairly long time window. Differently, for returns there is a negative skewness, with a tail that
tends towards higher values which indicates a propensity to positive returns and a leptokurtic
distribution very concentrated in the central values. Daily returns exhibit high kurtosis with
a much more peaked distribution. So, small fluctuations are less frequent, since returns are
rather clustered around the mean.
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3.2 Methodology

The analysis is carried out in several consecutive steps.
First of all, we detect whenever the considered data on the returns satisfy the requirements

of the BL, according to Eq. (1). With this aim, a χ2 goodness-of-fit test is implemented over
the first significant digit of the return series, to verify whether the empirical frequencies are
statistically different from the theoretical ones, as described by BL. Specifically, we have

χ2stat =
9∑

i=1

(Oi − Ei )
2

Ei
∼ χ2

(8),

where Oi is the empirical frequency detected for digit i from the original sample, whilst Ei

is the theoretical frequency of digit i , according to the BL in Eq. (1).
The p values correspond to various significance levels for 8 degrees of freedom. Indeed, 8

degrees of freedomare needed for verifying the conformity of the first significant digit—being
n = 9 the number of possible significant first digits.

After this preliminary step, we have carried out an extensive in-sample and out-of-sample
forecasting experiment usingmoving-windows. To this end, we evaluate the compliance with
the BL at the individual windows level, to assess the forecasting power of such a rule. The
degree of such a compliance is captured by the p-value of χ2 test, with null hypothesis the
BL distribution (1).

To carry out the in- and out-of-sample analysis, we have denoted by w ∈ N the sliding
window length and w f ∈ N the forecasting horizon. For each window ending on time t ,
some indicators have been computed on the data: pt is the p-value of the χ2 test against (1);
mt , st , vt are the average, the standard deviation and theVaR at 5% of the return, respectively;
Rt is the total return on the w f days ahead (from t + 1 to t +w f ), converted on a daily basis
(i.e. the average daily return).

For the out-of-sample analysis, we computed the distribution of Rt , conditioned on the
values of pt in thewindowending in t . For conditioning, the range [0, 1] of the values of pt has
been divided into 40 equally spaced bins. Furthermore, the average, the standard deviation,
the Value at Risk of the w f -days ahead returns’ conditional distributions are considered.

3.3 The contribution of the Benford’s law to the exploration of financial data

First of all, we have wide evidence of the compliance of our dataset with the BL. Figure 2
shows that the returns of the S&P index seems to not substantially deviate from the BL. It is
a visual inspection, but rather satisfactory in terms of rendering the compliance of the data
with BL for the first leading digit.

Such a suggestion seems not formally supported by the χ2 test over the entire sample
(see Table 2). Indeed, the p-value close to zero and the large χ2-value state that there is
not statistical compliance of the original sample with the BL. Deviations between visual
appealing and statistical tests may occur in a large sample of data, as in this specific case (see
e.g. Ley, 1996; Nigrini, 2012, and Cerqueti & Magg, 2021).
Compliance improves when time periods are shortened. In this respect, in Table 2 we present
also the cases of four consecutive subperiods with the same time length and which divide
equally the whole time period under investigation. In all subperiods, BL is accepted at a
significance level of at least 5%. The motivation behind such a result may be that data are
more homogeneous in short periods, while the sample—which covers a period of 30 years—
may have remarkable discrepancies and exhibit several regimes.
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Fig. 2 First leading digit of the S&P 500 frequency distribution (bars), compared to the Benford’s law proba-
bilities (dots)

Table 2 Output of the χ2 test
with 8 degrees of freedom (null
hypothesis BL), applied on the
leading digit distribution of the
S&P 500 returns

Whole sample 1st 2nd 3rd 4th

χ2 stat 20.32 9.32 14.23 6.42 9.848

p Value 0.0092 0.3156 0.0760 0.6008 0.2758

The sample has been also divided into 4 equal sub-periods (columns 1st,
2nd, 3rd and 4th)

Moreover, we can show that the S&P returns display the typical scale invariance which
characterize BL data. Figure 3 presents the first digit distribution of the S&P returns, rescaled
to match different volatility scenarios. The selected volatility levels are consistent with the
variation range of the standard deviation of S&P 500 in the considered period. Remark that
the distribution is very similar and close to the BL in all cases.

A further discussion stems from the consideration that the simplest model we can use to
describe the financial returns assumes that the log-returns are independent and identically
Gaussian. As a premise, purely analytical arguments suggest that there is not a convincing
reason to expect the validity of BLwhen data have a mean close to zero and they are normally
distributed. This said, we can observe the statistical discrepancy between the considered data
and the normal distribution, in accord to well-established stylized facts in finance. To support
this outcome, we here present some graphical representations of the resampled data along
with the BL distribution plot, for comparison purposes (see Fig. 4). We also provide some
normality tests to formalize the non compliance of the data with the normal distribution.
Specifically, we use the classical statistics of Doornik-Hansen, Shapiro-Wilk, Lilliefors and
Jarque-Bera; see e.g. Yap and Sim (2011) for a comparison of normality tests. We observe
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Fig. 3 First digit frequency distribution (bars) of the returns of the S&P 500, rescaled to produce six different
volatility scenarios, compared to the Benford’s law probabilities (dots)

Table 3 Tests for normality of
the considered series of returns

Statistics Value p value

Doornik-Hansen 12453.3 < 10−6

Shapiro-Wilk 0.530843 < 10−6

Lilliefors 0.368234 < 10−6

Jarque-Bera 1.06278e+06 < 10−6

that all the considered tests have p values close to zero, and so the normality null hypothesis
is always strongly rejected (see Table 3).

The main insights about a substantial difference between Gaussian and real data can be
obtained by comparing Figs. 3 and 4. The first one displays the first digit distribution of the
S&P 500 data, rescaled to match the considered six different volatility scenarios; the second
one uses Gaussian data drawn from the same different volatility scenarios. It is noticeable
that Gaussian data do not display the scale invariance that appears instead in the financial
returns.

Now,we can observe two levels of information provided by the compliance of the financial
returns with the BL: firstly, our approach gives insights on the statistical description of the
financial returns; secondly, BL can be effectively used to make forecasting exercises.

We enter the details.
To investigate whether pt , i.e., the p values of the χ2 statistics with respect to the BL at the

t-th time window, is able to add some insights on the understanding of the return distribution,
we compute the main distribution indicators of the considered time series on an annual
rolling window basis. So for each rolling time interval, beside pt , mt and st , we also compute
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Fig. 4 Here we show the comparison of frequency distribution between Gaussian data (bars) and Benford’s
law data (dots)

the skewness, kurtosis coefficients to better describe the shape of the return distribution.
Moreover, to take into consideration also some dynamical features of the return process, we
also compute the first order autocorrelation of the returns and the first order autocorrelation
of the squared return in excess to the mean. We then measure the correlation between all
these indicators and the pt . We obtain that the correlations between the pt and the mean, the
standard deviation, the skewness, the kurtosis, the first-order auto-correlation of the return,
the first-order auto-correlation of the square return in excess to the mean computed on an
annual sliding window is – 0.1647, 0.1486, 0.0411, 0.0059, 0.0333 and 0.0738, respectively.
Such low correlations indicate that the pt are able to describe a feature of the return process
which is not significantly related to the common statistical properties. Therefore, we can
claim that the pt provide additional information to the description of the return process.

Moreover, it is well known that the other models, like GARCH and heterogeneous auto-
regression (HAR) (see Engle, 1982; Bollerslev, 1986; Bollerslev et al., 1992; 2018; Nelson
1991, and Corsi et al., 2012; Santos & Ziegelmann, 2014; Vortelinos, 2017), and the whole
family born from their variants, can be used to forecast the volatility, and their performances
are more satisfactory for shorter time horizons (e.g., see Ding & Granger, 1996; Baillie,
1996; Zumbach, 2004). Differently, in this work we are interested in measuring effects on
risk over a longer time horizon. For sake of comparison, we also applied a GARCH(1,1) and
a HAR models to forecast the risk. A more detailed discussion is provided in Sect. 4.1.1.
Here we notice that the correlation between the volatility forecast obtained with the GARCH
and HAR models and the pt are 0.11 and 0.04, respectively, confirming the fact that the pt

provides another kind of information about the return process, than other time-series models.
In addition, our proposal is based on a property of the considered dataset as a whole,

without requiring any time-order and the consequent specification of the time-evolution of
the considered phenomenon. This grounding assumption allows to implement forecasting
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exercises also when the time-dimension is lost—as it may happen in the case of missing data
or for data which are heterogeneous in terms of their periodicity. Differently, for example, a
GARCH is a time-series model; its calibration requires a dataset composed of consecutive
observations. In this respect, we provide an additional tool in risk forecasting, to be used
alongside other predictors. Hence, the risk prediction procedure presented in this paper is
more general and allows a high degreee of tractability in several real-data situations.

4 Results and discussion

As a premise on the discussion of the results, we point the attention of the readers to an
intepretation of our study, which can be implemented by looking at Ley and Varian (1994).
The quoted paper is quite close to our perspective. Indeed, Ley andVarian discuss the behavior
of the investors in presence of some peculiar values of the Dow-Jones index. The authors
explore the prediction power of such so-called resistence levels or psychological barriers.
They claim that their analysis is of purely empirical nature, as the one we present in our paper.
We observe that by one side, the quoted paper is similar to us in that it aims at discussing the
existence of a relationship between financial markets digits data and forecasting exercises;
by the other side, we here deal with statistical conformity with a well-known law and forecast
while Ley and Varian deal with an empirically-obtained law and forecast.

We now present the results by dealing with the local analysis, along the moving windows.
We use pt to assess the compliance of the data over the related window (t −w+1, t]with

the BL. For what concerns the in-sample analysis, we have taken w = 250 trading days, i.e.
about one year.

The frequency distribution of pt on the moving windows is represented in Fig. 5. Figure 6
shows the series of the four quantities mt , st , vt , pt . In Fig. 7 one can find mean and standard
deviation of the returns conditioned to the p values of the χ2 test. In Fig. 8 the VaRs—whose
values are conditioned to the values of pt—are displayed.

Some insights can be obtained by looking at those figures.
First of all, we notice that the most frequent case is the one with weak deviations from

BL (i.e. p values larger than 0.05 or any other common significance level). This means that
there is a substantial compliance with BL for the first significant digits over the moving
windows. This is in contradiction with what happens for the entire original sample, and is
in agreement with the already claimed improvement of the compliance level as the sample
becomes smaller.

Notice from Figs. 7 and 8 that VaRs at 5% have a behavior similar to the standard devia-
tions, even if an amplified effect can be registered. It is also interesting to note the specular
behaviors of the means and standard deviations of the returns, so that one raises once the
other decreases. In presence of weak compliance with the BL (low p values) there is a low
expected value with high variance, hence leading to a high level of riskiness.

The analysis of financial risk is further stressed when comparing the VaRs at different
levels conditioned to the compliance with the BL. One can argue that the VaRs are below
their unconditional values when p values are low, hence supporting the finding that high
compliance with the BL leads to high risk. We can explain the reduction of the VaR at 1%
for values of pt close to 1, because the classes with high pt contain fewer observation.

In the context of the out-of-sample analysis, we have taken w = 250 and different fore-
casting horizons w f ∈ {20, 60, 120, 180, 250, 375}, corresponding to about 1, 3, 6, 9, 12,
18 months, respectively.
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Fig. 5 Frequency distribution of pt obtained on the sliding windows
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Fig. 7 Return mean and standard deviation, conditional with respect to the p value of the χ2 statistic. The con-
tinuous lines represent the conditional mean and standard deviation; the dashed lines show the corresponding
unconditional values
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Fig. 8 Value at Risk, conditional with respect to the p value of the χ2 statistic. The continuous lines represent
the conditional VaR at levels 10% (blue), 5% (green), 1% (red); the dashed lines show the corresponding
unconditional values. (Color figure online)
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Fig. 9 Out-of-sample. Mean and standard deviation for the forecast return, conditional with respect to the p
value of the χ2 statistic. Different forecasting horizon are considered, corresponding to about 1, 3, 6, 9, 12,
18 months, respectively. The continuous lines represent the conditional mean (blue) and standard deviation
(green); the dashed lines show the corresponding unconditional values. (Color figure online)

The panels in Figs. 9 and 10 illustrate the means, standard deviations and VaRs at 1%,
5%, 10% levels for the windows at the considered forecasting horizons.

For the cases of mean and standard deviations, one can broadly confirm the specular
behaviors observed in the in-sample analysis. However, several facts emerge. First, the hori-
zons of 60 days ahead and longer lead to similar shapes. The high compliance with BL leads
to low expected returns with high standard deviation, thus suggesting financial distress. As
the horizon increases, the ranges of variation of conditioned means and standard deviations
decrease.

Interesting insights are provided by the analysis of the conditionedVaRs at different levels.
Notice that VaRs are generally low when p-values are small, for all the considered horizons
and levels. In this case, the high risk is associated to the compliance with BL, especially for
short horizons. Quite surprisingly even for the longer horizons of 250 and 375 days, low p
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Fig. 10 Out-of-sample. Case of Value at Risk for the forecast return. Refer to the caption of Fig. 9

values are still associated to VaRs below their unconditional values. However, we notice a
reduction of the VaRs even for p values close to 1. The case of p values around one concerns
classes with fewer observations, therefore the statistical meaning may be weaker. In general,
these results can be hardly appreciated for the 1% VaR and for the 20-days horizon. This can
be due to the fact that 1% is a rather severe level for the VaR. Moreover, a 20-days horizon
is short, so the results may result quite noisy.

4.1 Consistency and robustness checks

In order to relate the results with existing risk predictors, and give the results a more robust
basis, some checks have been performed.

First of all, Sect. 4.1.1 compares the performances of the proposed indicator with the
predictions obtained by the GARCH(1,1) and HARmodels. Then, in order to check whether
the inclusion of dividends into stock values has significant consequences, in Sect. 4.1.2 we
also applied the analysis to the S&P 500 index, that does not include dividends. To ascertain
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that the described phenomenon is stable trough time, in Sect. 4.1.3 we analyzed separately the
first and the secondpart of our sample.We remark that both subsamples include the occurrence
of large financial distresses. Finally, Sect. 4.1.4 shows that the highlighted patterns do not
depend on the fact that the distribution of pt produces few observations for large values of
pt .

For each presented check, we have considered the different forecasting horizons presented
above, i.e. w f ∈ {20, 60, 120, 180, 250, 375}. However, for sake of space and interest, in
most cases only the forecasting horizon w f = 60 days is shown; the full set of results
concerning all the forecasting horizons discussed above are available upon request.

4.1.1 Comparison with other variance predictors

First of all, we show a comparison with other risk prediction models. The financial risk
forecasting is a relevant matter and different methods and techniques have been proposed in
the literature. These proposals span from time series analysis to machine learning (see, e.g.,
Bollerslev et al., 2018; Gavrishchaka&Banerjee, 2006; Liu, 2019; Satchell &Knight, 2011),
with a recent interest in high-frequency data. However, there is a vast consensus about the
usefulness of GARCH and heterogeneous auto-regression (HAR) in the volatility prediction,
at least for short time horizons (see, e.g., Bollerslev et al., 2018; Corsi et al., 2012, Santos &
Ziegelmann, 2014; Vortelinos, 2017, and references therein). For this reason, we propose a
comparison between the compliance indicator to theBL and the variance forecasting obtained
by the GARCH(1,1) and the HAR (the HAR settings are with lags 22, 5, and 1, as usual).
Figures 11, and 12 show the results obtained with the GARCH(1,1) and the HAR. Comparing
Figs. 11 and 12 with Fig. 10, we can notice that the three methods have an overall ability to
predict large VaR, with some differences. On short forecasting horizons, all the predictors
have good performances, with a neater behavior of the GARCH and HAR models. Instead,
on longer forecasting horizons the outcomes appear comparable across the three methods,
with more consistent results in favor of the p value of the χ2 statistics.

Besides, we found that the predicted variance obtained from the GARCH and the HAR
has a small correlation with respect to the χ2 p value. This means that we are using a
predictor containing different information with respect to the common variance predictors.
For instance, the BL χ2 p value, and the 60-days variance forecasting obtained from the
GARCH and the HAR have the following correlation matrix

χ2 p − val GARCH(1, 1) HAR
χ2 p − val 1. 0.1078538 0.0401525
GARCH(1, 1) 0.1078538 1. 0.9568413
HAR 0.0401525 0.9568413 1.

In light of this, our proposal offers an additional indicator to be considered for financial
risk prediction. The overall consistency with other variance predictors, together with their
weak correlation, makes the proposed tool a useful additional instrument to be considered in
variance forecasting, alongside other possible predictors. In addition—as discussed in Sect.
3.3—our proposal is not based on a time-series model, making it more affordable, and, in
case of missing data and short data series, more tractable.

4.1.2 Dividend inclusion

It is important to stress that in the presented analysis we used the S&P 500 Total Returns
index, which includes dividends to describe the effective return of an investor. As a device for
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Fig. 11 Out-of-sample. Value at Risk for the forecast return, conditional with respect to the GARCH(1,1)
variance forecast. For the complete description of the graphs for all the considered horizons and levels see
Fig. 9

robustness check, we here consider also the S&P 500 index without dividends and present
two different ways of using it. First, we simply replace the data with the S&P 500 index; then
we propose to use the S&P 500 to measure the indicator (the p value of χ2 test against the
BL) and the S&P 500 Total Returns index to compute the returns (as in an actual investment).
The results are summarized in Fig. 13. In these cases, the phenomenon is confirmed and it
is even more pronounced. We can even conclude that the index without dividend is able to
provide a better risk signal, than the Total Return index.

4.1.3 Subperiods

To ascertain that the phenomenon is persistent, another check we present is about the time
period analyzed. We consider two time intervals: from Jan 4, 1988 to Jul 18, 2003, and
from Jul 21, 2003 to Feb 15, 2019. Both intervals are shorter than the analyzed full sample
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Fig. 12 Out-of-sample. These sub-graphs represent the Value at Risk for the forecast return, conditional with
respect to the HAR variance forecast. Refer to the caption of Fig. 9 for the details
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Fig. 13 Out-of-sample. Value at Risk for the forecast return, conditional with respect to the p value of the
χ2 statistic. Forecasting horizon of about 3 months. S&P 500 index without dividends (left); S&P 500 index
without dividends for the computation of the χ statistics, S&P 500 Total Returns index for the computation
of the VaRs (right). The continuous lines represent the conditional VaR at levels 10% (blue), 5% (green), 1%
(red); the dashed lines show the corresponding unconditional values. (Color figure online)
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Fig. 14 Out-of-sample. Here, the Value at Risk for the forecast return is conditional with respect to the p value
of the χ2 statistic. Forecasting horizon of about 3 months. From Jan 4, 1988 to Jul 18, 2003 (left), from Jul
21, 2003 to Feb 15, 2019 (right)

period, but they cover together a longer period. Figure 14 shows that the forecasting power
is robust across time periods and the effect is sharper on the recent years (the abrupt drop in
the rightmost side of the right plot can be due to the low number of observations in the last
intervals—28 and 14 observations only).

4.1.4 Discretization of the pt values

Another robustness check regards the number of observation in each interval on which the
possible values of pt is divided: in our case we consider 40 intervals containing a number of
elements ranging from 50 to 452, and generally decreasing from left to right (see Fig. 5). To
discuss this point we perform two different checks: first, we consider Gaussian random data
with the same number of observation as pt , for each one of the 40 intervals; second, given t ,
we divide the range of pt into 40 intervals of different length, but with the same number of
observation in each one. This last case corresponds to work, in place of pt , with its quantiles.

From the left panel of Fig. 15we can see that, with independentGaussian data, the different
number of observation per interval, per se, has not any noticeable effect. In fact, the three
lines are overall flat, with a noise, and without any visible pattern. In addition, the right panel
of Fig. 15 clearly shows that, using pt , the clustering of its range in intervals with the same
number of observations can even made clearer the phenomenon we study.
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Fig. 15 Out-of-sample. Same conditioning as the previous figure. Random Gaussian data, with the same
number of observation as pt in each of the sub-intervals (left), real data, with uniform number of observation
in each interval. The continuous lines represent the conditional VaR at levels 10% (blue), 5% (green), 1%
(red); the dashed lines show the corresponding unconditional values. (Color figure online)
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Following all these checks, we can conclude that our results are consistent with existing
risk predictors, and rather robust, with respect to financially reasonable changes that might
be introduced in the considered dataset.

5 Conclusions

This paper presents a novel view of BL as suitable decision support tool for investors and
institutions, to detect and forecast the level of the risk of a series of financial returns. At this
aim, an exploration of a large set of daily returns of the S&P 500 has been carried out.

A in- and out-of-sample analysis have been implemented, to better illustrate also the
attitude of BL of leading to good forecasting experiments of daily returns.

We have found evidence of the direct relation between the compliance with BL and
the riskiness of the series. More specifically, some facts emerge: first, means and standard
deviations of the returns exhibit opposite behaviors when conditioned to the validity of the
BL, so that the mean decreases as the standard deviation increases. In this respect, the case
of financial distress with high standard deviation and low expected value occurs for high
values of the p-values of the χ2 statistics. This empirical finding is confirmed either in
the in-sample as well as in the out-of-sample analysis, being much more evident for short
forecasting horizons in this latter case; second, VaRs have large values in the case of high
p-values in the out-of-sample case and when the horizon is short-middle. This outcome is
partially confirmed in the in-sample case, where VaRs are above their unconditioned values
for large p-values when they are taken at 5% and 10% levels—being more questionable at
1% level.

Two final targets have been achieved through this paper: on one side, we have shed light
on an unexplored feature of BL when applied to financial data; on the other side, we have
advanced a further decision support instrument in the context of financial risk assessment.

Interestingly, the results of this paper lead to relevant insights on how financial risk can
be effectively predicted. Policymakers can take daily financial returns and test over them
the validity of the BL. On the basis of the compliance with BL, this study offers a reliable
estimation of the future risk level of the financial instruments associated with the investigated
returns. Notice that the grounding methodological device is simple to be used, and financial
data are usually easily accessible and available for long periods. This is a remarkable positive
aspect of the proposed statistical instrument. Furthermore, results are shown to be robust with
respect to financially reasonable changes that might be introduced in the considered dataset.

It is important to observe that the statistical device used for BL compliance may lead to
biases in the final outcome; this is due to the scale invariance of this statistical regularity, and
occurs mainly in presence of large datasets (see e.g. Druica et al., 2018; Nigrini, 2017). More
specifically, the quoted papers correctly argue and statistically test that a large sample can
be multiplied by a suitably selected random variable or any given scalar, without changing
the compliance of the data with BL through checking null hypothesis. Analogously, one is
able to remove data from the sample without radically changing the p value of statistical test
when controlling for the validity of BL. We also notice that the χ2 statistics is at the center
of a debate about the severity of rejecting the BL, as claimed by Kossovsky (2014). Facing
the limitations of the procedures for checking BL deserves an accurate analysis in future
research, in accord to the recommendations of the above-mentioned literature contributions.
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