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Abstract—Reliable and efficient networks are the trend for
next-generation wireless communications. Recent improved hard-
ware technologies – known as Large Intelligent Surfaces (LISs)
– have decreased the energy consumption of wireless networks,
while theoretically being capable of offering an unprecedented
boost to the data rates and energy efficiency (EE). In this paper,
we use stochastic geometry to provide performance analysis
of a realistic two-step user association based millimeter wave
(mmWave) networks consisting of multiple users, transmitters
and one-hop reflection from a LIS. All the base stations (BSs),
users and LISs are equipped with multiple uniform linear
antenna arrays. The results confirm that LIS-assisted networks
significantly enhance capacity and achieve higher optimal EE
as compared to traditional systems when the density of BSs is
not large. Moreover, there is a trade-off between the densities of
LIS and BS when there is a total density constraint. It is shown
that the LISs are excellent supplements for traditional cellular
networks, which enormously enhance the average rate and area
spectral efficiency (ASE) of mmWave networks. However, when
the BS density is higher than the LIS density, the reflected
interference and phase-shift energy consumption will limit the
performance of LIS-assisted networks, so it is not necessary to
employ the LIS devices.

Index Terms—Large intelligent surface, millimeter wave,
stochastic geometry, uniform linear array.

I. INTRODUCTION

Mobile devices and data traffic will have grow at an
unprecedented pace by 2021 [1]. To meet the high capac-
ity requirements of future wireless communication networks,
one promising solution–Large Intelligent Surface (LISs)–has
attracted tremendous attention from both industry and aca-
demics. LIS is a planar array consisting of a large number of
intelligent passive metallic, digital, programmable metamate-
rials that can obtain an improved electromagnetic propagation
environment with low cost and low energy consumption [2–7].
LIS is flexible and easy to install on walls or outdoor commu-
nal facilities, that is the reason LIS is a promising solution
to achieve benefit for massive multiple-input and multiple-
output (MIMO) using passive devices. When transmitters
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communicate with receivers through intelligent metasurfaces,
each element can adapt the phase shift of the electromagnetic
wave to achieve the optimum performance. LIS combined with
next-generation wireless communication networks creates a
lot of new opportunities [2], such as reconfigurable reflector
array antennae, liquid crystal metasurfaces, and hardware
integration. Placing a LIS between the transmitter and receiver,
and optimizing the phase shifts of elements, will maximize the
signal power received, and significantly boost the performance
of wireless communications [8–10].

In contrast, with the conventional antenna array concept,
traditional reflecting surfaces have fixed phase shifters and it
is difficult to dynamically control the signal from complicated
time-varying channels [10]. Most of the current work sees
LIS as an extension of MIMOs [11, 12]. The work in [11]
reveals that the signal through LIS after a matched-filtering
(MF) beamforming may be approximated as an inter-symbol
interference (ISI) channel. In [12], a LIS-based index mod-
ulation system is used to obtain high reliability along with
high spectral efficiency with multiple antennae. Paper [13, 14]
considered the ergodic rate with multiple devices and antennas
in the LIS system to analyze the impact of LIS on network
performance.

Energy efficiency (EE) is a particularly attractive aspect of
LIS, since systems would choose passive devices instead of
using directional propagation devices. [15] optimizes the base
station (BS) transmit power allocation and the LIS reflector
factor to maximize the EE in an LIS-based downlink multiuser
multiple-input single-output (MISO) system. It is shown that
the optimum result depends on the user and the number
of LIS elements, and there is a trade-off between the EE
and spectral efficiency (SE) in LIS-assisted communication
systems. Furthermore, the traditional method of forwarding in-
formation uses a relay system. Both amplify-and-forward (AF)
and decode-and-forward (DF) relaying protocols can cooperate
with a BS to enhance the SE [16], and this reduces the transmit
power in wireless communication networks. In addition, in
current cellular infrastructures relays can be deployed more
easily than small BSs, which improves efficiency and raises
the coverage area [17].

It is worth pointing out that LIS technology completely
differs from relay-based systems, in that a LIS does not
require extra power for signal forwarding. However, each
active element adapts the phase shift, and this part of energy
consumption will increase with the number of elements [18].
The authors compare multiple antenna relay-assisted commu-
nication with LIS-assisted communication in [19].

Several papers propose physical layer security in LIS-
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supported systems, including [20–23], which show that the
LIS technology has enormous potential to boost the security
and EE in wireless communication networks. In [20, 21, 23],
the authors develop the joint optimization of beamforming and
phase shifts at both BS and LIS, to enhance the performance of
LIS-supported physical-layer-secrecy wireless networks. [21]
shows the benefit of using jamming with artificial noise (AN)
to protect the secure rate of the LIS wireless system. The
results in [23] show that traditional systems which don’t use
reflecting surfaces have limited secrecy. In [22] the authors
consider a MISO system with multiple receivers and an LIS-
supported physical-layer-security network; the paper examines
a downlink broadcast system where each eavesdropper wire-
taps the data streams from both BS and the assistant LIS.

The performance of millimeter wave (mmWave) cellular
networks was studied in the prior work [24], which indicates
that the mmWave bands enable massive antenna arrays to
be physically small for both transmitters and receivers. In
[25], a stochastic geometry framework is used to model the
distribution of cellular mmWave networks, which analyzes
coverage and capacity in mmWave systems for outdoor in-
frastructure. The work in [19, 26] discussed the potential ap-
plications of LISs in mmWave bands. [27] solved the blockage
challenge in mmWave indoor networks using reconfigurable
smart reflector-arrays, and an optimal array deployment was
proposed to minimize the link outage probability in mmWave
communication. However, the case of LIS-supported cellular
networks has not been studied.

To analyze random nodes distributed on a plane or in three-
dimensional cellular networks, stochastic geometry provides
new perspectives on the average distribution of points in
space [28]. The results from stochastic geometry bring use-
ful insights about typical data rates and the probability of
outage/coverage in cellular networks [29]. Another example
that uses a stochastic geometry tool modelling point process
is cell-free networks [30]. In contrast to conventional cellular
networks, cell-free systems have many distributed small BSs
that are jointly serving the users.

A. Approach and Contributions

The blockage effect is the main reason for reduced per-
formance in mmWave networks [31, 32], where mmWave
has weak diffraction ability and low reflection coefficients
[33]. In contrast, LIS-assisted mmWave networks can create a
perfect line-of-sight (LoS) or holographic MIMO propagation
scenario, which overcomes the blockage effect in mmWave
and terahertz frequencies [2]. On the other hand, the reflecting
property of LIS brings huge reflected interference which may
reduce the network capacity. Therefore, it is unknown whether
and under which conditions LIS in large-scale mmWave net-
work will bring benefits or not.

In this paper, we propose a realistic LIS-assisted mmWave
cellular network, where LISs coherently complement the direct
links from BSs to users. To the best of our knowledge, this is
the first attempt to propose a stochastic geometry framework
for analyzing LIS-based mmWave cellular networks. The
detailed contributions are summarized as follows.

• Two matched-filter (MF) antenna schemes. We consider
a multi-antenna/element system, where all of the devices
are equipped with multiple antennae or reflector elements
arranged in a uniform linear array (ULA). We design
two types of antenna scheme: either the antenna gain in
BSs and users can be aligned by each other or aligned
by the LISs. All the beamforming from the transmitters
and receivers uses optimized MFs which maximizes the
transmission signal. The results show that each of them
has its own merits under different conditions.

• Low interference reflection model. We design a novel
one-hop LIS-assisted system to avoid the signal between
LISs bouncing back and forth multiple times, and we also
consider the interference at each LIS which reflects the
signal from all the active BSs.

• User association in the composite channel. We propose a
two-step user association strategy to guarantee an efficient
combination of BS, LIS and User in each slot: the first
step is to determine the correct BS for a typical user, and
the second step is to associate the assistant LIS with that
BS. Because the composite channel needs cooperation
between these two links, the approximate active densities
for BSs and LISs have been considered.

• Area spectral efficiency (ASE) and EE performance anal-
ysis. We derive the analytical results of ASEs and EEs
for LIS-assisted mmWave networks. For the sake of com-
parison, we add the traditional networks which have no
support of the LISs. Our results concretely demonstrate
that LIS-assisted networks achieve significant benefits
over traditional networks when the density of the BSs is
unable to support the requirements of the network. More-
over, optimizing the number of LIS elements achieves a
maximum EE: increasing the density for BS or LIS will
first degrade and then improve EE.

The rest of this paper is organized as follows. Section II
presents the network model. Section III introduces the user
association policy and statistical connection distances. The
performance analysis and numerical result are given in Section
IV and Section V, respectively. We use the following notation
throughout this paper: (·)H denotes the Hermitian transpose
operators. The norm of a vector h is denoted by ‖h‖.

II. NETWORK MODEL

We propose a one-hop reflective LIS-assisted large-scale
mmWave cellular networks. The channels between users, BSs,
and LISs are in mmWave channels that share the same fre-
quency band. The locations of the BSs and LISs are distributed
using an independent homogeneous Poisson point process
(HPPP) Φb and Φs with density λb and λs, respectively.
Note that the density λu for the locations of the users is
larger than λb, and if the BS is not associated with at least
one user (named inactive BS), they will switch to the idle
mode. However, LISs cannot enter an idle mode because they
are passive devices; these idle LISs are still active in the
network as random reflective nodes, but they save the power
consumption for adaptive phase shifting.

All the BSs and users are equipped with Nb and Nu
element mmWave antennas, respectively. We assume each LIS
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Fig. 1: Illustrative system model of the LIS-assisted mmWave
networks. Each LIS equipped with M elements, and the LoS
link between the BSs and the users have been blocked.

is equipped with M reflection antenna elements mounted on
street lamps or traffic lights at the same height H , as illustrated
in Fig. 1. The LIS element points downwards to the ground-
level devices, to avoid reflected signals among the LISs where
there is only one-hop reflection from the BSs to users 1.

A. The Channel Model

We derive two types of channel model, for the cases with
or without LIS. Note that in the composite channel model,
we assume that the reflecting surface linked to the transmitter
controls the phase shifts in each time slot. Then the reflected
signals can be added connectedly at the desired receiver of
the user. We generally provide directional beamforming at the
BSs, and users select the direct BS-User link or the BS-LIS-
User link, as appropriate.

1) The Direct Channel: We assume that all the nodes in
the desired channel are equipped with a ULA. The steering
matrix model in BS-User link is established as

ho (Nb, θD,ho , Nu, θA,ho) = aNu
H (θA,ho) aNb (θD,ho) , (1)

withaNb (θD,ho) =
[
1, ej2π

∆d
ω sin θD,ho , .., ej2π

∆d
ω (Nb−1) sin θD,ho

]
aNu (θA,ho) =

[
1, ej2π

∆d
ω sin θA,ho , .., ej2π

∆d
ω (Nu−1) sin θA,ho

]
,

where all the antenna elements are placed along the propaga-
tion plane with ∆d = ω/2 spacing, where ω is the wavelength.
θD,ho ∼ U(0, 2π) and θA,ho ∼ U(0, 2π) are the azimuth
angle of departure (AoD) and the angle of arrival (AoA),
respectively. We model the MF optimal analog beamforming

1We assume the parallel structure for all the intelligent surfaces, which can
effectively avoid the reflected interference between multiple LISs.

which is adopted at the BSs and users for maximizing the
received signal power in the desired link and as

wNb (θD) =

√
1

Nb
aNb (θD)

wNu (θA) =

√
1

Nu
aNu (θA)

. (2)

We define two types of antenna schemes as follows.
• The first antenna scheme aims to optimize the direct

channel, where the MF angle seen by the serving BS θA
and typical user θD will be equal to the BS-User channel
angles θA,ho and θD,ho . Then we have the optimized
antenna gain N(1) for a typical user seen by its serving
BS as

N(1) = (3)∣∣wNu (θA,ho) ho (Nb, θD,ho , Nu, θA,ho) wNb
H (θD,ho)

∣∣2
= NbNu.

• The second antenna scheme aims to optimize the LIS
channel, where the MF angle seen by the serving BS
θA and typical user θD will be equal to the BS-LIS
channel angle θA,go and the LIS-User channel angle θD,ko ,
respectively. The array gain as follows

N(2) = (4)∣∣wNu (θA,go) ho (Nb, θD,ho , Nu, θA,ho) wNb
H (θD,ko)

∣∣2.
After using Euler’s formula and trigonometric identities,
N(2) can be expressed as

N(2) =
1

NbNu
×

1− cos (NbG (θD,ho , θD,ko))

1− cos (G (θD,ho , θD,ko))

1− cos (NuG (θA,ho , θA,go))

1− cos (G (θA,ho , θA,go))
,

(5)

where we have G (θ1, θ2) = 2π∆d
ω (sin θ1 − sin θ2). The

antenna gain from an active interference BS Bi seen by the
typical user can be obtained as

Ni =
∣∣wNu

(
θA,ho/go

)
hi
(
Nb, θD,hi , Nu, θA,hi

)
wNb

H (θD)
∣∣2

=
∣∣∣wNu

(
θA,ho/go

)
aNu

H (θA,hi)
∣∣∣2︸ ︷︷ ︸

n̄u

∣∣aNb (θD,hi) wNb
H (θD)

∣∣2︸ ︷︷ ︸
n̄b

,

(6)

where hi denotes the steering matrix from the interfering BS
Bi to the user link. For convenience, we decompose Ni =
nbnu, where nu is the average interference antenna gain of
typical user, which can be expressed as

nu = E

[
1− cos

(
NuG

(
θA,hi , θA,ho/go

))
1− cos

(
G
(
θA,hi , θA,ho/go

)) ]

=
1

Nu

1

2π

∫ 2π

0

1− cos
(
NuG

(
θA,hi , θA,ho/go

))
1− cos

(
G
(
θA,hi , θA,ho/go

)) dθA,hi (7)
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where the AoA in typical user has got to be either θA,ho
or θA,go . nb is the average interference antenna gain of the
interfering BS given as

nb = E
[

1− cos (NbG (θD,hi , θD,ho))

1− cos (G (θD,hi , θD,ho))

]
=

1

Nb

1

4π2

×
∫ 2π

0

∫ 2π

0

1− cos (NbG (θD,hi , θA,ho))

1− cos (G (θD,hi , θD,ho))
dθD,hidθD,ho .

(8)

2) The LIS assisted channel: We derive the ULA steering
matrix model in the LIS-assisted channel at the BS-to-LIS link
and LIS-to-User link respectively, which are expressed as{

ko(Nb, θD,ko ,M, θA,ko) = aM
H (θA,ko) aNb (θD,ko)

go(M, θD,go , Nu, θA,go) = aNu
H (θA,go) aM (θD,go)

,

(9)

with

aM (ϑ) =
[
1, ej2π

∆d
λ sinϑ, .., ej2π

∆d
λ (M−1)ϑ

]
(10)

where ϑ = {θA,ko , θD,go} are the AoA in the BS-to-LIS
channel or AoD in the LIS-to-user channel, and θbA,k is the
AoA in the LIS channel adopted at the BS, and θuD,g is the
AoD in the LIS channel adopted at the user. When the signal
is reflected by the specified LIS, the phases of the signals in
this LIS can be adapted as needed. The steering matrix model
in the BS-to-user link via a LIS is given by

ĥo (Nb, θD,ko , Nu, θA,go) = goΘko

= aNu
H (θA,go) aM (θD,go) ΘaM

H (θA,ko) aNb (θD,ko)
(11)

where Θ is the phase shift diagonal matrix introduced by the
m-th element of the LIS as

Θ = diag
(
βejϕ1 , ..., βejϕm , ..., βejϕM

)
, (12)

where ϕm ∈ [0, 2π) denotes the phase shift introduced by the
m-th element of the LIS. β ∈ (0, 1] denotes the reflection
efficiency, and we set as β = 1 [9, 34].

We define Θo as the beamforming weight introduced by
the LIS, which aims to maximize the transmitting signal in
the assisted channel to optimize the phase shift design. Since
that the ergodic spectral efficiency depends on aM (θD,go) and
aM (θA,ko) only [9], we obtain the optimal Θo with ϕ∗m,o
satisfies

max
ϕm,o

δL = aM (θD,go) ΘoaM
H (θA,ko) , (13)

then, we can derive that

δL =

∣∣∣∣∣∣∣
ϕ1 · · · 0
...

. . .
0 ϕMe

j2π∆d
ω (m−1)(sin θD,go−sin θA,ko )

∣∣∣∣∣∣∣ , (14)

In order to achieve the maximal δL, the optimal phase shift
on the m-th antenna element of the assisted LIS can be given
by

ϕ∗m,o = 2π
∆d

ω
(m− 1) (sin θD,go − sin θA,ko) , (15)

Compared to the direct link, we consider the two types of
antenna schemes below.
• The adapted second antenna scheme aims to optimize

the LIS channel, the MF angle in the BS and typical user
towards the reflected channel like (4). The antenna gain
via the assisted LIS is as follows

N̂(2) =
∣∣wNu (θA,go) goΘokowNb

H (θD,ko)
∣∣2 (16)

= M2NbNu.

• The corresponding first antenna scheme in the LIS-
assisted channel denotes the MF in the BS and user
towards the desired channel like (3), and the antenna
scheme via the assisting LIS is

N̂(1) =
∣∣wNu (θA,ho) goΘokowNb

H (θD,ho)
∣∣2 (17)

= M2nbnu.

For any one BS-to-user link, via the interfering LISs the
average array gain is given by

N̂q/i =

∣∣∣∣∣∣∣∣wNu

(
θA,ho/go

)
giΘq/iki︸ ︷︷ ︸

ĥi

wNb
H (θD)

∣∣∣∣∣∣∣∣
2

=
∣∣∣wNu

(
θA,ho/go

)
aNu

H (θA,gi)
∣∣∣2︸ ︷︷ ︸

n̄u

×
∣∣aM (θD,gi

)
Θq/iaM

H
(
θA,ki

)∣∣2︸ ︷︷ ︸
χq/i

∣∣aNb (θD,ki) wH
Nb

(θD)
∣∣2︸ ︷︷ ︸

n̄b

,

(18)

where ĥi = giΘq/iki denotes the steering matrix model from
the interfering BS-to-user links via interfering LISs, N̂q and
N̂i indicate the antenna gain from idle interfering LISs and
active LISs which are associated with other users, respectively.
nb and nu are the average interference antenna gains for
the BSs and users, respectively. We consider two types of
phase shift diagonal matrix: Θq with ϕm,q , and Θi with ϕm,i
indicate the random array reflection gain from idle LISs and
optimized array reflection gain from active LISs, respectively.
Due to the fact that LISs are passive devices, they participate in
the reflection process with random phase shift ϕm,q ∈ [0, 2π],
even those not selected to support the BS and user links. We
define χq as the random antenna reflection gain from idle LISs,
which can be expressed as

χq =
∣∣aM (θD,gi

)
ΘqaM

H (θA,ki

)∣∣2
= E

[∣∣∣∣∑M

m=1
βej(2π∆d

ω (m−1)[sin θD,gi
−sin θA,ki ]+ϕm,q)

∣∣∣∣2
]
.

(19)

Note that χi is the optimized antenna reflection gain from
other active LISs, and these LISs are serving their own BS-
User i-th pair, and the random phase shift follows as

ϕ∗m,i = 2π
∆d

ω
(m− 1)

(
sin θD,gi,o − sin θA,ki,o

)
, (20)
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where θD,gi,o and θA,ki,o are the optimized phase shift in the
channel gi and ki, respectively. Then we derive χi as

χi =
∣∣aM (θD,gi

)
ΘiaM

H (θA,ki

)∣∣2
=
∑M

m=1
βej(m−1)[G(θD,gi ,θD,gi,o)−G(θA,ki,o ,θA,ki)]

=

∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

β

16π4

× Ĝ(θsD, θ
s
A, θ

s
D,i, θ

s
A,i)dθ

s
Ddθ

s
Adθ

s
D,idθ

s
A,i. (21)

with

Ĝ(θsD, θ
s
A, θ

s
D,i, θ

s
A,i)

=
1− cos

(
M
[
G
(
θD,gi , θD,gi,o

)
− G

(
θA,ki,o , θA,ki

)])
1− cos

(
G
(
θD,gi , θD,gi,o

)
− G

(
θA,ki,o , θA,ki

)) .

(22)

B. Downlink Transmission

We assume that perfect channel state information (CSI) is
known at the BSs in the mmWave-based LIS system. The
blockage effects in the LIS signal path can be LoS or Non-
line-of-sight (NLoS). We denote pL(r) as the probability that
a link at a distance r is LoS, while the NLoS probability
of a link is 1 − pL(r). We assume a very high blockage
effect in the ground networks [35] and the probability of
LoS link approaches 0 between users and BSs on the ground.
Based on the above reasoning, we approximate that all links
on the ground are NLoS. For tractability, we neglect small-
scale fading because it is not significant in LoS links in
mmWave [31]. Since mmWave channels have spatial sparsity
in the angle domain, the multipath components in mmWave
are mainly from reflections rather than refraction or scattering
[36–38].

For the received signal power of the direct link, it can be
evaluated as

SS,d = PT |ho|2L(xo) = PTN1L(xo), (23)

where L(xo) is path loss fading function with L(xo) =
Cxo

−αB , xo is the distance from the typical user to the
serving BS, C is the path-loss intercept factor, which is
commonly set as 20 log10( 2πfc

c ), fc is the carrier frequency,
and c = 3 × 108m/s [32]. PT denotes the transmit power
from the BS. Now consider the signal reflected by the LIS:
the received signal power to the typical user can be computed
as

SS,o = PT

∣∣∣wNu (θA) h̃owNb
H (θD)

∣∣∣2 (24)

where h̃o is the composite channel model as follows

h̃o = ĥo
√
L(yo)

√
L(zo) + ho

√
L(xo). (25)

Then we derive the received signal with antenna scheme 1,
which is given by

SS,1 = PTC
∣∣∣wNu

(
θA,ho

)
h̃owNb

H
(
θD,ho

)∣∣∣2
= PT

(√
N̂(1)L (yo)L (zo) +

√
N(1)L (xo)

)2

. (26)

Similarly, we derive the received signal with antenna
scheme 2, which is given by

SS,2 = PT

∣∣∣wNu

(
θA,go

)
h̃owNb

H
(
θD,ko

)∣∣∣2
= PT

(√
N̂(2)L (yo)L (zo) +

√
N(2)L (xo)

)2

(27)

where L(ro) is the path loss fading function with L(ro) =
Cr−αυo , and ro denotes the distance. yo is the distance from
the assisting LIS to the typical user and zo is the distance
from the associated BS to the assisting LIS. αυ is the path
loss exponent depending on the LoS or NLoS link, namely
αυ = αL for the LoS link and αυ = αNL for the NLoS link.

Hence, the direct and LIS-assisted signal-to-interference-
plus-noise ratio (SINR) at a typical receiver is given as{

γS,d = SS,d/(IB + IS + σ2),

γS,o = SS,o/(IB + IS + σ2),
(28)

where IB is the interference from all the active BSs and can
be evaluated as

IB =
∑

i∈ΦActb \o
‖hi‖

2
L(xi), (29)

where xi is the distance between the typical receiver and the
active interferer BSs set Bi ∈ ΦActb . IS is the interference from
all the LISs in the system, given by

IS =
∑

i∈Φs

∣∣ΞiΘq\igi
∣∣2L (yi) , (30)

where Ξi =
∑
j∈Φb

∣∣kij ∣∣2L (zij) is the interference from active

BSs which is reflected by the interfering LISs Si, and then Si
reflects the summarized interference to the typical user. yi is
the distance from the Si to the typical user, zij is the distance
from the interfering BS Bj to Si. σ2 is the noise power.

III. USER ASSOCIATION POLICY AND STATISTICAL
CONNECTION DISTANCES

In this section, we analyze the two-step association prob-
ability in the composite channel networks. Given the typical
user association with one BS for signal receiving, we consider
this as the first step in user association. For the second step in
user association, the aim of the LIS is to minimize the uplink
path loss from the serving BS to the assisted LIS, in order to
strengthen the assisted channel.

A. First Association

In the first step, a typical user Uo is typically associated
with the nearest BS, named Bo. The ground BS density and
transmit power determine the association probability for a
typical user. The probability density function (PDF) of the
distance xo between a typical user and its nearest serving BS
can be written as [39]

fB(xo) = 2πλbxoe
−πλbxo2

. (31)

In practice, if the density of users is not much higher than
that of the BSs, there may exist the possibility of empty cell
probability, which corresponds to the case that no user is
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associated to this BS at this moment. We mathematically use
pv1 to present the empty-cell probability, which can be written
as

pv1(λb, λu) =

∫ ∞
0

e−λuxfS,b(x, λb)dx ≈
(

1 +
λu

3.5λb

)−3.5

,

(32)

where fS,b(x, λb) is the approximated distribution function of
an area S, and the area of a typical Voronoi cell in a Poisson
random tessellation [40] is expressed as

fS,b(x, λb) ≈
3.53.5

Γ(3.5)
λb

3.5x2.5e−3.5λbx. (33)

Corollary 1: We define the density λ1
b = pv1λb as the

thinning process in Φb for the idle BSs as shown in Fig. 2. It
indicates that the idle BSs are not the closest BS for any user
in this system 2. λ0

b = (1 − pv1)λb is the density of active
BS-User pairs. Note that the empty cell probability pv1 will
approach to 0 since λu � λb.

B. Second Association

In the second step in association, the typical user Uo is
associated with the nearest LIS with the minimum path loss,
named So. We will equivalently consider ΦL

s + ΦNL
s = Φs as

two independent sets of LISs, where the assisting LIS can be
either the smallest path loss fading LIS with higher LoS link
in ΦL

s or the smallest path loss fading LIS with higher NLoS
link in ΦNL

s .
We assume different path loss laws are applied to LoS or

NLoS links. Based on the given distance yo, the path loss gain
is as follows

L(yo) = pL(ŷo)y
αL
o + pNL(ŷo)y

αNL
o , (34)

where αL and αNL are the LoS and NLoS path loss exponents,
respectively, and ŷo =

√
y2
o −H2 is the projection distance

from the serving BS to the associated LIS’s projecting posi-
tion, pL(ŷo). The LoS connection probability [41] is as follows

pL(ŷo) =
1

1 + a exp
(
−b
[
arctan

(
H
ŷo

)
− a
])

pNL(ŷo) = 1− pL(ŷo)

. (35)

Based on the above policy, we find the following lemmas
useful.

Lemma 1: Under the given distance yo, f
(L)
S (yo) is the PDF

of the smallest path loss fading assisting LIS’s distance with
LoS link among the typical user, which can be expressed as
follows

f
(L)
S (yo) =

2πλsy

Λ
(L)
S

pL(
√
y2 −H2)

× e
−2πλs

∫ y αL
αN

H
tpNL(

√
t2−H2)dt+

∫ y
H
tpL(
√
t2−H2)dt


,

(36)

2For the convenience of calculation, we assume that unconnected users with
density λ1u = λu − (1 − pv1)λb will be in the idle mode and waiting for
the service in the next time slot.

Fig. 2: Empty cell density diagram.

where Λ
(L)
S is the LoS connection probability that a typical

user is associated with the LIS, we obtain

Λ
(L)
S = 2πλs

∫ ∞
H

ypL(
√
y2 −H2)

× e
−2πλL

∫ y αL
αN

H
tpNL(

√
t2−H2)dt+

∫ y
H
tpL(
√
t2−H2)dt


dy.
(37)

Lemma 2: Under the given distance yo, we have the NLoS
PDF of the minimum path loss between the typical user and
the assisting LIS given by

f
(NL)
S (yo) =

2πλsy

Λ
(NL)
S

pNL(
√
y2 −H2)

× e
−2πλs

∫ y
H
tpNL(

√
t2−H2)dt+

∫ y αN
αL

H
tpL(
√
t2−H2)dt


,

(38)

where Λ
(NL)
S is the LoS connection probability that a typical

user is associated with the LIS, given as

Λ
(NL)
S = 2πλs

∫ ∞
H

ypNL(
√
y2 −H2)

× e
−2πλs

∫ y
H
tpNL(

√
t2−H2)dt+

∫ y αN
αL

H
tpL(
√
t2−H2)dt


dy.
(39)

Lemma 3: For the second association, the empty cell
probability of the LIS process for a typical Voronoi cell can
be approximated as

pv2

(b)
≈
∫ ∞

0

e−λ
0
bxfS(x, λs)dx ≈

1(
1 +

λ0
b

3.5λs

)3.5 , (40)

where (b) is obtained by an approximated value of λ0
b . Then

we provide the density for idle LISs as λ1
s = pv2λs, and

λ0
s = (1 − pv2)λs is the density for assisted LISs which are

linked to the BS-User pairs.
Corollary 2: Note that λ2

b = λ0
s is the density of BS-LIS-

User link in the system. Meanwhile, we can provide BS-User
link λ3

b gives

λ3
b = λ0

b − λ2
b = (1− pv1)λb − (1− pv2)λs, (41)

which is the probability that BS-User pairs fail to connect to
a LIS. Note that λ3

b will approach to 0 since λb � λs.
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Fig. 3: . LoS connection probability for first hop in LIS and
Second Hop LIS, where λu = 200/m2, αL = 2, αNL = 3.4.

C. Reflection Path
Next we analyze the reflected path from the serving BS to

the assisting LIS for the typical user, and the reflective distance
zo depends on two steps of user association.

Lemma 4: The probability that a user is associated with an
LoS LIS in the reflect path is

Λ
(L)
U = Λ

(L)
S

∫ 2π

0

∫ ∞
H

∫ ∞
0

1

2π
fB(x)f

(L)
S (

√
y2
o −H2)

× pL

(√
x2
o + y2

o − 2xoyocosφ−H2
)
dxodyodφ

+ Λ
(NL)
S

∫ 2π

0

∫ ∞
H

∫ ∞
0

1

2π
fB(x)f

(NL)
S (

√
y2
o −H2)

× pL

(√
x2
o + y2

o − 2xoyocosφ−H2
)
dxodyodφ, (42)

where φ is the random included angle between ∠SoBoUo, and
φ ∼ (0, 2π), and the probability that the reflected distance is
NLoS link is Λ

(NL)
U = 1− Λ

(L)
U .

Fig. 3 illustrates the LoS connection probability of the
reflected path of user association from the typical user to
the assisting LIS in (37) and LoS probability of the reflected
path from the assisting LIS to the serving BS in (42), re-
spectively. It is observers that both of them are increasing
with a height of H . We note that the slope of the LoS
probability in the reflection path is much higher than that in
the first hop. The primary reason for this is that the typical
user chooses the minimum reflection distance of yo for the
maximize received signal by itself. However, the distance from
serving BS to the assisting LIS follow the trigonometry as
zo =

√
x2
o + y2

o − 2xoyocos(φ). The results show the LoS
probability for the reflection path converges to 1 faster when
λs = λb = 200/km2 than when λs = λb = 100/km2. Note
that the analytical results are computed numerically using (37)
and (42), which are compared with Monte-Carlo simulations
marked with ’×’, the results are close and verify our analysis.

IV. PERFORMANCE ANALYSIS

In this section, we provide general results for ASE and
EE as performance indicators to analyze the capacity of LIS-

assisted mmWave cellular networks.

A. Area Spectrum Efficiency

We use ASE to measure the network capacity, which is
defined as the average throughput per unit spectrum and area
[42]. We give the following definition for the ASE

AS,o = λ2
bRS,o + λ3

bRS,d, (43)

where RS,o denotes the achievable rate of the BS-LIS-User
link, and o ∈ {1, 2} indicates the MFs from a serving BS and
typical users matched either directly with each other or via
an assisting LIS. RS,d is the achievable rate without support
from an LIS.

To evaluate the average achievable rate, we first derive the
average rate RS,o, which is given by the following theorem.

Theorem 1: The exact average achievable rate between the
typical user and its intended BS in a BS-LIS-User link can be
found as

RS,o = Λ
(L)
S R

(L)
S,o + Λ

(NL)
S R(NL)

S,o , (44)

where R(υ)
S,o is the average achievable rate when a user is

associated with an LoS or NLoS LIS, which is given by (45)
at the top of the next page. Λ

(υ)
S (yo) is the LoS or NLoS

connection probability given by (37) and (39), where υ denotes
L or NL.

Proof 1: See Appendix A.
Theorem 2: The average achievable rate of the BS-User

pairs without assistance from the LIS can be computed as

RS,d =
1

ln 2

∫ ∞
0

∫ ∞
0

1

s
Ad (s, xo)

× TI (s, xo) e
−sσ2

fB (xo) dxods (50)

where TI(s, xo) was given by (49), and we can obtain
Ad(s, xo) as

Ad(s, xo) = 1− exp
[
−sPTNbNuCxo−αB

]
. (51)

Corollary 3: In the direct BS-User link case, if a typical user
is unable to be associated with any LIS, which denotes that the
typical user is located in a low LIS interference area. Based
on that, we neglect the LIS interference IS to further simplify
the expressions. The upper bound of the average achievable
rate of the BS-User pairs can be expressed as follows

RUpper
S,d =

1

ln 2

∫ ∞
0

∫ ∞
0

1

s

{
1− e−sNbNuCx

−αB
o

}
× e−s2πCnbnu(1−pv1)λb

x
2−αB
o
αB−2 e

−s σ2

PT fB (xo) dxods.
(52)

We derive the upper bound of ASE as follows

AUpper
S,o = λ2

bRS,o + λ3
bR

Upper
S,d . (53)
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R(υ)
S,o =

1

2π

1

ln 2

×
∫ ∞

0

1

s

∫ 2π

0

∫ ∞
H

∫ ∞
0

A(υ)
S,o (s, xo, yo, φ)TI(s, xo)2πλbxoe

−πλbxo2

f
(υ)
S (yo)e

−sσ2

dxodyodφds, (45)

with

A(υ)
S,o (s, xo, yo, φ)

= 1− exp

−sCPT
N(o)xo

−αB +M2N̂(o)Cyo
−αυZ (xo, yo, φ) + 2

√
N̂oNo

xoαByoαυ
Z (xo, yo, φ)

 , (46)

where {
N(1) = NbNu, N̂(1) = M2nbnu, when o = 1

N(2) = nbnu, N̂(2) = M2NbNu, when o = 2
, (47)

and

Z (xo, yo, φ) =
pL(
√
x2
o + y2

o − 2xoyo cosφ−H2)√
x2
o + y2

o − 2xoyo cosφ
αL +

pNL(
√
x2
o + y2

o − 2xoyo cosφ−H2)√
x2
o + y2

o − 2xoyo cosφ
αNL , (48)

and

TI(s, xo) = exp

[
−s2πCnunb (1− pv1)λbPT

(
xo

2−αB

αB − 2

× 2π (λsχo + pv2λs (χq − χo))C

[∫ ∞
H

u

(
pL(
√
u2 −H2)

uαL
+
pNL(
√
u2 −H2)

uαN

)
du

]2
 . (49)

B. Energy Efficiency

In this subsection, we evaluate the EE of the overall LIS-
assisted system, which is defined as the ratio of the average
throughput to the total average power consumption. Thus, the
EE ES,o for the LIS-assisted system under two different antenna
schemes is given by

ES,o =
λ2
bRS,o + λ3

bRS,d

PTλ0
b +MPsλ0

s

, (54)

where Ps denotes the power consumption of each adaptive
phase shifter element from the active LIS density λ0

s [15, 18],
and RS,o and RS,d are the average achievable rate given by
(44) and (50), respectively.

We also derive the upper bound of EE ES,o for the LIS-
assisted system, which is given by

EUpper
S,o =

λ2
bRS,o + λ3

bR
Upper
S,d

PTλ0
b +MPsλ0

s

. (55)

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results of the pro-
posed LIS-assisted mmWave based cellular networks. Further,
the performance analysis for average achievable rate, ASE and
EE is highlighted. The system parameters are shown in Table
I, unless otherwise specified.

The phase shift in real LIS systems is limited by the number
of bits in its quantization. Fig. 4 compares ASE and EE
with different bit quantization constraints B. We calculate the

TABLE I: Parameter Values.

Parameters Values
Number of antenna in BS (Nb) 2

Number of antenna in User (Ns) 2
Number of element in LIS (M ) 64

Environment dependent constants (a,b) 9.6, 0.28
Transmit power of BS (PT ) 30 dBm

Power consumption of each element in LIS (Ps) 7 dBm
Density for BS λb 100, 200/km2

Density for LIS λs 50/km2

Density for User λu 200/km2

Path loss exponent fc=73 GHz [43] αL=2, αNL=3.4
Available bandwidth (BW) 2 GHz

Height for LIS (H) 5 m
Noise figure (Nf) 10 dB
Noise Power (σ2

o) −170 + Nf
+10 log10(BW) dBm

quantized phase shift ϕBm ∈ [0, 2π 2B−1
2B

) to replace the ideal
phase shift ϕm with its nearest realizable value. The error
range is thus | ϕBm − ϕm |< 0.5

2B
. The results show that the

margins of error for both ASE and EE between the ideal value
and the quantized value are reduced by increasing the number
of quantization bits: when B is equal to 8, the quantized values
approach the optimal values.

Fig. 5(a) and Fig. 5(b) show the average achievable rate,
ASE, and EE versus the number of elements of LIS M . From
this Fig. 5(a), we can see that the average rates for both
the direct and composite links increase with the M . Note
that RS,2 is lower than RS,1 from (45) and RS,d from (50)
at the beginning. Therefore, the antenna scheme 1 may not
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Fig. 4: Average achievable rate, ASE and EE versus number
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Fig. 5: Average achievable rate, ASE and EE versus number
of LIS’ element M , where λs = 100/km2.
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Fig. 6: Average achievable rate, ASE and EE versus density
of BS λb, where λs = 200/km2, M=32.

effectively improve the ASE when the number of the elements
of LIS M increases to 32. More importantly, as the number of
elements M increases, RS,d slowly rises even though there is
an indirect relationship with M . The above is due to the main
beam have being narrowed down with an increasing number of
elements in the LISs in mmWave band; this will bring lower
interference for ambient devices. The ASE in (43) and EE
in (55) is shown in Fig. 5(b); both ASE and EE demonstrate
an increasing trend for the average achievable rate, but EE
decreases with extreme numbers of elements. If the number
of elements in active LISs is over a specific value, the power
consumption cannot be neglected, and it will significantly
degrade the EE. For comparison, we introduce the average rate
for traditional networks RBS without LIS. The traditional link
only shows advantages when the LISs have a small number
of elements. Note that the increase of the LIS’ elements may
bring the overload for EE.

Next, we plot the average achievable rate, ASE and EE
versus the density of BS λb in Fig. 6(a) and Fig. 6(b).
We observe that the average achievable rates RS,1, RS,1,
RS,d are decreasing with density first, and then increasing,
which demonstrates behavior opposite to traditional stochastic
geometry networks. The reason is, at the beginning the inter-
ference from each BS increases due to the reflecting devices.
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Fig. 7: Average achievable rate, ASE, EE versus density of
LIS λs.

However, as the density of BSs increases, the distance between
serving BS to assisting LIS and typical user decreases, and
the number of active BSs who bring the ambient interference
may limited by the constant requesting users; so the average
data rate rises. In Fig. 6(b), both AS,1 and AS,2 degrade at
the beginning, since the transmit power consumption from
BSs increases. Moreover, the energy efficiency in two antenna
schemes ES,1 and ES,2 show a pattern similar to that of the
average rate. Overall, for a given number of LISs, the LIS-
assisted networks have a significant advantage in both EE and
ASE over traditional networks, when λb < λs. However, as the
BS density λb continues to increase, it is possible that neither
of the two antenna schemes in LIS-assisted networks will
out perform traditional networks. The reason is the reflected
interference and energy consumption in LIS-assisted networks,
which demonstrates that LISs are not applicable in ultra-dense
BSs networks.

Fig. 7(a) and Fig. 7(b) illustrate the average achievable rate,
ASE and EE versus the density of LIS. The results indicate
that the traditional average rate RBS is no longer invariant
with LIS density λs. It can be observed that the average rate
RS,d of direct links declines with λs. As a result, LIS may not
bring any benefit for traditional links and adding LIS devices
will lead to high interference for all active nodes. It can be also
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Fig. 8: Average achievable rate, ASE and EE versus density
of LIS λs.

observed that antenna scheme 2 shows an obvious advantage
when λs > 70/km2.

Subsequently, we investigate the trade-off between LIS
density λs and BS density λb, given a total sum density
λs + λb = 500/km2. Fig. 8(a) shows that the average rate
is optimised by increasing the density of LISs λs and by
decreasing the density of BSs λb. In Fig. 8(b), both antenna
schemes show an optimal value of ASE when varying the BS
density λb, which suggests that there exists an optimal LIS
density factor to maximize the ASE. The reason is that at the
beginning, as the density of LIS increases, both the density of
assisting links and direct links goes up; but after an optimal
point, the active BS-LIS-User links are limited by the number
of BSs λ0

b (the sub-graph in Fig. 8(a)). However, we obtain
the opposite result for EE, since LISs are dominating the
network. The performance of each independent BS-User link
is supported by ultra-dense LISs, the assisting LISs increase
the performance with tiny energy consumption.

Fig. 9(a) and Fig. 9(b) show the average achievable rate,
ASE, and EE versus the height of LISs. Intuitively, as the
height of the LISs rise, the performance in the direct link
would drop because of the increasing LISs’ interference.
However, the LIS-supported rates Rs,1 and Rs,2 for antenna
schemes 1 and 2 do not change monotonically; there is an



11

2 4 6 8 10 12 14 16 18 20

 H (m)

1

2

3

4

5

6

7

 A
v
e
ra

g
e
 a

c
h
ie

v
a
b
le

 r
a
te

 (
b
it
/s

/H
z
)

R
S,1

R
S,2

R
S,d

Monte Carlo

(a)

5 10 15 20

 H (m)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 A
re

a
 S

p
e
c
tr

a
l 
E

ff
ic

ie
n
c
y
 (

b
it
s
/H

z
/k

m
2
)

10-4

Antenna Scheme 1

Antenna Scheme 2

5 10 15 20

 H (m)

3

3.5

4

4.5

5

5.5

6

 E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 (

M
b
it
/J

)

Antenna Scheme 1

Antenna Scheme 2

(b)

Fig. 9: Average achievable rate, ASE, EE versus the height of
LIS, where λs = 200/km2, M = 12.

optimal H to maximize the average achievable rate since
an increase in the height will raise the LoS probability for
BS-LIS-User links. On the other hand, with further rising
height, the path loss will significantly degrade the overall
performance.

Fig. 10(a) and Fig. 10(b) provide the average achievable
rate, ASE, and EE versus the number of antennas in BSs.
The dashed curves obtained from (52) denote the upper-bound
average rate in BS-User links, without assistance from an LIS.
We observe that the upper bound curves can efficiently predict
the performance behavior of RS,d. It is shown that when the
number of the antennas in BSs grows large, there is an obvious
increase in the average achievable rate: the reason is that when
the typical user is unable to be associated with its nearest LIS
for support, the reflecting interference from ambient LISs will
have less effect on BSs.

Furthermore, we can see that antenna scheme 1 is applicable
to small LIS densities or low altitudes; in other words, antenna
scheme 1 enhances weakly supported LIS networks. Once LIS
gains advantages, such as broad LoS range and high density,
antenna scheme 2 enormously reduces energy consumption
and brings lower interference in the mmWave band.
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Fig. 10: Average achievable rate, ASE, EE versus the height
of LIS, where λs = 100/km2, λb = 400/km2, H = 30 m,
M = 128.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the performance of LIS-supported
large-scale mmWave networks. We considered a composite
two-step user association in system deployment constraints,
which guarantees minimum path loss between each pair of
nodes in a randomly located networks. Moreover, two types of
antenna schemes of multiple ULA were employed to maximize
the array gain in BS-LIS-User pairs. In addition, we examined
the average achievable rate, ASE and EE, to analyze the LIS-
assisted mmWave networks. Numerical results demonstrate
that LIS-supported networks can achieve higher ASE and re-
duce energy consumption as compared to traditional networks,
except in the case when BS density is greater than LIS density.
Furthermore, there exists an optimal number of elements in
LIS and density that maximizes EE and ASE.
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APPENDIX A: PROOF OF THEOREM 1

Proof 2: The average achievable rate RS,o for BS-LIS-User
links is calculated as

RS,o = E [log2 (1 + γS)]

= Λ(LoS)E
[

1

ln 2

∫ ∞
0

1

s
Υo

(L)(s)e−sds

]
+ Λ(NLoS)E

[
1

ln 2

∫ ∞
0

1

s
Υo

(NL)(s)e−sds

]
, (A.1)

using [44, Lemma 1], we can compute Υo
(L)(s) as

Υo
(L)(s) =

1

2π

∫ 2π

0

∫ ∞
H

∫ ∞
0

E
[
1− e−sγ

(L)
s (s,xo,yo,φ)

]
× fB(xo)f

(L)
S (yo)dxodyodφ

(c)
=

1

2π

∫ 2π

0

∫ ∞
H

∫ ∞
0

E
[
1− e−sY

(L)
s (s,xo,yo,φ)

]
︸ ︷︷ ︸

A(L)
S (s,xo,yo,φ)

× E
[
e−sIB(s,xo)

]
︸ ︷︷ ︸

Bo(s,xo)

E
[
e−sIS(s)

]
︸ ︷︷ ︸

Cs(s)

e−sσ
2

× fB(xo)f
(L)
S (yo)dxodyodφ, (A.2)

where step (c) is based on the fact that received composite
signal and interference are independent in LIS-assisted net-
works, A(L)

S,1 is dependent on the LoS condition with second
association probability f (L)

S . Under antenna scheme 1 this is

A(L)
S,1(s, xo, yo, θ) = E

[
1− e−sYm(s,xo,yo,φ)

]
= 1− E

{
exp

[
−s
(
PT ‖ho‖

2
Cxo

−αB

)]}
× E

{
exp

[
−s
(
PT ‖goΘoko‖2C2yo

−αLL(zo (xo, yo, φ))
)]}

= 1− exp

[
−sPTC

(
NbNu
xoαB

+
M2nunb
yαL
o

L (zo (xo, yo, φ))

)]
× exp

[
−2sPTM

√
NbNuh̄uh̄bC

L(zo (xo, yo, φ)√
xoαByαL

o

)

]
,

(A.3)

and A(L)
S,2 denotes received composite signal under antenna

scheme 2, which can be expressed as

A(L)
S,2(s, xo, yo, φ) = 1− exp

[
−sPT h̄uh̄bCxo−αB

]
× exp

[
−sPTM2NbNuCy

−αL
o L(zo (xo, yo, φ))

]
× exp

[
−2sPTM

√
NbNuh̄uh̄bC

L(zo (xo, yo, φ)√
xoαByαL

o

)

]
,

(A.4)

with

L(zo) = C
(
zo
−αLpL(zo) + zo

−αNpNL(zo)
)
, (A.5)

and zo(xo, yo, φ) =
√
x2
o + y2

o − 2xoyo cosφ denotes the
distance from an assisting LIS to the associated BS, and
Bo(s, xo) in the interference from all active BSs set Φ0

b with

density λ0
b , by applying the Laplace functional of the PPP,

which is given by

Bo(s, xo) = E
[
e−sIB(xo)

]
= exp

[
−2πλ0

b

∫ ∞
xo

(
1− e−sPTNiCr

−αB
)
rdr

]
.

(A.6)

The interference from LISs which reflect interference CS(s)
from other active BSs can be computed through

CS(s) = E
[
e−sIS(s)

]

≈ exp

−s
∑
k∈Φ1

s

E

∑
j∈Φ1

b

PT h̄bL(yj)


︸ ︷︷ ︸

Ω

χih̄uL (zk)



× exp

−s
∑
k∈Φ0

s

E

∑
j∈Φ1

b

PT h̄bL(yj)


︸ ︷︷ ︸

Ω

χqh̄uL (zk)

 ,
(A.7)

Ω is the integration interference from all active BSs for one
typical LIS, which from Campbell’s theorem [45] is given as

Ω ≈ 2πPTλ1
sχoh̄bC

×
∫ ∞
H

u

(
pL(
√
u2 −H2)

uαL
+
pNL(
√
u2 −H2)

uαN

)
du.

(A.8)

Then we can expand the CS(s) again as

CS(s) =

exp

{
−s2πλ1

s

∫ ∞
H

pL(
√
r2 −H2)

(
1− e−

sΩχih̄uC

rαL

)
rdr

+

∫ ∞
H

pN(
√
r2 −H2)

(
1− e−

sΩχih̄uC

rαN

)
rdr

}
× exp

{
−s2πλ0

s

∫ ∞
H

pL(
√
r2 −H2)

(
1− e−

sΩχqh̄uC

rαL

)
rdr

+

∫ ∞
H

pN(
√
r2 −H2)

(
1− e−

sΩχqh̄uC

rαN

)
rdr

}
. (A.9)

Likewise, we can derive Υo
(NL)(s) in the NLoS link as

Υo
(NL)(s) =

1

2π

∫ 2π

0

∫ ∞
0

∫ ∞
0

E
[
1− e−sYm(s,xo,yo,φ)

]
︸ ︷︷ ︸

A(NL)
S,o (s,xo,yo,φ)

× Bo(s, xo)CS(s, yo)fB(xo)f
(NL)
S (yo)dxodyodφ.

(A.10)

Using a similar approach in (A.3), A(NL)
S,1 (s, xo, yo, θ) is de-

rived as

A(NL)
S,1 (s, xo, yo, θ) = 1− exp

[
−sPTNbNuCxo−αB

]
× exp

[
−sPTM2h̄bh̄uCyo

−αNLL(zo (xo, yo, φ))
]
,

(A.11)
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applying the antenna scheme 2 as in (A.4), we can obtain
A(NL)

S,2 (s, xo, yo, θ). Substituting (A.3), (A.4) (A.6) and (A.9)
into (A.2), we obtain (A.1), which completes the proof.
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