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ABSTRACT
In comparative neuroanatomy, the characterization of brain
cytoarchitecture is critical to a better understanding of brain
structure and function, as it helps to distill information on the
development, evolution, and distinctive features of different
populations. The automatic segmentation of individual brain
cells is a primary prerequisite and yet remains challenging.
A new method (MR-NOM) was developed for the instance
segmentation of cells in Nissl-stained histological images of
the brain. MR-NOM exploits a multi-scale approach to de-
liberately over-segment the cells into superpixels and subse-
quently merge them via a classifier based on shape, structure,
and intensity features. The method was tested on images of
the cerebral cortex, proving successful in dealing with cells of
varying characteristics that partially touch or overlap, show-
ing better performance than two state-of-the-art methods.

Index Terms— cell segmentation, histological images,
brain, nissl, multi-scale, laplacian of gaussian, superpixels

1. INTRODUCTION

Comparative neuroanatomy studies investigate anatomical
changes between the brains of populations defined by factors
such as sex, age, pathology, or species. The characterization
of brain cytoarchitecture holds special significance in such
studies, as it can provide insights into the links between the
specific structure of the brain and the animal morphology,
behavior, or environment [1–3].

In a typical analysis pipeline, tissue sections (i.e., histo-
logical slices) of brain specimens are processed with Nissl
stain to label neuronal cells [4] and are fixed for digitization as
Whole Slide Images (WSI) for subsequent examination. Due
to their size and complexity, WSIs are preferably processed
by computerized methods, which can ensure reproducibility
and speed in high-throughput pipelines, while a manual ex-
amination would be prohibitively time-consuming as well as
impacted by inter- and intra-observer bias.

A critical prerequisite in such pipelines is the challenging
instance segmentation of cells. Fig. 1a shows 3 tiles extracted

(a) Sample tiles from 40x Nissl-stained histological slices.

(b) Brain with highlighted primary/secondary auditory cortex.

Fig. 1: Samples of the auditory cortex of Tursiops truncatus.

from Nissl-stained histological slices of the auditory cortex
from different brain specimens of Tursiops truncatus (Mon-
tagù, 1821), an example of which is shown in Fig. 1b, with
the highlighted area representing the primary (A1) and sec-
ondary (A2) auditory cortex. Segmentation of individual cells
is complicated by their dishomogeneity in shape, texture, and
size, due to the co-existence of large and small neurons, glia
and endothelial cells, the presence of touching or overlapping
cells with ambiguous boundaries, and background clutter.

In the wider field of digital pathology and microscopy,
many segmentation methods have been proposed to segment
cells/nuclei. The vast majority rely on a set of underlying
algorithms: intensity thresholding, morphology operations,
watershed transform, deformable models, clustering, graph-
based approaches, and supervised classification [5]. Few,



however, are designed for the segmentation of cells in Nissl-
stained histological slices of the brain [6–8], and most are
conceived for cells of uniform characteristics.

In light of the above, a new method called MR-NOM was
developed to be used in an active learning fashion to facili-
tate the construction of ground truth annotations and to subse-
quently segment cells in WSIs. This method will be exploited
for the characterization of brain cytoarchitecture in compara-
tive neuroanatomy studies, and in particular as an enabler of
solid morphometric analyses aimed at objective tissue screen-
ing in the field of diseases affecting brain structure and func-
tionality (e.g., neurodegeneration and neuroinflammation).

This paper is organized as follows: Section 2 describes
the dataset; Section 3 details the steps of the method; Section
4 illustrates the results; Section 5 draws the conclusions.

2. DATASET

Brain tissues were sampled from 20 specimens of Tursiops
truncatus archived in the Mediterranean Marine Mammals
Tissue Bank (http://www.marinemammals.eu) of the Univer-
sity of Padova. The brains originated from stranded cetaceans
with a decomposition and conservation code (DCC) of 1 and
2, according to the guidelines for cetacean post-mortem in-
vestigation [9].

The images used in this study are 27 2048x2048 tiles
extracted from Nissl-stained 40x magnification WSIs of the
auditory cortex of Tursiops truncatus, also known as the
bottlenose dolphin, originating from different subjects (new-
born, adult, old). The tiles were annotated via QuPath [10]
software, leading to 13 986 annotated cells. 4 and 3 tiles were
used as validation and test set, respectively.

3. METHODS

3.1. Pre-processing

Each image was converted to grayscale and filtered with a 2-D
Gaussian smoothing filter with standard deviation (SD) of 1.
Contrast-limited adaptive histogram equalization was applied
to enhance the contrast while avoiding noise amplification.
The mean neuropil (area between cell bodies) intensity was
standardized by applying a correcting factor as I1(x, y) =
I0(x, y)Ir/In, where Ir = 205 is the chosen standardized
mean neuropil intensity and In is the estimate of the mean
in each equalized image I0(x, y). The latter was obtained as
the mean of the two grey values at 61% of the mode of the
intensity histogram [6].

The gradient map (GM(x, y)) was computed by convolv-
ing the standardized image I1(x, y) with a discrete 8x8 filter
obtained by sampling the analytical derivative of the Gaussian
function with zero mean and SD of 2. The gradient map was
binarized via the triangle thresholding method [11] to obtain

the binary edge map (EM(x, y)), where connected compo-
nents smaller than a threshold (50 pixels) were removed. A
binary Nissl-substance map (NS(x, y)) was obtained by ap-
plying the Otsu method [12] to I1(x, y).

3.2. Foreground extraction

A multi-scale approach based on Laplacian of Gaussian
(LoG) scale-space representations was applied to foreground
extraction. Since the application of the LoG filter at a single
scale fails in detecting blobs of different sizes, a multi-scale
approach is needed for detecting blobs of different (unknown)
sizes. According to the scale-space theory [13], a multi-scale
approach considers a set of n LoG filters, with each filter
Li, i = 1, ..., n, having a different value of the standard de-
viation σi. The convolution of the image with each of the n
filters gives the set of LoG scale-space representations:

Ri(x, y) = σγ
i Li ∗ I(x, y), i = 1, ..., n (1)

where the factor σγ
i is used to normalize the response since

its amplitude at blob regions decreases monotonically with
increasing σi. Conventionally, the above set is exploited
to detect local extrema and locate blobs of different scales,
yielding a multi-scale LoG blob detector. However, post-
processing for blob pruning is necessary due to the large
amount of overlapping blobs detected. We therefore consid-
ered the multi-scale approach presented in [14], where the
multiple LoG scale-space representations were summed to
get a combined multi-scale map:

R(x, y) =

n∑
i=1

Ri(x, y) (2)

In Nissl-stained histological slices, the objects of interest
correspond to high responses in Eq. (2), which was exploited
for foreground extraction. A median 3x3 filter was first ap-
plied to the standardized image I1(x, y) to get I2(x, y). A
combined foreground multi-scale map RFG(x, y) (Fig. 2b)
was then computed as RFG(x, y) =

∑nFG

i=1 RFG,i(x, y),
where nFG = 10, RFG,i(x, y) = σγFG

i Li ∗ I2(x, y), with
γFG = 1 and {σFG,i}nFG

i=1 = {5, 6, ..., 14}. RFG was
rescaled to the intensity range 0 − 255, normalized to match
the mean of I2(x, y), and summed to I2(x, y) to enhance the
neuronal cells. The resulting map was thresholded via the
triangle method [11] to extract the foreground, which was
refined through hole-filling, morphological opening and clos-
ing, and removal of connected components smaller than 70
pixels, H-connected, and spur pixels. The final foreground
map FG(x, y) (Fig. 2c) was obtained by removing most of
the poorly focused or too bright objects, using two morpho-
logical reconstructions starting from the maps EM(x, y) and
NS(x, y) defined in Section 3.1.



(a) (b) (c) (d) (e) (f) (g)

Fig. 2: Intermediate results of the proposed method on a sample image. (a) Original image. (b) Combined multi-scale map for
foreground extraction. (c) Complement of the foreground map superimposed on the original image for illustrative purposes. (d)
Detected markers in yellow. (e) Gray-scale map utilized for the watershed transform. (f) Label image returned by the watershed
transform. (g) Final segmentation with true positives in black, false positives in red and false negatives in yellow.

3.3. Marker definition

Similarly to the combined multi-scale map used to extract the
foreground objects in 3.2, the markers for a watershed-based
over-segmentation were obtained by computing the combined
multi-scale map RMK(x, y) =

∑nMK

i=1 RMK,i(x, y), where
nMK = 13, RMK,i(x, y) = σγMK

i Li∗I1(x, y), with γMK =
2 and {σMK,i}nMK

i=1 = {2, 3, ...14}. The local maxima in the
map were selected via the extended h-maxima transform [15]
with minimum height set to 8 through hyperparameter valida-
tion. The centroids of the connected components in the binary
map returned by the transform were considered as markers.
The markers outside FG(x, y) or too close to edges (Fig. 2d)
were removed. Note that, differently from [14], where ellip-
tical filters with various orientations were used, only circular
filters were considered here since neuronal cells have variable
shapes and textures, and satisfactory results were obtained
without expanding the set of filters. Furthermore, a combined
multi-scale map was not only exploited for marker detection
but also for foreground extraction, as detailed in Section 3.2.

3.4. Marker-controlled watershed

The markers defined in Section 3.3 were used to over-segment
the cells into superpixels via marker controlled-watershed
[15]. The watershed transform is typically applied to gradient
maps but has also proven effective on intensity or distance
transform maps and other gray-scale maps [5].

The gray-scale map used in our method integrates the
combined multi-scale map defined in Section 3.3 with gradi-
ent information. It was defined as follows:

W (x, y) = RMK(x, y)c + α1α2GM(x, y) (3)

The first term corresponds to the complement of RMK(x, y)
as defined in Section 3.3, so that objects of interest (neuronal
cells) appear dark on a bright background. The second term
weighs gradient information by adding the gradient map GM
defined in Section 3.1, with α1 controlling the importance

given to gradient cues (set to 0.15 via hyperparameter vali-
dation). α2 = ¯Rc

MK/ ¯GM is a standardization factor to make
the maps comparable by matching the mean of GM to the
mean of Rc

MK . Prior to any other operation, RMK and GM
were rescaled to the range 0− 1.

W was modified using morphological reconstruction to
impose the markers from Section 3.3 and the SKeleton by In-
fluence Zones (SKIZ) of the FG map as regional minima [15]
(Fig. 2e). The watershed transform was then applied to get
the label image LB(x, y) (Fig. 2f), where a different label,
i.e., an integer value, is assigned to each identified region. All
the pixels of LB in the background were set to 0.

3.5. Supervised superpixels merging

Ideally, each cell would correspond to a single region in the
label image LB. However, due to cell variability, more than
one marker is often associated with larger non-circular cells
with diverse characteristics. These cells are represented by
a set of multiple regions (or superpixels) in LB. Drawing
inspiration from [16–18], a classifier was trained to decide
whether a pair of adjacent superpixels has to be merged.

For every candidate merge, let S1 and S2 be the two su-
perpixels to be merged, S1+2 the resulting superpixel, e the
edge segment between S1 and S2 to be removed to create
S1+2. The following rotation-invariant morphological, struc-
tural and intensity features were computed for S1 and S2 (de-
noted as S in the descriptions): (1a) size, (2a) solidity, (3a)
extent, (4a) eccentricity, (5a) circularity, (6a) axes ratio, (7a)
portion of the perimeter of S touching the background, (8a)
ratio between the length of e and the perimeter of S, (9a)
ratio between the length of e and the minor axis of the el-
lipse with the same second-moments as S, (10a) maximum,
(11a) minimum, (12a) mean intensity in I1(x, y) for pixels
in S, (13a) SD of the intensity, (14a) intensity SD to mean
ratio, (15-20a) 1 st , 3 rd , 5 th , 10 th , 50 th and 75 th intensity
percentiles, (21a) maximum, (22a) minimum and (23a) mean
intensity in the gradient map GM (range 0 − 1) for pixels in



S, (24a) gradient SD, (25a) gradient SD to mean ratio.
For the resulting superpixel S1+2, some features were

computed as above (all except 8-9a), and others were added:
(1b) feret ratio, (2b) maximum, (3b) minimum and (4b) mean
distance from the centroid of S1+2 to boundary points, (5b)
distance SD, (6b) distance SD to mean ratio, (7b) length of e,
(8b) ratio between the number of pixels in the intersection be-
tween the edge map EM and e, and the length of e, (9b) ratio
between the orientation of S1 and S2, (10b) ratio between the
mean intensity value in GM (range 0− 1) for pixels in e and
the mean intensity value in GM for pixels in S1 and S2.

The training dataset was built by processing the training
images up to the marker-controlled watershed step. Pairs of
adjacent superpixels in LB were then considered iteratively
for merging. Specifically, two iterations were performed for
each connected component of the FG map, typically corre-
sponding to a single cell or a cluster of 2 to 10 cells. During
each iteration, for each superpixel S1 in the connected com-
ponent, the adjacent superpixels S2 were considered sequen-
tially. For each candidate merge given by a pair (S1, S2),
25 ∗ 2 + (25 − 2) + 10 = 83 features were extracted from
S1, S2, and S1+2, as detailed in the previous two paragraphs,
and inserted into the dataset, along with the respective class
(1 if ”to be merged”, 0 otherwise), set according to ground
truth. If S1 and S2 were to be merged, S1 was replaced by
the merge S1+2 before continuing. The obtained dataset was
used to train a random forest classifier.

Test images were treated with the same procedure as
above, with the only difference that the class of a pair of ad-
jacent superpixels was defined by the output of the classifier.

3.6. Post-processing

Hole-filling, morphological opening and reconstructions were
applied to the revised LB, followed by the removal of ob-
jects smaller than 70 pixels and 20 iterations of the Chan-Vese
model for active contours [19] to refine the cell shapes ac-
cording to I1(x, y). Boundaries between touching cells were
forced as defined in LB. Finally, a second random forest clas-
sifier was trained on 28 features (1-6a, 10-25a, 1-6b) of can-
didate cells to filter out false positive findings.

4. RESULTS

On test images, predictions were matched to the ground truth
masks at different thresholds of matching precision based on
the standard intersection over union metric (IoU). We evalu-
ated performance with the average precision metric (AP), de-
rived from the number of true positives (TP), false positives
(FP), and false negatives (FN) as AP = TP/(TP+FP+FN).

For comparison, we considered two state-of-the-art open-
source solutions: Ilastik [20] and the generalist CellPose
model [21]. Ilastik instance segmentation is attained by in-
teractive training of a classifier to separate foreground from
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Fig. 3: Segmentation performance of MR-NOM, Ilastik (in-
teractive), and CellPose (generalist).

background, followed by hysteresis thresholding. CellPose
is a deep learning-based method where a neural network is
trained to predict the gradients of a topological map. These
are followed via the gradient tracking process to route pixels
toward the centres of the cells and group them accordingly.
The generalist model is trained on over 70 000 objects.

As shown in Fig. 3, MR-NOM outperformed Ilastik and
CellPose at all thresholds. In particular, the AP@0.5 was 0.7
for MR-NOM trained on 24 images (qualitative results in Fig.
2g), 0.51 for Ilastik, and 0.45 for CellPose. It can also be
observed that MR-NOM provided satisfactory results when
trained on a smaller dataset. The AP@0.5 was 0.69 and 0.68
for MR-NOM trained on 12 and 6 images, respectively (6 159
and 3 236 cells, respectively).

5. CONCLUSIONS

Few techniques have been designed for the instance segmen-
tation of neuronal cells in Nissl-stained histological slices of
the brain. We proposed a new segmentation method called
MR-NOM, which exploits a multi-scale approach to deliber-
ately over-segment the cells into superpixels to be merged via
a classifier. MR-NOM dealt effectively with cells of vary-
ing characteristics that partially touch or overlap, even with a
small training dataset. It was used in an active learning mode
to aid the annotation process and will be exploited to seg-
ment WSIs of the auditory cortex of Tursiops truncatus. It is
also expected to be adopted with suitable refinements (e.g.,
more annotations and deep learning-based marker definition)
to process WSIs of different species for the characterization
of brain cytoarchitecture in comparative neuroanatomy stud-
ies aimed in particular at a better understanding of neurode-
generative and neuroinflammatory disorders.
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