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Abstract

Recently, cryptocurrencies have attracted a growing interest from investors,
practitioners and researchers. Nevertheless, few studies have focused on the
predictability of them. In this paper we propose a new and comprehensive
study about cryptocurrency market, evaluating the forecasting performance
for three of the most important cryptocurrencies (Bitcoin, Ethereum and
Litecoin) in terms of market capitalization. At this aim, we consider non-
Gaussian GARCH volatility models, which form a class of stochastic recursive
systems commonly adopted for financial predictions. Results show that the
best specification and forecasting accuracy are achieved under the Skewed
Generalized Error Distribution when Bitcoin/USD and Litecoin/USD ex-
change rates are considered, while the best performances are obtained for
skewed Distribution in the case of Ethereum/USD exchange rate. The ob-
tain findings state the effectiveness – in terms of prediction performance – of
relaxing the normality assumption and considering skewed distributions.

Keywords: Generalized Error Distribution, GARCH models, Skewed
distributions, volatility forecasting, non linear GARCH

1. Introduction1

In the context of financial markets, an important problem is to define2

useful and efficient statistical methods for estimating and forecasting returns3

volatility. Indeed, the volatility of assets returns contributes to describe4

the riskiness of portfolios of assets, and its monitoring is thus of paramount5

relevance for management purposes [42].6

The volatility of a risky asset is strongly related to the way in which7

asset return evolves. In this respect, it is important to properly model the8

randomness of asset returns. The starting point of a good modeling exercise9

is unavoidably the observation of the empirical series of the returns [40].10

Preprint submitted to Information Sciences March 20, 2020



As suggested by several authors (e.g. [17]), the time series of asset returns11

show very peculiar characteristics, since usually their distribution is asym-12

metric, with heavy-tails and negative skewness ([15], [21]). Other empirical13

stylized facts on asset returns are also the presence of the so-called volatility14

clustering, conditional heteroskedasticity and the long-term memory prop-15

erty. (e.g. [2], [44])16

For all these reasons, the Normal distribution is not a reliable choice for17

volatility modeling purposes, and more sophisticated probabilistic assump-18

tions which accounts, among the others, for normality deviation are needed19

(see e.g. [37] and references therein contained).20

Such an observation offers a visualization of the volatility as a complex21

systems. For this reason, the analysis of such a key financial quantity and22

the assessment of methods for forecasting it are at the center of the debate23

of a large set of information scientists (see e.g. [4] and [10])24

This paper contributes to the debate on volatility forecasting under non-25

Normal hypothesis for assets returns. The proposed volatility forecasting26

methodology is based on Generalized Autoregressive Conditionally Heteroskedas-27

tic (GARCH) models, introduced by Bollerslev [8] as a natural generalization28

of the ARCH models of Engle [24].29

The GARCH model is of particular effectiveness for our purposes, since30

it is a stochastic system widely used for modelling the properties of random-31

ness and uncertainity which chatacterize the volatility of the financial assets32

returns. Even if the original GARCH framework has been presented as a33

Gaussian-driven model, such a system allows for different kind of specifica-34

tions to be adapted to modelling purposes (see e.g. [2, 29, 23]).35

Accordingly to the arguments above, we depart from the standard Normal36

assumption and consider GARCH models under non-Gaussian distributional37

assumption.38

In so doing, we are in line with a wide strand of literature, mainly for39

time series description or volatility estimation (see e.g. [7] and [22]). We40

mention also the t-student distribution approach of Alberg et al. [1], which41

allows for a clear description of heavy tails characteristic of asset returns.42

We propose a deep analysis of the volatility forecasting under non-Normal43

specifications for the resulting GARCH model by pointing our attention to44

the paradigmatic empirical case of cryptocurrencies, since several studies45

have observed that these types of assets are very highly volatile (see e.g.46

Bariviera et al. [6], Baek and Elbeck [5]).47

In particular, we here aim at identifying a probability distribution to48
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model GARCH-based volatility for obtaining accurate forecasts. To pursue49

this scope, we provide a detailed analysis of the forecasting performances by50

employing the Generalized Error Distribution (GED) and its skewed version51

as distributional assumption. In particular, we empirically show that such a52

distributional assumption represents a suitable choice for volatility prediction53

purposes. In so doing, we offer also a confirmation of its flexibility (see e.g.54

the review in [14]).55

Cryptocurrencies are relatively a new type of asset (see e.g. [27]) and56

the literature on this field is rapidly growing, even if it is still not well de-57

veloped. Blockchain is the core technology employed for the creation of the58

cryptocurrencies. Such a technological device acts through the maintenance59

of immutable distributed ledgers in thousands of nodes. Thanks to the trans-60

actions’ trustworthiness in the blockchain network, new cryptocurrencies are61

appearing in the financial markets [13].62

One of the most popular members of the family of cryptocurrencies is63

the Bitcoin. Indeed, Bitcoin has a market capitalization higher than the one64

of the other cryptocurrencies (as Ethereum, Ripple, Litecoin, etc.). Despite65

such a predominance, one can observe an increasing competition among cryp-66

tocurrencies. Indeed, the Bitcoins market share fell down from the 80% in67

the end of May 2016 to 48% in the end of May 2017; in 2020, the Bitcoin’s68

share is around 38% (information available on coinmarketcap.com/charts).69

In the empirical analysis, we show that the skewed specifications of the70

GARCH model represents the most effective selection for volatility forecast-71

ing of the Bitcoin/USD, Litecoin/USD and Ethereum/USD exchange rates,72

with a predominance of the GED distribution in the peculiar cases of Bitcoin73

and Litecoin.74

Such results go in the direction of confirming the above mentioned stylized75

facts on the volatility of the cryptocurrencies. Findings have been validated76

by using a wide set of comparison loss functions and a wide set of alternative77

models. Some robustness checks have been also presented, to further support78

the main outcomes of the study.79

The paper is structured as follows. Section 2 contains a discussion on80

the employment of the Generalized Error Distribution (GED) in forecasting81

volatility under GARCH modeling. In Section 3, we provide a literature re-82

view on relevant previous studies related to cryptocurrencies volatility mod-83

elling. Section 4 is devoted to the description of the considered empirical84

dataset, along with the methodologies used to analyze it. Section 5 provides85

the illustration and the discussion of the obtained results. Section 6 presents86
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the robustness check, which further supports the worthiness of the obtained87

empirical findings. Last Section offers some conclusive remarks and traces88

lines for future research.89

2. GARCH modeling with Generalized Error Distribution90

The volatility of assets returns is a crucial financial quantity, whose useful-91

ness can be appreciated in a number of contexts like asset allocation, option92

pricing and risk management. The efficient estimation and prediction of the93

volatility is then of particular relevance, to gain insights about the future94

dynamics of prices and returns. Initially, assuming the general framework95

in which the Normal distribution assumption is not violated, methodological96

devices to estimate and forecast the volatility have been based on ARCH97

[24] and GARCH [8] models- ARCH and GARCH are based on conditional98

heteroskedasticity of asset returns volatility.99

As already mentioned above, we here propose a new version of the GARCH100

models in the context of non-Normal distributions.101

Given two integers p, q > 0, we formalize the GARCH(p,q) model for the102

volatility (σ2
t : t ≥ 0) as:103

σ2
t = ω +

p∑
i=1

αiz
2
t−i +

q∑
j=1

βjσ
2
t−j (1)

with ω > 0 and αi > 0, βj > 0, for each i = 1, . . . , p and j = 1, . . . , q.104

The positivity condition on ω, the α’a and the β’s ensures the positivity105

of the variance. The term (zt : t ≥ 0) is a stochastic process with i.i.d.106

time-realizations, which is here assumed to follow a Generalized Error Dis-107

tribution (GED). Such an assumption – which departs from the standard108

Normal hypothesis of Bollerslev [8] – is a suitable choice due to its strong109

flexibility for modeling asset returns volatility dynamics. Indeed, as already110

argued in the Introduction, the normality assumption is too restrictive and111

not reliable if the aim is to model financial asset returns, which clearly show112

empirically a non-Gaussian distribution.113

The GED (also called Exponential Power Function) random variable X114

has the following probability density function (see e.g. [25] and references115

therein contained):116
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f(z;µp, σp, p) =
pexp(1

2
| z−µp
σp
|p)

2p(1+
1
p
)σpΓ(1

p
)

(2)

where z ∈ R, µp ∈ (−∞,+∞) is called location parameter, σp > 0 is117

called scale parameter, p > 0 is a measure of fatness of tails and is called118

shape parameter and119

Γ(a) =

∫ ∞
0

xa−1exp(−x)dx. (3)

Since the GED density function in (2) is symmetric and unimodal, the120

location parameter is also the mode, median and mean of the distribution.121

The variance and kurtosis of the GED random variable are respectively given122

by:123

V ar(X) = σ2
p2

2
p

Γ(3p−1)

Γ(p−1)

and

Ku(X) =
Γ(5p−1)

Γ(3p−1)

Γ(p−1)

Γ(3p−1)
.

A very important feature of this family of distributions is that they include124

also other common distributions, for different values of shape parameter p.125

In particular, when p = 1 we have a Laplace distribution, when p = 2 we have126

the Gaussian distribution and for p = +∞ we have the Uniform distribution.127

Moreover, the distribution has fatter tails than a Gaussian distribution when128

p < 2 (see e.g. [11] and references therein contained).129

However, empirical evidence suggests that financial returns exhibit a neg-130

ative symmetry in distribution; thus, we here propose to use skewed distri-131

bution in GARCH modeling (see [43]). In this respect, we can hypothetically132

use either the Skew Normal or the Skew t distributions. Nevertheless, ac-133

cording to the discussion above, a very interesting extension for skewness is134

the Skewed-GED distribution, which can be derived in order to take into135

account for the skewness and leptokurtosis (see Figure 1).136
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Figure 1: Skewed Generalized Error Distribution for different values of skewness.

The probability density function for non-centered Skewed GED can be137

defined as follow [43]:138

f(z;µp, σp, λp, p) =
pexp(−1

p
| z−µp+m
νσp(1+λpsign( z−µp+m))

|p)
2νσpΓ( 1

p
)

(4)

where z ∈ R, µp is the location parameter, σp is the scale parameter, λp
is the skewness parameter, p is the shape parameter, while Γ is as in (3).
Function sign is the sign function which assumes value of -1 for negative
values of its argument and 1 for positive ones. Moreover, m is defined as
follow:

m =
2

2
pνσpλpΓ(1

2
+ 1

p
)

√
π

,

while ν:

ν =
π( 1 + 3λ2p)Γ(3

p
)− 16

1
pλ2pΓ(1

2
+ 1

p
)Γ(1

p
)

πΓ(1
p
)

.

6



The shape parameter p controls the tails and the peak of the distribution;139

a small value of p means that the tails of the distribution become flat, with140

the center becoming largely peaked.141

The skewness parameter λp ranges in [−1, 1]; in the case of negative142

skewness (λp < 0) the density function is skewed to the left and vice versa143

for λp > 0.144

Also the Skewed GED (SGED) is a very special case of other distributions.145

For example, supposing λp=0 (allowing p to change) we can obtain a wide146

family of non-skewed distributions.147

In particular, when λp = 0 we have the GED; λp = 0 and p = 2 means148

Normal distribution; λp = 0 and p = ∞ is the Uniform distribution and149

λp = 2 and p = 2 is the skewed Normal.150

Also for the SGED-GARCH model the specification is the same as in (1),151

but in this case we suppose that zt follows a Skewed GED. The parameter es-152

timation for the GED-GARCH models is based on the Maximum Likelihood153

method (see e.g. Wísniewska and Wy lomańska [46]).154

We will explore below the empirical effectiveness of the GED and its155

extension for skewness when predicting volatility through GARCH models.156

Some further noticeable extensions of the GARCH models in (1) have157

been proposed in the literature, to remove the symmetry assumption in mod-158

eling volatility. We now provide a discussion on them.159

In Glosten et al. [26], the so called GJR-GARCH model has been intro-160

duced as follows:161

σ2
t = ω + αz2t−1 + βσ2

t−1 + γz2t−1I(zt−1 < 0), (5)

where I(zt−1 < 0) which assigns 1 when zt−1 < 0 and 0 otherwise. If162

γ = 0, then (5 becomes (1) for p = q = 1, so that we fall in the standard163

GARCH(1,1) case.164

It is also worth mentioning the EGARCH model of Nelson [36] and the165

TGARCH model of Zakoian [47]. The main difference between TGARCH166

and GJR-GARCH – that are quite similar for the rest – is that TGARCH167

provides a modelization of the conditional standard deviation instead of the168

conditional variance.169

Moreover, the classical GARCH model as in (1) can be also extended170

by accounting for highly persistence in conditional variances. Indeed, in the171

standard GARCH setting we know that one needs α + β < 1 – i.e. the172

persistence of the conditional variance process is less than one – in order to173
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get that the unconditional variance σ2 exists.174

In this respect, equation (1) suggests that the presence of persistence is175

associated to a value of α + β close to the unity. Therefore, by imposing176

the restriction that α + β = 1 in (1), we obtain the Integrated GARCH177

(IGARCH) model by analogy with the unit root literature:178

σ2
t = ω + α(z2t−1 − σ2

t−1) + σ2
t−1. (6)

Finally, another important extension – which is mainly related to non179

linearity in terms of the parameters – is the Asymmetric Power General-180

ized Autoregressive Conditional Heteroskedasticity (APGARCH) proposed181

by Ding et al. [20]:182

σδt = ω + α(|zt−1| − λzt−1)2δ + βσδt−1 (7)

where δ > 0, ω > 0, α > 0, β ≥ 0 and |λ| ≤ 1. This is a very general183

model and includes, for example, the Asimmetric GARCH (AGARCH) by184

Meitz and Saikkonen [34] by setting δ = 1.185

Obviously, all the mentioned models can be estimated under Generalized186

Error Distribution assumption. Thus, they are part of the GED-GARCH187

models family.188

3. Volatility models for cryptocurrencies: a review189

Bitcoin has attracted the interest of many investors, practitioners and190

researchers since its creation in 2008. From there on, also other cryptocur-191

rencies raised over the market attracting an increasing interest in both prac-192

titioners and academicians.193

Bitcoins daily volatility has been studied in several papers. However,194

most of the existing studies have focused on in-sample analysis, and the195

comparisons of the volatility models have been implemented only on the196

ground of information criteria.197

A very important literature contribution on the comparison between GARCH198

models in terms of in-sample performance for Bitcoin data is Katsiampa [31].199

The author compares several AR(1)-GARCH models through predefined in-200

formation criteria, and shows that the one with the best performance is201

the AR(1)-Component-GARCH(1,1). The study exhibits some limitations.202

First, Katsiampa [31] evaluates only Bitcoin data, without considering also203

other cryptocurrencies; second, it imposes an AR(1) structure for the mean204
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component of the GARCH model without assessing for forecasting out-of-205

sample performances; third, it considers only Gaussian distribution, even206

showing non-normality of the data.207

Another relevant paper is Mattera and Giacalone [33], where the authors208

find out that, among six alternative distributional assumptions, the best209

model fitting the Bitcoin data is the AR(1)-AP-ARCH based on t-student210

distribution. As for the limitations of the quoted paper, Mattera and Gi-211

acalone [33] considers only Bitcoin data; moreover, it forces, again, an AR(1)212

structure for the mean equation of the models. Also the quoted paper does213

not assess for out-of-sample forecasting performance; rather than this, it ob-214

tains similar results for in-sample evaluation between t-student and GED215

assumption in standard GARCH setting.216

Other studies have focused on the volatility dynamics of the Bitcoin re-217

turns. In particular, Charles and Darné [12] provide some further evidence218

starting from Katsiampa [31]. However, the authors still considered just219

Gaussian distribution and did not provide an out-of-sample analysis.220

In Chu et al. [16], the authors find evidence of volatility clustering and221

show that, among several models, GARCH-type specifications provide the222

best in-sample performance. Using asymmetric GARCH models, Bouri et al.223

[9], Katsiampa [31], Stavroyiannis [41] and Mattera and Giacalone [33] inves-224

tigate the response of the conditional variance to past positive and negative225

shocks, finding evidence of the leverage effect.226

The contribution Chu et al. [16] analyses Bitcoin and other cryptocurren-227

cies using GARCH-type models with different error distributions, concluding228

that the best models for estimating the Bitcoin volatility are the I-GARCH229

and GJR-GARCH models with Gaussian distributions. However, this study230

has two limitations: first of all, the proposed method forces an AR(1) pro-231

cess for the mean equation of the GARCH-type models; secondly, a real232

out-of-sample analysis in terms of forecasting accuracy is still missing.233

In Liu et al. [32], the authors compare the GARCH models by assum-234

ing the Normal Reciprocal Inverse Gaussian (NRIG) distribution and the235

Gaussian and Student-t error distributions, and conclude that the GARCH236

model with Student-t errors estimates the volatility better than the other237

ones. However, the quoted paper does not deal with the analysis of the per-238

formance of the skewed models. Moreover, no analysis is implemented to239

compare the standard GARCH model (introduced in Bollerslev [8]) with its240

extensions.241

In Naimy and Hayek [35], the authors provide one of the first out-of-242
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sample analysis. More precisely, they compare the one-step-ahead volatility243

forecasts estimated by GARCH and EGARCH models with Gaussian and the244

alternative t-student distribution. The authors conclude that the EGARCH245

models present the best performances with respect to the two alternatives246

(EWMA and GARCH). Nevertheless, also here no attention is paid to skewed247

models, even if for Bitcoin – as well as for other cryptocurrencies – skewness248

is a well known stylized fact. Moreover, no details are provided about fore-249

casting methodology as well as for predictive accuracy comparison.250

Thus, although some first attempts in providing out-of-sample compar-251

isons are available in the literature, most of them do not consider the skew-252

ness into the models. Moreover, the forecasting methodologies are sometimes253

presented without details and the predictive accuracy comparisons are not254

showed. In this sense, a comprehensive out-of-sample comparison seems to255

be still needed.256

This paper is in line with the quoted contributions under the point of257

view of the scientific ground. However, it departs from them by trying to fix258

the mentioned limitations.259

4. Data and methodology260

The dataset contains the logarithm of last five-year daily exchange rates261

data (from March 2014 to March 2019) on the Bitfinex quotes for the most262

important cryptocurrencies: Bitcoin, Ethereum and Litecoin. In particular,263

we have selected the daily exchange rates with US Dollar (see Figures 2, 4264

and 6), since such bilateral exchange rates are the most studied by previous265

literature due to data availability; moreover, they are also the most traded266

over the international stock markets. Data have been retrieved from the267

websites investing.com and www.bitfinex.com.268

Since exchange rate time series are not stationary, we consider their re-269

turns as the ratio of the logarithm exchange rate values of two subsequent270

dates. We denote by ERt the logarithm of exchange rate value at time t.271

Then, the log-return rt between t− 1 and t is computed as follows:272

rt =
ERt

ERt−1

The main descriptive statistics of the excahnge rates are showed in Table273

1.274
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Table 1: Main descriptive statistics

Bitcoin/USD exchange rate
Mean St. Dev. Skewness Kurtosis Observations
0.001065531 0.04023251 -0.487245 7.45269 1811
Ethereum/USD exchange rate
Mean St. Dev. Skewness Kurtosis Observations
0.002270923 0.06223848 -0.01642235 2.844286 1086
Litecoin/USD exchange rate
Mean St. Dev. Skewness Kurtosis Observations
0.002243284 0.05885434 1.50961 12.89685 1481

However, the focus of the present study is related to the estimation of275

the parameters and to the volatility forecasting under Skewed non Gaussian276

models. In order to deal with our problem, a number of GARCH models for277

each exchange rate under several non Gaussian and Skewed distributions are278

proposed (see Table 2).279

Table 2: Overview on implemented GARCH(1,1) models and their extensions

Models
GARCH
GJR-GARCH
Treshold GARCH (TGARCH)
Exponential GARCH (EGARCH)
Integrated GARCH (IGARCH)
Asymmetric Power ARCH (APARCH)

Moreover, we consider also several GARCH-type specifications, account-280

ing for asymmetry and non-linearity (Table 3). Therefore, overall we compare281

for each exchange rate 36 models.282
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Table 3: Overview on distributional assumptions for GARCH-type models

Distributional assumptions
Normal distribution
t-student distribution
Generalized Error Distribution
Skew Normal distribution
Skew t-student distribution
Skew Generalized Error Distribution

All the models are fitted as being of GARCH(1,1) type, since in the283

practice this is the most convenient and parsimonous choice. This said, we284

also seek for the most appropriate selection of the GARCH model for the285

mean equation. In this direction, an automatic procedure involving several286

ARIMA models with the aim of selecting the one with the lowest Akaike287

Information Criterion (Table 4) for all the considered cryptocurrencies has288

been implemented.289

Table 4: Results from mean equation process

Exchange rate ARIMA model
BTC/USD AR(2)
ETH/USD ARMA(4,3)
LTC/USD ARMA(2,2)

Then, to evaluate which model gives in general a better specification in290

terms of goodness of fit and information, we consider the Akaike Information291

Criterion (AIC), that is one of the most used criteria at this aim (see e.g.292

Wilhelmsson [45]).293

In the end, the goodness of the performance of the volatility forecast has294

been tested.295

The approach used in the forecasting exercise is of rolling window type.296

In particular, for all the considered exchange rates, we split the dataset in297

training and testing sets. While in the training phase we fit the model,298

for the testing period we implement the forecasting procedure and compare299

its results with the actual available realizations through some loss functions’300

values. The testing set is composed of the last 200 observations of the dataset.301

In the rolling window approach, windows are shifted by one date.302
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As a preliminary step, we identify the loss functions to be used. Among303

them, we reasonably include the Mean Square Error (MSE), which is the304

most popular one. Moreover, Patton [38] found that the MSE is the most305

robust loss function when used to compare volatility forecasting models.306

However, it is well-known that MSE can be possibly inflated by the pres-307

ence of outliers; thus, we take into account also the Mean Absolute Error308

(MAE) [3] and the Root Mean Square Error (RMSE) [39].309

To present more robust results, we have compared the predictive accuracy310

of the forecasts according to the above mentioned loss functions by using a311

statistical test. In particular, to serve this scope, we have implemented the312

test in Diebold and Mariano [19]. The Diebold and Mariano [19] test assesses313

wheter the forecasts of two different models statistically differ in terms of314

predictive accuracy. Only when two models provide statistically different315

forecasts, we would be able to correctly disentangle what is the best one316

from the predictive point of view. Hence, a brief presentation of the testing317

procedure is nedeed.318

Consider two different statistical models A and B. We can define the
forecast errors as follows:

eA,t = ŷA,t − yt
and

eB,t = ŷB,t − yt,
where ŷA,t and ŷB,t are the predictions of models A and B, respectively, and
yt is the actual observed value. Now, consider a generic loss function g to
be applied to the prediction error. The Diebold and Mariano [19] procedure
tests wheter the difference in forecasting accuracy is equal or different from
zero. Formally, we define the difference in forecasting accuracy as:

dt = g(eA,t)− g(eB,t).

Under the null hypotesis of equal predictive accuracy we have that:

E(dt) = 0,

while under the alternative hypotesis we have:

E(dt) 6= 0.

It is worth mentioning that the test statistics follow a standard normal dis-319

tribution under the null hypotesis.320
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5. Empirical experiments321

We here presents a validation of the theoretical setting, by dealing with322

some empirical exercises. As preannounced above, we propose the study of323

the exchange rates of three among the most popular cryptocurrencies – i.e.,324

three of the ones with the highest market capitalizations: Bitcoin, Ethereum325

and Litecoin – with the USD – which represents a worldwide acknowledge326

reference currency. This said, the empirical sample seems to be particularly327

representative of the exchange rates of cryptocurrencies with physical ones.328

The selection of the cryptocurrencies is based not only on their relevance in329

terms of market capitalization, but also on data availability.330

The results of the investigations are presented by distinguishing the dif-331

ferent cryptocurrencies, for the sake of clarity.332

5.1. Bitcoin data333

The first experiment is conducted on the most important cryptocurrency334

in terms of market capitalization (https://coinmarketcap.com). In particu-335

lar, we study the dynamics of the exchange rate with US Dollars.336

Figure 2: Bitcoin/US Dollar exchange rate versus its returns.
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In order to prove that the data are non-normally distributed, we have337

performed the Jarque-Bera test for normality. The result of the Jarque-Bera338

test is 4275.932 with a null p-value, which means that we can reject the null339

hypothesis that residuals follow a normal distribution. These results confirm340

the reason of the alternative distribution based GARCH model adoption341

instead of a Gaussian GARCH model.342

So, by proceeding with the parameter estimation of the standard GARCH(1,1)343

model based on normality, we found the results collected in Table 5.344

Table 5: Estimation from Gaussian GARCH(1,1) model

Coefficient Standard Error
ω 0.000058 0.000058
α 0.110905*** 0.023857
β 0.861032*** 0.029985

Note: *** means significance at 1%, ** at 5% and * at 10%, standard errors are

computed as robust.

After the parameters estimation, we have analyzed also the Q-Q plot of345

standardized residuals to see if normality assumption holds for the specified346

model (Fig. 3).347

Considering the residuals shape in the plot, the normality assumption348

seems to be violated. This result give us an additional element to apply349

another distributional assumption in GARCH(1,1) model for the volatility350

analysis.351
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Figure 3: Q-Q plot of standardized residuals from Gaussian GARCH(1,1).

On the light of these results, we have estimated the parameters for all the352

alternative methods, founding that all parameters are significant and that353

the standard errors are smaller in the GED-based GARCH models than in354

the other alternative ones.355

Indeed, among the alternative models, the one with lowest standard errors356

is the Skewed GED-GARCH. Results are showed in the Table 6.357

Table 6: Results from the alternative GARCH(1,1) models

Skew Normal t-student Skew t-student GED Skew GED
ω 0.000056* 0.000023* 0.000023* 0.000024** 0.000024**

(0.000034) (0.000015) (0.000015) (0.000012) (0.000009)
α 0.116420*** 0.145805*** 0.146566*** 0.139268*** 0.140590***

(0.023344) (0.021306) (0.021620) (0.023730) (0.020849)
β 0.857186*** 0.853195*** 0.852434*** 0.859724*** 0.858406***

(0.029306) (0.030470) (0.030652) (0.025555) (0.019411)

Note: *** means significance at 1%, ** at 5% and * at 10%, robust standard

errors in parenthesis.

We have estimated parameters also for the other considered GARCH(1,1)-358

type as in Table 2, finding the same results. After the parameter estimation,359

we have assessed also for model specification (see Tables 7 and 8). Indeed,360
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following the AIC and BIC criteria, it is clear that we cannot obtain a good361

specification with a normality-based GARCH model.362

In particular, it is clear that better results in terms of specification are363

obtained when considering skewed distributions. Moreover, relaxing the stan-364

dard GARCH(1,1) specification allows us to obtain a better data fitting, since365

the lowest AIC and BIC values are associated to the Treshold GARCH(1,1).366

Nevertheless, in order to assess for the best model, the forecasting perfor-367

mances have been also considered. The quality of the forecast is evaluated368

in Tables 9 and 10.369

Table 7: Information criteria for all GARCH models
Distribution AIC BIC
GARCH(1,1)
Normal -3.7751 -3.7567
Skew Normal -3.7919 -3.7704
t-student -4.0834 -4.0619
Skew t-student -4.0827 -4.0582
GED -4.0796 -4.0581
Skew GED -4.0787 -4.0542
GJR-GARCH(1,1)
Normal -3.7471 -3.7237
Skew Normal -3.7619 -3.7351
t-student -4.0454 -4.0187
Skew t-student -4.0446 -4.0145
GED -4.0410 -4.0142
Skew GED -4.0397 -4.0542
T-GARCH(1,1)
Normal -3.7536 -3.7302
Skew Normal -3.7600 -3.7332
t-student -4.0630 -4.0363
Skew t-student -4.0621 -4.0320
GED -4.0821 -4.0873
Skew GED -4.0844 -4.0844

Note: AIC and BIC are Akaike Information Criterion and Bayesian Information

Criterion, respectively. The lowest value is associated to the best fitting.
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Table 8: Information criteria for all GARCH models
Distribution AIC BIC
E-GARCH(1,1)
Normal -3.7714 -3.7480
Skew Normal -3.7812 -3.7545
t-student -4.0596 -4.0328
Skew t-student -4.0586 -4.0285
GED -4.0490 -4.0223
Skew GED -4.0478 -4.0177
I-GARCH(1,1)
Normal -3.7455 -3.7288
Skew Normal -3.7619 -3.7418
t-student -4.0477 -4.0277
Skew t-student -4.0433 -4.0233
GED -4.0490 -4.0223
Skew GED -4.0421 -4.0187
AP-ARCH(1,1)
Normal -3.7527 -3.7260
Skew Normal -3.7622 -3.7322
t-student -4.0580 -4.0279
Skew t-student -4.0614 -4.0279
GED -4.0477 -4.0176
Skew GED -4.0477 -4.0176

Note: AIC and BIC are Akaike Information Criterion and Bayesian Information

Criterion, respectively. The lowest value is associated to the best fitting.
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Table 9: Volatility forecasting performance for GARCH(1,1)-type models

Distribution MSE MAE RMSE
GARCH(1,1)
Normal† 0.00126238 0.03411553 0.03553010
Skew Normal 0.00124281*** 0.03379684*** 0.03525351***
t-student 0.00118389*** 0.03217911*** 0.03440784***
Skew t-student 0.00118247*** 0.03215938*** 0.03438717***
GED 0.00118126*** 0.03220527*** 0.03436953***
Skew GED 0.00118058*** 0.03219489*** 0.03435968***
GJR-GARCH(1,1)
Normal 0.00130525*** 0.03455626*** 0.03612829***
Skew Normal 0.00125908 0.03397627 0.03548353
t-student 0.00115346*** 0.03181912*** 0.03396266***
Skew t-student 0.00115211*** 0.03179883*** 0.03394274***
GED 0.00115846*** 0.03194733*** 0.03403623***
Skew GED 0.00115839*** 0.0.03194536*** 0.03403522***
T-GARCH(1,1)
Normal 0.00132715*** 0.03446651*** 0.03643012***
Skew Normal 0.00128298 0.03393094 0.03581883
t-student 0.00163671*** 0.03723041*** 0.04045636***
Skew t-student 0.00164403*** 0.03730592*** 0.04054673***
GED 0.00012554*** 0.01008683*** 0.01120463***
Skew GED 0.00012554*** 0.01008683*** 0.01120463***

Note: *** means significance at 1%, ** at 5% and * at 10%, otherwise no

significance for Diebold and Mariano [19] test of predictive accuracy compared

with GARCH(1,1) under normal distribution († recognizes the benchmark

model). Under the null we have equal predictive accuracy.
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Table 10: Volatility forecasting performance for GARCH(1,1)-type models

Distribution MSE MAE RMSE
E-GARCH(1,1)
Normal 0.00130713*** 0.03439897*** 0.03615426***
Skew Normal 0.00126637 0.03387139 0.03558617
t-student 0.00158607*** 0.03712476*** 0.03982559***
Skew t-student 0.00158640*** 0.03712274*** 0.03982965***
GED 0.00116151*** 0.03200013*** 0.03408098***
Skew GED 0.00116034*** 0.03199197*** 0.03406389***
I-GARCH(1,1)
Normal 0.00134033*** 0.03480408*** 0.03661061***
Skew Normal 0.00132019*** 0.03449638*** 0.03633453***
t-student 0.00118959*** 0.03224817*** 0.03449057***
Skew t-student 0.00118813*** 0.03222796*** 0.03446932***
GED 0.00118639*** 0.03226152*** 0.03444404***
Skew GED 0.00118593*** 0.03225488*** 0.03443746***
AP-ARCH(1,1)
Normal 0.00132362*** 0.03449170*** 0.03638171***
Skew Normal 0.00126376 0.03392030 0.03554941
t-student 0.00151351*** 0.03535722*** 0.03890392***
Skew t-student 0.00163545*** 0.03712063*** 0.04044070***
GED 0.00118879*** 0.03199220*** 0.03447897***
Skew GED 0.001159*** 0.031805*** 0.057321***

Note: *** means significance at 1%, ** at 5% and * at 10%, otherwise no

significance for Diebold and Mariano [19] test of predictive accuracy compared

with GARCH(1,1) under normal distribution. Under the null we have equal

predictive accuracy.

The predictive accuracy test of Diebold and Mariano [19] is reported –370

along with forecast errors – for all the models against the selected benchmark,371

i.e. the Gaussian standard GARCH model.372

In the evaluation step, most of the models not only differ from the stan-373

dard Gaussian GARCH but also outperform it. These results confirm the374

previous findings of Mattera and Giacalone [33].375

In the experiments, the model with the lowest value of its loss function376

is the Threshold GARCH model based on Skewed Generalized Error Distri-377

bution.378
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Moreover, we have also investigated the difference in predictive accuracy379

of the skewed models when compared with the not skewed ones. In particular,380

we focus our attention to the differences between t-student and GED based381

alternatives for all the GARCH-type models (see Table 11), especially on the382

light of the findings of the previous tables.383

Indeed, Skewed Normal models, for most of the alternative GARCH-type384

specifications, have the same predictive accuracy of the simple GARCH(1,1)385

based on Gaussian distribution. This is precisely the reason for which we do386

not consider them in this case.387

Table 11: Predictive accuracy test between skewed and not skewed models

Distributions
GARCH(1,1) Skewed t-student Skewed GED
t-student 3.7346*** 1.6782*
GED -0.59961 6.4659***
GJR-GARCH(1,1) Skewed t-student Skewed GED
t-student 3.9013*** -3.4718***
GED 3.8543*** 0.03387139
T-GARCH(1,1) Skewed t-student Skewed GED
t-student -8.2745*** 17.352***
GED -17.327*** 0
E-GARCH(1,1) Skewed t-student Skewed GED
t-student -0.56007 3.9004***
GED -16.334*** 16.284***
I-GARCH(1,1) Skewed t-student Skewed GED
t-student 3.8079*** 1.9074*
GED -0.88552 5.6451***
AP-ARCH(1,1) Skewed t-student Skewed GED
t-student -5.6859*** 24.231***
GED -13.888*** 23.58***

Note: the reported values are associated to the results of Diebold and Mariano

[19] test statistic under MSE loss function. *** means significance at 1%, ** at

5% and * at 10%, otherwise no significance. Under the null we have equal

predictive accuracy.

According to results in Table 11, in only one case we have equal predictive388

accuracy between the classical t-student and its skewed extension (in the389
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case og GJR-GARCH specification) and for GED and Skewed GED (for E-390

GARCH). Nevertheless, in most of the other cases, we do not obtain a similar391

predictive accuracy. Moreover, one can easily notice remarkable discrepancies392

among different distributional families (e.g. t-student versus Generalized393

Error Distribution).394

So, overall, forecasts obtained with skewed distribution statistically differ395

from the ones obtained from the same GARCH-type models but under not396

skewed distributions. According to results in Tables 9 and 10, it is clear that397

skewed models outperform not skewed ones for Bitcoin data; moreover, the398

most accurate forecasting method is the SGED-T-GARCH.399

5.2. Ethereum data400

The second experiment is conducted on the second cryptocurrency in401

terms of market capitalization (https://coinmarketcap.com). As in the first402

application, we study the dynamics of the exchange rate with US Dollars.403

Figure 4: Ethereum/US Dollar exchange rate versus its returns.

As the previous experiment, the first step of is to assess for the models404

specification and parameters estimation.405
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However, again, we have to show first that GARCH(1,1) models with al-406

ternative distributions are more effective in modeling than the simple GARCH(1,1),407

when the returns follow a Gaussian distribution.408

Also in this case, data are non-normally distributed according to the409

Jarque-Bera test for normality. The resulting test statistic is 368.8993 with410

a p-value close to zero, which means that we can reject the null hypothesis411

that residuals follow a normal distribution.412

These results allow us to specify an alternative distribution-based GARCH413

model instead of a Gaussian GARCH one.414

So, by proceeding with the parameters estimation of the standard normal415

GARCH(1,1), we found the results reported in Table 12.416

Table 12: Estimation for Gaussian GARCH(1,1) model

Coefficient Standard Error
ω 0.000350** 0.000350**
α 0.000350** 0.039690
β 0.767006*** 0.062498

Note: *** means significance at 1%, ** at 5% and * at 10%, standard errors are

computed as robust.

We have analyzed also the Q-Q plot of standardized residuals (Figure417

5). By considering the residuals shape in the plot, the normality assumption418

seems to be violated. This result gives us an additional element to employ419

a modification of the standard normal GARCH(1,1) model for the volatility420

analysis.421

Figure 5: Q-Q plot of standardized residuals from Gaussian GARCH(1,1).

On the light of these results, we have estimated the parameters for all422

the alternative methods. Also from this second experiment, we found all sig-423
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nificant parameters and smaller standard errors in the GED-based GARCH424

models than to the alternatives ones. The results are shown in the Table 13.425

Table 13: Results from the alternative GARCH(1,1) models

Skew Normal t-student Skew t-student GED Skew GED
ω 0.000349*** 0.000225** 0.000221** 0.000219* 0.000211***

(0.000152) (0.000109) (0.000104) (0.000090) (0.000043)
α 0.140882*** 0.203371*** 0.197759*** 0.169869*** 0.164906***

(0.039668) (0.045492) (0.043893) (0.042117) (0.015247)
β 0.767360*** 0.795629*** 0. 801241*** 0.794239*** 0.802947***

(0.062097) (0.044750) (0.042540) (0.043910) (0.017428)

Note: *** means significance at 1%, ** at 5% and * at 10%, robust standard

errors in parenthesis.

After the parameters estimation, we have assessed also for model specifi-426

cation trough an in-sample analysis (see Tables 14 and 15).427

Indeed, following the AIC and BIC criteria, it is clear that a GARCH-428

type model based on normality fails in obtaining a good in-sample fitting. In429

particular, with the GED-GARCH(1,1) model, we obtain the smallest value430

and therefore the best fit.431

This conclusion applies for all the alternative GARCH-type models, where432

almost always GED-based GARCH models provide the best in-sample perfor-433

mances. More precisely, the GED-based I-GARCH model is the best fitting434

one, even if GJR-GARCH and T-GARCH alternatives have close information435

criteria values.436
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Table 14: Information criteria for all GARCH models
Distribution AIC BIC
GARCH(1,1)
Normal -2.8333 -2.7739
Skew Normal -2.8326 -2.7678
t-student -2.9276 -2.8628
Skew t-student -2.9275 -2.8572
GED -2.9670 -2.9022
Skew GED -2.9672 -2.8970
GJR-GARCH(1,1)
Normal -2.8310 -2.7662
Skew Normal -2.8304 -2.7601
t-student -2.9259 -2.8556
Skew t-student -2.9257 -2.8501
GED -2.9702 -2.9000
Skew GED -2.9650 -2.8894
T-GARCH(1,1)
Normal -2.8125 -2.7477
Skew Normal -2.8086 -2.7383
t-student -2.9255 -2.8552
Skew t-student -2.9255 -2.8499
GED -2.9615 -2.8912
Skew GED -2.9571 -2.8815

Note: AIC and BIC are Akaike Information Criterion and Bayesian Information

Criterion, respectively. The lowest value is associated to the best fitting.
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Table 15: Information criteria for all GARCH models
Distribution AIC BIC
E-GARCH(1,1)
Normal -2.8339 -2.7691
Skew Normal -2.8324 -2.7622
t-student -2.9320 -2.8618
Skew t-student -2.9319 -2.8562
GED -2.9685 -2.8983
Skew GED -2.9679 -2.8923
I-GARCH(1,1)
Normal -2.8282 -2.7741
Skew Normal -2.8275 -2.7681
t-student -2.9299 -2.8704
Skew t-student -2.9297 -2.8649
GED -2.9680 -2.9086
Skew GED -2.9670 -2.9022
AP-ARCH(1,1)
Normal -2.8287 -2.7585
Skew Normal -2.8324 -2.7568
t-student -2.9248 -2.8492
Skew t-student -2.9248 -2.8437
GED -2.9632 -2.8875
Skew GED -2.9674 -2.8863

Note: AIC and BIC are Akaike Information Criterion and Bayesian Information

Criterion, respectively. The lowest value is associated to the best fitting.

However, in order to detect the best performing model, we consider also437

in this case the forecasting performances. The quality of the forecast is438

evaluated in Tables 16 and 17.439
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Table 16: Volatility forecasting performance for GARCH(1,1)-type models

Distribution MSE MAE RMSE
GARCH(1,1)
Normal† 0.003045198 0.05388708 0.05518331
Skew Normal 0.003042917* 0.05384609 0.05516265
t-student 0.003651810*** 0.05863692*** 0.06043021***
Skew t-student 0.003672101*** 0.05885401*** 0.06059786***
GED 0.003218927*** 0.05517174*** 0.05673559***
Skew GED 0.003234109*** 0.05532379*** 0.05686923***
GJR-GARCH(1,1)
Normal 0.003036255 0.05378802 0.05510222
Skew Normal 0.003041529*** 0.05383584*** 0.05515006***
t-student 0.003676746*** 0.05876707*** 0.06063618***
Skew t-student 0.003691336*** 0.05893010*** 0.06075637***
GED 0.003327975*** 0.05595303*** 0.05768861***
Skew GED 0.003314663*** 0.05585799*** 0.05757311***
T-GARCH(1,1)
Normal 0.002913599*** 0.05257935*** 0.05397777***
Skew Normal 0.002896731*** 0.05242472*** 0.05382128***
t-student 0.003653328*** 0.05846574*** 0.06044277***
Skew t-student 0.003675612*** 0.05869657*** 0.06062683***
GED 0.003101052 0.05400137 0.05568709
Skew GED 0.003106676 0.05416085 0.05573757

Note: *** means significance at 1%, ** at 5% and * at 10%, otherwise no

significance for Diebold and Mariano [19] test of predictive accuracy compared

with GARCH(1,1) under normal distribution († recognizes benchmark model).

Under the null we have equal predictive accuracy.
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Table 17: Volatility forecasting performance for GARCH(1,1)-type models

Distribution MSE MAE RMSE
E-GARCH(1,1)
Normal 0.002973416* 0.05320498 0.05452904
Skew Normal 0.002954408* 0.05298161 0.05435446
t-student 0.003675423*** 0.05876958*** 0.06062527***
Skew t-student 0.003674148*** 0.05880266*** 0.06061475***
GED 0.003253827*** 0.05546392*** 0.05704232***
Skew GED 0.003141111*** 0.05452894*** 0.05604561***
I-GARCH(1,1)
Normal 0.003397301*** 0.05626348*** 0.05828637***
Skew Normal 0.003389157*** 0.05619944*** 0.05821647***
t-student 0.003663309*** 0.05872274*** 0.06052528***
Skew t-student 0.003684441*** 0.05894666*** 0.06069960***
GED 0.003472444*** 0.05693766*** 0.05892745***
Skew GED 0.003474597*** 0.05699587*** 0.05894571***
AP-ARCH(1,1)
Normal 0.003037838 0.05380121 0.05511659
Skew Normal 0.003065280 0.05395187 0.05536497
t-student 0.003672891*** 0.05874602*** 0.06060438***
Skew t-student 0.003677610*** 0.05883103*** 0.06064330***
GED 0.003183758*** 0.05485659*** 0.05642480***
Skew GED 0.003285759*** 0.05563557*** 0.05732154***

Note: *** means significance at 1%, ** at 5% and * at 10%, otherwise no

significance for Diebold and Mariano [19] test of predictive accuracy compared

with GARCH(1,1) under normal distribution. Under the null we have equal

predictive accuracy.

In evaluating the forecasting performances, the best model is the GARCH(1,1)440

one based on Skew Normal distribution, even if according to the alternative441

loss functions MAE and RMSE the differences in predictive accuracy with442

respect to the Gaussian GARCH(1,1) are not statistically significant.443

According to Diebold and Mariano [19] test of predictive accuracy, most444

of the models statistically differ and outperform the selected benchmark.445

Comparing, instead, predictive accuracy between skewed and not skewed446

models, we found that the Gaussian distribution is not statistically different447

in most of cases from its skewed extension. The same applies for GED. For448
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t-student distribution family, this indifference applies three times (see Table449

18).450

Table 18: Predictive accuracy test between skewed and not skewed models

Distributions
GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 1.842 -19.264*** -9.2617***
t-student 17.904*** -4.2316*** 18.118***
GED 8.7561*** -23.986*** -2.2306**
GJR-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal -0.66937 -16.009*** -8.8147***
t-student 15.909*** -3.01*** 18.939***
GED 8.9696*** -19.772*** 1.2921
T-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 1.3294 -18.205*** -7.587***
t-student 17.53*** -4.3987*** 17.797***
GED 9.1048*** -23.623*** -0.54245
E-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 4.0673*** -17.724*** -7.9424***
t-student 17.875*** 0.26758 19.978***
GED 9.1048*** -15.898*** 6.0024***
I-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 3.5548*** -18.606*** -3.5098***
t-student 17.23*** -4.3958 19.325***
GED 4.1211*** -28.818*** -0.3609***
AP-ARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal -1.7257* -16.211 -8.2565
t-student 13.938*** -0.87949 11.925***
GED 4.2151** -20.184*** -5.3566***

Note: the reported values are associated to the results of Diebold and Mariano

[19] test statistic under MSE loss function. *** means significance at 1%, ** at

5% and * at 10%, otherwise no significance. Under the null we have equal

predictive accuracy.

Nevertheless, we can recognize significant differences between alterna-451

tive distribution families. In this sense, the predictive accuracy test reveals452

statistically different forecasts between t-student versus Generalized Error453
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Distribution, as well as differences between their skewed extensions.454

In conclusion, even if in this experiment Skewed GED is not the distri-455

butional assumption related to most performing model for both in-sample –456

for which it represents the best assumption – and out-of-sample analysis –457

where the skewed normal distribution is as the best one–, it is surely the best458

alternative in capturing heavy-tails and skewness in returns.459

5.3. Litecoin data460

The last experiment is conducted on a cryptocurrency with a lower mar-461

ket capitalization. Indeed, Litecoin is the fifth ranked cryptocurrency in462

terms of market capitalization. Nevertheless, also Litecoin is also one of the463

cryptocurrencies with the highest volumes (https://coinmarketcap.com). As464

in the first application, we study the dynamics of the exchange rate with US465

Dollars.466

Figure 6: Litecoin/US Dollar exchange rate versus its returns.

As for the other two experiments, the first step is to assess for the model467

specification and parameters estimation, proving that data are not normally468

distributed.469

The result of the Jarque-Bera test is 10861.76 with a p-value close to zero,470

which means that we can reject the null hypothesis that residuals follow a471
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normal distribution also in this case. So, these results allow us to specify a472

GARCH model based on alternative distributions instead of a Gaussian-type473

GARCH model.474

Then, proceeding with the parameters estimation of the standard GARCH(1,1)475

model based on normality, we found the results for variance equation repre-476

sented in Table 19.477

Table 19: Estimation for Gaussian GARCH(1,1) model

Coefficient Standard Error
ω 0.000091* 0.000050
α 0.061723*** 0.017813
β 0.916084*** 0.016773

Note: *** means significance at 1%, ** at 5% and * at 10%, standard errors are

computed as robust.

After the estimation of the parameters, we have analyzed also the Q-Q478

plot of standardized residuals to test if normality assumption holds for the479

specified model (see Figure 7).480

Considering the residuals shape in the plot, the normality assumption481

seems again to be violated. Therefore we can estimate alternative GARCH(1,1)482

models for the volatility.483

Figure 7: Q-Q plot of standardized residuals from Gaussian GARCH(1,1).
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In so doing, we recognize the GARCH(1,1) model under Skewed GED484

assumption as the one with the best estimates. The results are shown in the485

Table 20.486

Table 20: Results from the alternative GARCH(1,1) models

Skew Normal t-student Skew t-student GED Skew GED
ω 0.000062 0.000009 0.000009 0.000019 0.000016**

(0.000051) (0.000007) (0.000007) (0.000014) (0.000005)
α 0.065986 0.081975*** 0.081785*** 0.080730*** 0.078319***

(0.090440) (0.012143) (0.012529) (0.017486) (0.002721)
β 0.920405*** 0.917025*** 0.917215*** 0.918269*** 0.920676***

(0.026676) (0.016637) (0.016865) (0.018805) (0.006666)

Note: *** means significance at 1%, ** at 5% and * at 10%, robust standard

errors in parenthesis.

The in-sample analysis has been also implemented (see Table 20). The487

most noticeable result is that Gaussian GARCH models arise as the ones488

with worst fitting.489

Among the wide class of considered models, the skewed distributions show490

the most accurate fitting in terms of the in-sample analysis (see Tables 21491

and 22). More precisely, the t-student family slightly outperforms the GED492

in this case.493
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Table 21: Information criteria for all GARCH models
Distribution AIC BIC
GARCH(1,1)
Normal -3.0264 -2.9942
Skew Normal -3.1300 -3.0938
t-student -3.6336 -3.5974
Skew t-student -3.6348 -3.5945
GED -3.5979 -3.5617
Skew GED -3.6059 -3.6059
GJR-GARCH(1,1)
Normal -3.0740 -3.0378
Skew Normal -3.1063 -3.0661
t-student -3.6381 -3.5979
Skew t-student -3.6397 -3.5954
GED -3.6007 -3.5604
Skew GED -3.6091 -3.5648
T-GARCH(1,1)
Normal -3.0904 -3.0541
Skew Normal -3.1395 -3.0993
t-student -3.6523 -3.6121
Skew t-student -3.6551 -3.6108
GED -3.2298 -3.1895
Skew GED -3.2282 -3.1840

Note: AIC and BIC are Akaike Information Criterion and Bayesian Information

Criterion, respectively. The lowest value is associated to the best fitting.
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Table 22: Information criteria for all GARCH models
Distribution AIC BIC
E-GARCH(1,1)
Normal -3.0848 -3.0485
Skew Normal -3.1426 -3.1023
t-student -3.6536 -3.6134
Skew t-student -3.6550 -3.6107
GED -3.6094 -3.6094
Skew GED -3.6159 -3.5716
I-GARCH(1,1)
Normal -3.0150 -2.9869
Skew Normal -3.0836 -3.0514
t-student -3.6356 -3.6034
Skew t-student -3.6368 -3.6006
GED -3.5987 -3.5665
Skew GED -3.6077 -3.5714
AP-ARCH(1,1)
Normal -3.0968 -3.0566
Skew Normal -3.1063 -3.0620
t-student -3.6512 -3.6069
Skew t-student -3.6533 -3.6050
GED -3.6031 -3.5589
Skew GED -3.6174 -3.5691

Note: AIC and BIC are Akaike Information Criterion and Bayesian Information

Criterion, respectively. The lowest value is associated to the best fitting.

In the out-of-sample analysis we evaluate the forecasting accuracy of the494

models. The resulting quality of the forecasts is presented in Tables 23 and495

24.496
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Table 23: Volatility forecasting performance for GARCH(1,1)-type models

Distribution MSE MAE RMSE
GARCH(1,1)
Normal† 0.00282721 0.05242887 0.05317154
Skew Normal 0.00296847*** 0.05335918*** 0.05448375***
t-student 0.00258173*** 0.04935203*** 0.05081074***
Skew t-student 0.00258301*** 0.04937885*** 0.05082340***
GED 0.00268209*** 0.05038674*** 0.05178890***
Skew GED 0.00266673*** 0.05030135*** 0.05164048***
GJR-GARCH(1,1)
Normal 0.00696783*** 0.07863949*** 0.08347354***
Skew Normal 0.00246737*** 0.04811665*** 0.04967271***
a t-student 0.00249264*** 0.04807516*** 0.04992636***
Skew t-student 0.00251334*** 0.04828849*** 0.05013326***
GED 0.00257018*** 0.04883740*** 0.05069703***
Skew GED 0.00255713*** 0.04882139*** 0.05056816***
T-GARCH(1,1)
Normal 0.00267514** 0.04984761*** 0.05172182***
Skew Normal 0.00261596*** 0.04940308*** 0.05114654***
t-student 0.00518997*** 0.06872743*** 0.07204149***
Skew t-student 0.00514140*** 0.06845046*** 0.07170361***
GED 0.00032376*** 0.01690694*** 0.01799348***
Skew GED 0.00032376*** 0.01690694*** 0.01799348***

Note: *** means significance at 1%, ** at 5% and * at 10%, otherwise no

significance for Diebold and Mariano [19] test of predictive accuracy compared

with GARCH(1,1) under normal distribution († recognizes the benchmark

model). Under the null we have equal predictive accuracy.
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Table 24: Volatility forecasting performance for GARCH(1,1)-type models

Distribution MSE MAE RMSE
E-GARCH(1,1)
Normal 0.00267379** 0.04984862*** 0.05170876***
Skew Normal 0.00267408** 0.04998585*** 0.05171157***
t-student 0.00554498*** 0.07152296*** 0.07446465***
Skew t-student 0.00541826*** 0.07078403*** 0.07360889***
GED 0.00281408 0.05095062 0.05304798
Skew GED 0.00278774 0.05082947 0.05279906
I-GARCH(1,1)
Normal 0.00335146*** 0.05686214*** 0.05789184***
Skew Normal 0.00323004*** 0.05574411*** 0.05683350***
t-student 0.0026129*** 0.04965375*** 0.05111710***
Skew t-student 0.00261471*** 0.04968532*** 0.05113428***
GED 0.00267455*** 0.05031714*** 0.05171611***
Skew GED 0.00270490*** 0.05062640*** 0.05200872***
AP-ARCH(1,1)
Normal 0.00278435 0.05031387 0.05276699
Skew Normal 0.00280012 0.05124268 0.05291620
t-student 0.00488870*** 0.06695473*** 0.06991931***
Skew t-student 0.00488501*** 0.06693791*** 0.06989290***
GED 0.00271051 0.04950270 0.05206259
Skew GED 0.00282363 0.05086309 0.05313789

Note: *** means significance at 1%, ** at 5% and * at 10%, otherwise no

significance for Diebold and Mariano [19] test of predictive accuracy compared

with GARCH(1,1) under normal distribution. Under the null we have equal

predictive accuracy.

For Litecoin data, the evaluation of the forecasting performance allows497

us to identify the best distribution assumption as the Skewed GED, even if –498

as we already said above – the in-sample analysis provides slightly different499

results. This finding is in line with the one related to Bitcoin data. Therefore,500

still a skewed model guarantees better forecasting performances.501

In the end, we provide an evaluation of difference in predictive accuracy502

between skewed and not skewed models for all the alternatives GARCH(1,1)-503

type specifications (Table 25).504
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Table 25: Predictive accuracy test between skewed and not skewed models

Distributions
GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal -4.296*** 9.9645*** 7.0772***
t-student -12.58*** -0.68621 -16.489***
GED -9.0973*** 35.158*** 2.7805***
GJR-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 16.335*** 16.456*** 16.182***
t-student 0.89782 -24.887*** -26.619***
GED 4.1846*** 14.032*** 2.5137**
T-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 6.4152*** -18.681*** 24.202***
t-student 18.674*** 9.6102*** 23.14***
GED -25.389*** -23.225*** 0
E-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 0.086513 -21.826*** -2.829***
t-student 22.024*** 15.192*** 24.175***
GED 4.7704*** -25.508*** 4.6938***
I-GARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal 16.24*** 73.784*** 58.138***
t-student -54.1*** -1.01 -23.037***
GED -44.075*** 19.634*** -6.7331***
AP-ARCH(1,1) Skewed Normal Skewed t-student Skewed GED
Normal -0.57657 -18.925*** -1.0195
t-student 17.145*** 1.0763 22.527***
GED -2.5253** -21.708*** -5.1806***

Note: the reported values are associated to the results of Diebold and Mariano

[19] test statistic under MSE loss function. *** means significance at 1%, ** at

5% and * at 10%, otherwise no significance. Under the null we have equal

predictive accuracy.

According to this experiment, the Skew t-student distribution fails to505

provide statistically different forecasts compared to its symmetric version,506

while for the other two families of distributions – i.e., Gaussian and GED –507

the converse situation applies.508

Indeed, we can argue that Skewed Normal/GED statistically outperforms509

the standard Gaussian/GED. Moreover, the Skewed GED provides the best510
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forecast accuracy among all the other alternatives.511

6. Further robustness checks512

In this section we provide evidence of robustness about the results pre-513

sented in the previous Section. We consider first changes in forecasting514

scheme and testing set.515

Previous results are based on rolling window scheme; therefore, we here516

present robustness according to a recursive scheme.517

Moreover, we provide also evidence of robustness of the obtained findings518

by changing the length of the testing set.519

Then, in the last subsection, we present alternative forecasting models of520

non GARCH-type and apply them for volatility prediction purposes. In so521

doing, we give further support to our methological proposal. Indeed, as we522

will see below, all the considered models underperform the best one we found523

within the GARCH-type framework, in all the analyzed cases of exchange524

rates between cryptocurrencies and USD.525

6.1. Forecasting with recursive approach526

The idea of the recursive approach is quite similar to the rolling window,527

with a remarkable distinction. Indeed, in the recursive approach we firstly528

consider the initial time-window with 200 time data. Then, such a window is529

moved by including one-day ahead. However, in the recursive approach here530

employed, the first day is not excluded, so that the time-window is enlarged531

by one unit at each recursive time step.532

As robustness check, we evaluate the out-of-sample performances of all the533

considered volatility models according to the recursive scheme. The results534

related to Bitcoin/USD exchange rate are showed in the Table 26, while for535

Ethereum/USD and Litecoin/USD results are in the Table 27 and Table 28,536

respectively.537
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Table 26: Forecasting accuracy with recursive approach: Bitcoin/USD

GARCH GJR-GARCH T-GARCH
Normal 0.00226652† 0.00231733*** 0.00360885***
t-student 0.00348222*** 0.00331076*** 0.00309894***
GED 0.00336300*** 0.00324299*** 0.00001424***
Skew Normal 0.00224931*** 0.00225703*** 0.00346474***
Skew t-student 0.00350264*** 0.00332987*** 0.00311676***
Skew GED 0.00336217*** 0.00324666*** 0.00001424***

E-GARCH I-GARCH AP-ARCH
Normal 0.00235180*** 0.00525533*** 0.00340147***
t-student 0.00178647*** 0.00374075*** 0.00264207***
GED 0.00116924*** 0.00360469*** 0.00155773***
Skew Normal 0.00230088*** 0.00530999*** 0.00273173***
Skew t-student 0.00177781*** 0.00376253*** 0.00247391***
Skew GED 0.00116312*** 0.00360491*** 0.00235783***

Note: the reported values are associated to the MSE loss function. *** means

significance at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold

and Mariano [19] test of predictive accuracy compared with GARCH(1,1) under

normal distribution (highlighted with † symbol). Under the null we have equal

predictive accuracy.
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Table 27: Forecasting accuracy with recursive approach: Ethereum/USD

GARCH GJR-GARCH T-GARCH
Normal 0.0040532† 0.00403640*** 0.0045778***
t-student 0.0240013*** 0.0244118*** 0.0049275***
GED 0.0058418*** 0.0069362*** 0.0035572***
Skew Normal 0.0040691*** 0.0040638*** 0.0045557***
Skew t-student 0.0234560*** 0.0237631*** 0.0048822***
Skew GED 0.0059137*** 0.0071127*** 0.0035495***

E-GARCH I-GARCH AP-ARCH
Normal 0.0040168*** 0.0178729*** 0.0040347
t-student 0.0039993*** 0.0257453*** 0.0065273***
GED 0.0032169*** 0.0251742*** 0.0045723***
Skew Normal 0.0040224*** 0.0175863*** 0.0040499***
Skew t-student 0.0039608*** 0.00376253*** 0.0061513***
Skew GED 0.0031186*** 0.0206809*** 0.0059800***

Note: the reported values are associated to the MSE loss function. *** means

significance at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold

and Mariano [19] test of predictive accuracy compared with GARCH(1,1) under

normal distribution (highlighted with † symbol). Under the null we have equal

predictive accuracy.
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Table 28: Forecasting accuracy with recursive approach: Litecoin/USD

GARCH GJR-GARCH T-GARCH
Normal 0.0040532† 0.0040364*** 0.0045778***
t-student 0.0240013*** 0.0244118*** 0.0049275***
GED 0.0058418*** 0.0069362*** 0.0035572***
Skew Normal 0.0040691*** 0.0040638*** 0.0045557***
Skew t-student 0.0234561*** 0.0237631*** 0.0048822***
Skew GED 0.0059137*** 0.0071127*** 0.0035495***

E-GARCH I-GARCH AP-ARCH
Normal 0.0040168*** 0.0178729*** 0.0040347*
t-student 0.0039993*** 0.0257453*** 0.0065273***
GED 0.0032169*** 0.0206809*** 0.0045724***
Skew Normal 0.0040224*** 0.0175863*** 0.0061513***
Skew t-student 0.0039608*** 0.0251742*** 0.00247391***
Skew GED 0.0031186*** 0.0202550*** 0.0021187***

Note: the reported values are associated to the MSE loss function. *** means

significance at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold

and Mariano [19] test of predictive accuracy compared with GARCH(1,1) under

normal distribution (highlighted with † symbol). Under the null we have equal

predictive accuracy.

As clearly shown in all the tables above, prediction accuracy results are538

not affected by the employed type of forecasting scheme. In particular, in539

the case of Bitcoin/USD exchange rate, the T-GARCH based on GED and540

Skewed GED distributions significantly outperform all the alternatives. The541

same conclusions apply to the Litecoin/USD exchange rate.542

A difference can be noted in the case related to the Ethereum/USD ex-543

change rate. Indeed, as highlited in Section 5.2, the best distribution assump-544

tion has been proven to be the GARCH under Skew Normal distribution, still545

reflecting the relevance of skewness in the volatility models for crypotcurren-546

cies.547

However, according to the results obtained by implementing the recursive548

approach, there is a clear evidence of overperformance for the E-GARCH549

model under Skewed GED distribution assumption.550

This said, the Skewed GED is confirmed to be the best assumption for551

all the considered cryptocurrencies, as already stated in the rolling window552

case presented in Section 2. Therefore, we get still stronger evidence in favor553
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of the statistical model presented in the original analysis.554

Notice that all the results shown Tables 26, 27 and 28 are related to555

the Mean Square Error, that is the most robust loss function according to556

Patton [38]. However, results actually hold also for the other considered loss557

functions, as unreported tables highlight.558

6.2. Forecasting with a different testing set559

In this case, we implement a forecast exercise on a rolling windows basis,560

by taking 100 units of time as testing set, instead of the 200 ones employed561

in the original analysis.562

Table 29: Forecasting accuracy with testing set as last 100 observations: Bitcoin/USD

GARCH GJR-GARCH T-GARCH
Normal 0.00166181† 0.00171153*** 0.00180141***
t-student 0.00168049*** 0.00164767*** 0.00271630***
GED 0.00168347*** 0.00165776*** 0.00019423***
Skew Normal 0.00165741*** 0.00167630*** 0.00175730***
Skew t-student 0.00167772*** 0.00164494*** 0.00273767***
Skew GED 0.00168254*** 0.00165576*** 0.00019423***

E-GARCH I-GARCH AP-ARCH
Normal 0.00175046*** 0.00187223*** 0.00175829***
t-student 0.00256342*** 0.00168988*** 0.00271662***
GED 0.00168573*** 0.00169242*** 0.00161437***
Skew Normal 0.00170528*** 0.00184210*** 0.00271895***
Skew t-student 0.00256322*** 0.00168706*** 0.00247391***
Skew GED 0.00169123*** 0.00169756*** 0.00178099***

Note: the reported values are associated to the MSE loss function. *** means

significance at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold

and Mariano [19] test of predictive accuracy compared with GARCH(1,1) under

normal distribution (highlighted with † symbol). Under the null we have equal

predictive accuracy.
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Table 30: Forecasting accuracy with testing set as last 100 observations: Ethereum/USD

GARCH GJR-GARCH T-GARCH
Normal 0.0016618† 0.0033844*** 0.0033998***
t-student 0.0042598*** 0.0042491*** 0.0051203***
GED 0.0037651*** 0.0037023*** 0.0038606***
Skew Normal 0.0034106*** 0.0033680*** 0.0036183***
Skew t-student 0.0042753*** 0.0042626*** 0.0051229***
Skew GED 0.0036715*** 0.0037174*** 0.0037979***

E-GARCH I-GARCH AP-ARCH
Normal 0.0033932*** 0.0040476*** 0.00337533***
t-student 0.0049396*** 0.0042743*** 0.0050415***
GED 0.0036938*** 0.0040601*** 0.0037595***
Skew Normal 0.0033940*** 0.0040507*** 0.0033964***
Skew t-student 0.0049336*** 0.0042903*** 0.0050622***
Skew GED 0.0037406*** 0.0040480*** 0.0037519***

Note: the reported values are associated to the MSE loss function. *** means

significance at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold

and Mariano [19] test of predictive accuracy compared with GARCH(1,1) under

normal distribution (highlighted with † symbol). Under the null we have equal

predictive accuracy.
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Table 31: Forecasting accuracy with testing set as last 100 observations: Litecoin/USD

GARCH GJR-GARCH T-GARCH
Normal 0.00355692† 0.00336571*** 0.00359048***
t-student 0.00351696*** 0.00354558*** 0.00820642***
GED 0.00354603*** 0.00365435*** 0.00047286***
Skew Normal 0.00355154*** 0.00337813*** 0.00356620***
Skew t-student 0.00351464*** 0.00356696*** 0.00822959***
Skew GED 0.00358403*** 0.00356236*** 0.00047286***

E-GARCH I-GARCH AP-ARCH
Normal 0.00362372*** 0.00420821*** 0.00476177***
t-student 0.00882732*** 0.00355872*** 0.00748153***
GED 0.00416083*** 0.00365541*** 0.00438798***
Skew Normal 0.00361398*** 0.00413231*** 0.0033964***
Skew t-student 0.00851569*** 0.00355886*** 0.00760975***
Skew GED 0.00407516*** 0.00365657*** 0.00376108***

Note: the reported values are associated to the MSE loss function. *** means

significance at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold

and Mariano [19] test of predictive accuracy compared with GARCH(1,1) under

normal distribution (highlighted with † symbol). Under the null we have equal

predictive accuracy.

In the case of Bitcoin/USD exchange rate (Table 29), results do not563

change with respect to those of the original analysis. Indeed, again we observe564

evidence in favor of the T-GARCH model under Skewed GED distribution.565

The same results apply to Litecoin/USD exchange rate (Table 31), where we566

identify the T-GARCH model under Skewed GED distribution as the best567

one in terms of out-of-sample performance. For the Ethereum/USD exchange568

rate (Table 30) we do not obtain different results compared to the ones in569

Section 5.2, since the GARCH model under Skew Normal distribution still570

performs better in the out-of-sample exercise.571

Hence, we get evidence of robustness also by changing the length of the572

testing set. Also in this case, the results shown in Tables 29, 30 and 31 are573

related to the Mean Square Error. However, these results hold also for the574

other considered loss functions in unreported tables.575
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6.3. Alternative forecasting volatility models576

In finance, the time-varying volatility of risky assets is usually modeled577

and predicted by using a number of GARCH-type models and their exten-578

sions; under this framework, the conditional variance of a risky asset is a579

deterministic function of model parameters and past data. The same argu-580

ment applies also to cryptocurrencies, for which there is evidence of GARCH-581

type models for volatility (see the discussion in Section 3 and the references582

therein quoted).583

The results of our analysis (see Section 5) offer a not unique best model584

– in terms of prediction performance of all the considered exchange rates585

between cryptocurrencies and USD – for describing volatility. However, there586

is a clear evidence in favor of Skewed GED GARCH models.587

In this section, as further robustness, we show that such results do not588

change also when the comparison analysis includes also a large number of589

models of non GARCH-type, i.e. GARCH models based on Skewed GED590

perform still better. More specifically, among the other possibilities, we here591

deal with two of the most powerful tools for estimating volatility: Dynamic592

Score Models (DSC) and stochastic volatility models.593

The standard stochastic volatility model can be defined as follows (see594

e.g. Jacquier et al. [30]):595

yt = eht/2εyt , (8)
596

ht = µh + φh(ht−1 − µh)εht , (9)

597

where both εyt and εht are normally distributed, |φh| < 1, µh > 0 and ht is the598

log-volatility. By (9), the log-volatility follows a Gaussian AR(1) process with599

conditional mean µh. Since simulation efficiency in state-space models can600

often be improved through model reparametrizations, we follow the proposal601

of ? ] and the following parametrization of (8–9):602

yt ∼ N(0, ωeht−µh), (10)
603

ht − µh = φh(ht−1 − µh)εht , (11)

where ω = eµh . Then, we apply the algorithm proposed in ? ] to estimate the604

parameters, on the basis of an efficient Markov Chain Monte Carlo (MCMC)605

estimation scheme by specifying a Gaussian prior distribution. Then we use606

the MCMC algorithm to draw from the posterior distribution of the random607
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variables in order to make forecasts. More specifically, we implement the608

MCMC sampler to obtain posterior draws given by h1:t; then, we compute609

the predictive mean E(ht+k|h1:t). Next, we move one period ahead and repeat610

1000 times the whole exercise with data h1:t+1 and so forth, recursively.611

In practice, the predictive mean of ht+k cannot be computed analyti-612

cally. Instead, they are obtained by using predictive simulations. These613

forecasts are then averaged over all the posterior draws to produce estimates614

for E(ht+k|h1:t); then, the whole exercise is repeated by using data up to time615

t+ 1 to produce E(ht+k+1|h1:t+1).616

However, for robustness purposes, another relatively new class of volatility617

models is presented: the so-called Dynamic Conditional Score (DSC) models,618

introduced in Creal et al. [18]. The ground of this methodology lies in the619

fact that the GARCH models consider the squared demeaned returns as the620

drivers of timevariation in the conditional variance, independently from the621

shape of the conditional distribution of the return. Moving from this, Creal622

et al. [18] proposed to use the score of the conditional density function as623

the main driver of timevariation in the parameters of the time series process624

adopted for describing the data. Parameters in Dynamic Conditional Score625

models are easily estimated via Maximum Likelihood approach.626

The general expression of the DCS model is given by:627

ft = ω + βft−1 + αSt−1

[
∂logp(rt−1|ft−1)

∂ft−1

]
, (12)

where ft is a conditional time varying parameter (e.g. the volatility), St is628

a score function, logp(rt−1|ft−1) is the log probability density function. The629

main difference between the model (12) and the classical GARCH model in630

(1) can be found in the evolution of the volatility equation – for the GARCH631

model, one has ft = σ2
t – which in (12) depends on the past values of the score632

of the conditional distribution instead of only on the squared returns. More-633

over, the DCS model is more general than the GARCH one, since the score634

does not depend only on the second-order moments but on the overall prob-635

ability distribution of the reference random variable. Yet, as in the GARCH636

case, it is possible to specify different densities to compute the conditional637

scores simply by changing the stochastic assumptions on logp(rt−1|ft−1). Just638

to provide some examples, by assuming a t-student distribution or a skewed639

t-student we get a t-student DCS or a skewed-t DCS models (see e.g. Harvey640

and Sucarrat [28])641
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Volatility forecasting exercises under a DCS framework run as for the642

GARCH models; hence, the forecasting procedure is the same as the one643

described above in the paper.644

In Tables 32, 33 and 34 we show the results for all the cryptocurrencies645

in terms of forecasting accuracy of the following alternative models: stochas-646

tic volatility, Gaussian Dynamic Conditional Score (DCS) model, Skewed647

Normal DCS, t-student DCS and skewed-t DCS.648

Table 32: Forecasting accuracy with alternative models: Bitcoin/USD

Best model Stoch. vol. Gaussian-DCS
MSE 0.00115839 0.06781723*** 0.03353264***
MAE 0.01008683 0.2567941*** 0.1743166***
RMSE 0.03403522 0.2604174*** 0.1831192***

Skew Normal DCS t-student DCS Skewed t DCS
MSE 0.2173271*** 0.1035493*** 0.1783751***
MAE 0.375288*** 0.284592*** 0.4045632***
RMSE 0.4661836*** 0.3217908*** 0.4223447***

Note: Best model is the best according to GARCH-type of Table 10, while

”stoch. vol.” stays for ”stochastic volatility” model. The reported values are

associated to the MSE, MAE and RMSE loss functions. *** means significance

at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold and Mariano

[19] test of predictive accuracy compared with the best GARCH-type model.

Under the null we have equal predictive accuracy.

According to Table 10, for Bitcoin/USD exchange rate the best model is649

the Skew GED-GARCH(1,1) – which is the reported best model in Table 32.650

Particularly, as anticipated before, all the models here underperform the best651

we found within the GARCH-types. Among all the alternatives, the best two652

models are the stochastic volatility model and the Gaussian Dynamic Score653

one. Nevertheless, the model with the highest out-of-sample accuracy is still654

the T-GARCH(1,1) based on Skew GED.655
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Table 33: Forecasting accuracy with alternative models: Ethereum/USD

Best model Stoch. vol. Gaussian-DCS
MSE 0.00289673 0.2377882*** 0.09396339***
MAE 0.0524247 0.4475882*** 0.2869582***
RMSE 0.0538212 0.4876353*** 0.3065345***

Skew Normal DCS t-student DCS Skewed t DCS
MSE 0.2467824*** 0.1101726*** 0.07369849***
MAE 0.4090161*** 0.3048068*** 0.2666203***
RMSE 0.496772*** 0.3319226*** 0.2714747***

Note: Best model is the best according to GARCH-type Table 16, while ”stoch.

vol.” stays for ”stochastic volatility” model. The reported values are associated

to the MSE, MAE and RMSE loss functions. *** means significance at 1%, ** at

5% and * at 10%, otherwise no significance for Diebold and Mariano [19] test of

predictive accuracy compared with the best GARCH-type model. Under the null

we have equal predictive accuracy.

With respect to the Ethereum/USD exchange rate, the most accurate656

model is the Skew Normal T-GARCH(1,1) and it is reported in Table 33.657

As for the case of Bitcoin, the best GARCH-type model overperforms all658

the alternatives. Differences are actually also very large in numerical terms.659

Notice that the skewed-t Dynamic Conditional Score model is the second660

best one, even if it is very far from the best GARCH-type of Table 16.661
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Table 34: Forecasting accuracy with alternative models: Litecoin/USD

Best model Stoch. vol. Gaussian-DCS
MSE 0.00032376 0.3462538*** 0.01095247***
MAE 0.0169069 0.5735445*** 0.101634***
RMSE 0.0179934 0.5884334*** 0.104654***

Skew Normal DCS t-student DCS Skewed t DCS
MSE 0.2436648*** 0.1566804*** 0.2890927***
MAE 0.4057249*** 0.3355313*** 0.5081017***
RMSE 0.4936241*** 0.3958288*** 0.5376734***

Note: Best model is the best according to GARCH-type in Table 23, while

”stoch. vol.” stays for ”stochastic volatility” model. The reported values are

associated to the MSE, MAE and RMSE loss functions. *** means significance

at 1%, ** at 5% and * at 10%, otherwise no significance for Diebold and Mariano

[19] test of predictive accuracy compared with the best GARCH-type model.

Under the null we have equal predictive accuracy.

For the Litecoin/USD exchange rate models compared in Table 23, we662

highlight the overperformance of the Skew GED T-GARCH(1,1) and report663

it – for comparison purposes – as best model in Table 34.664

Also in this case, other additional models are not able to achieve out of665

sample performances higher than the ones of the best GARCH-type model.666

Therefore, on the light of these results, we have a successful robustness check667

of the results presented in this paper.668

In conclusion, there is a clear evidence that the GARCH-type extensions669

allowing with skewed and flexible distributions perform better than the Dy-670

namic Conditional Score models and the stochastic volatility, in all the cases671

of considered exchange rates.672

7. Conclusions673

This paper merges together financial stylized facts, forecasting exercise,674

risk analysis, probability distributions theory and the analysis of the cryp-675

tocurrencies features. We discuss the volatility forecasting of the exchange676

rates between the most popular cryptocurrencies and the US Dollar.677

We follow a GARCH-based approach for the modelization of the volatility,678

which is totally in line with the main financial risk literature. However, we679

depart from the standard Gaussian assumption, in order to be more tailored680
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on the financial reality of the evolution of the cryptocurrencies. We use a681

GED approach for modeling the stochastic source of the volatility. Such a682

choice is particularly reasonable, in that GED distributions are versatile and683

include several well-established random variables as subcases. More than684

this, we include also the distributional properties of the cryptocurrencies,685

and employ at this aim the skewed versions of the GED distributions.686

The empirical exercise illustrates the most suitable source of stochasticity687

for modeling purposes and for effective prediction exercises, tending specifi-688

cally towards the skewed GED distribution.689

The methodological procedures here presented are rather general and can690

be successfully adopted in other contexts of volatility estimation. Moreover,691

the obtained findings are relevant for financial industries practitioners, such692

as data scientists in investment fund or banks, as well as traders that build693

intelligent systems for trading purposes.694

However, it is important to point out two weaknesses of our approach.695

First, the theoretical proposal has been validated on a sample which is re-696

markably representative – very relevant cryptocurrencies and the USD, the697

most important physical currency – but it is not universal, in that it does698

not consider all the exchange rates. Second, no attention is paid to the in-699

teractions of the obtained results with possible macroeconomic shocks. In700

this respect, we are well aware that a shock in the economic system might701

modify the patterns of exchange rates and the consequent forecasting exer-702

cises. These points – with a more specific focus on the second one – seem to703

be of particular interest and merit a devoted study. For this reason, we have704

inserted them in our future research agenda.705
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stylized facts of the bitcoin market. Physica A: Statistical Mechanics722

and its Applications, 484:82–90, 2017.723

[7] A. Benos and E. Tzafestas. Alternative distributed models for the com-724

parative study of stock market phenomena. Information Sciences, 99725

(3-4):137–157, 1997.726

[8] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity.727

Journal of Econometrics, 31(3):307–327, 1986.728

[9] E. Bouri, R. Gupta, A. K. Tiwari, and D. Roubaud. Does bitcoin hedge729

global uncertainty? evidence from wavelet-based quantile-in-quantile730

regressions. Finance Research Letters, 23:87–95, 2017.731
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[42] M. Stehĺık, C. Helperstorfer, P. Hermann, J. Šupina, L. Grilo, J. P.817
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