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Abstract. As an effective dimensionality reduction method, Same De-
gree Distribution (SDD) has been demonstrated to be able to maintain
better data structure than other dimensionality reduction methods, in-
cluding Principal Component Analysis (PCA), Multidimensional Scal-
ing (MDS), Isomap, Locally Linear Embedding (LLE), Laplacian Eigen-
maps (LE), Uniform Manifold Approximation and Projection (UMAP)
and t-Stochastic Neighbor Embedding (t-SNE). In addition, SDD does
not require tuning the number of neighbours or perplexity to scale the
structure capturing performance. Instead, it requires tuning the degree
of degree-distribution ranging in e certain interval. Hence, tuning the de-
gree of degree-distribution makes SDD a less costly method than other
methods that require tuning the number of neighbours or perplexity. Al-
though these advantages, SDD is still an expensive method compared
with parameter-free methods such as PCA and MDS. A parameter-free
SDD is proposed based on standard SDD, with two main differences: 1)
it does not require tuning the degree of degree-distribution in the entire
range from 1 to 15, but only uses degree 1; and 2) it re-scales the pairwise
distances in the range [0, 2] instead of range [0, 1]. A theoretical analysis
is presented to prove the better performance of parameter-free SDD. In
addition, the performances of the proposed parameter-free SDD and the
standard SDD have been experimentally compared in terms of structure
capturing and computational time. This paper also proposes a paramet-
ric version of SDD using a deep neural network approach to learn the
mapping based on the samples of the original data and their correspond-
ing embedded representations in a low dimensional space. Comparative
experiments have been undertaken with SDD and other methods such as
Isomap, t-SNE and UMAP to demonstrate the effectiveness of the pro-
posed parametric SDD with several popular synthetic and real datasets
such as Churn, SEER Breast Cancer, AVletters (LIPS Reading) and
MNIST.
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1 Introduction

Analysing and exploring high-dimensional data remains a challenging task since
a high number of dimensions has made it difficult to understand and interpret
data. Researchers have been seeking effective ways to facilitate exploring high
dimensional data for information of interest, and dimensionality reduction (DR)
has been considered an effective means for visualising high dimensional data and
handling the problem of the curse of dimensionality. In terms of visualisation,
a good dimensionality reduction technique is a technique that can capture the
best data structure [25].

Maintaining data structure means that close data points in the high dimen-
sional space to be embedded closely in the low dimensional space, and distant
data points in the original high dimensional space to be embedded distant in
the low dimensional space. The methods that favour global structure capturing
are Principal Component Analysis(PCA)[1], Multidimensional Scaling (MDS)[2],
and Isomap[8], whereas local structure capturing is supported by Locally Lin-
ear Embedding (LLE)[9], Laplacian Eigenmaps (LE)[10], t-Stochastic Neigh-
bour Embedding (t-SNE)[19], Uniform Manifold Approximation and Projection
(UMAP)[24], and Same Degree Distribution (SDD)[25]. Although they favour
different data structures, most methods are constrained to the type of data to
be considered. The performance of a dimensionality reduction method also de-
pends on tuning parameters, such as the number of neighbours (k), perplexity
(pr), which is also a costly and time-consuming process. Methods that require
parameter tuning are Isomap (k), LLE (k), LE (k), t-SNE (pr), and they are
the state-of-the-art methods in terms of their ability into capturing the data
structure. SDD is another state-of-the-art method, which, despite its good per-
formance, still requires tuning the degree (deg), and, although it is less expensive
than tuning the number of neighbours (k) or perplexity (pr), it still requires more
time than parameter-free 1 methods such as MDS and PCA. In summary, the
existing dimensionality reduction approaches suffer from the following problems:
1) Only work well with linear data, 2) The scale of maintained data structure is
related to the number of data samples considered.

To deal with all the above-mentioned problems, this paper has developed
parameter-free SDD approache that 1) Saves computational time because it does
not require tuning parameter to achieve the best data structure, and 2) Produces
more trustworthy visualisation by using degree-distribution with deg = 1 that
is smooth enough to capture local and global data structure. Also, parameter-
free SDD does not suffer from tear and false neighbours problems due to using
degree-distribution with deg = 1 in high and low dimensional spaces to calculate
the similarities between data samples.

Parameter-free SDD is an extension of SDD that manages to capture the
same data structure as SDD due to using degree distribution with deg = 1,

1 Parameter-free methods refer to as those that do not require tuning of parameters
such as number of neighbours, perplexity etc., but it does not include optimisation
parameters such as learning rate and so on.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 3

and re-scaling pairwise distances in the interval [0, 2]. The reason for re-scaling
pairwise distances in the range [0, 2] is that degree-distribution with deg = 1
provides a broader range of similarity to short distances, which is a problem
that degree-distribution with deg = 1 has in case of re-scaling pairwise distances
in the range [0, 1]. The relevant theoretical analyses are provided along with
comparative experiments to demonstrate the super performance of the proposed
method.

The main contributions of this paper are: 1) a parameter-free SDD which
achieves the same results as SDD in significantly less computational time and
resources, and 2) a parametric SDD that can reduce the dimensionality of new
interest data points without requiring extra computational time and resources.

The rest of this paper is structured as follows; Section 2 presents a com-
prehensive related work, which presents a detailed view on the strengths and
limitations of most dimensionality reduction techniques. Section 3 presents the
proposed approaches, followed by parametric SDD in Section 4 and conclusions
are presented in Section 5.

2 Related Works

2.1 Dimensionality Reduction

This Section presents a wide range of dimensionality reduction methods, empha-
sising their drawbacks and advantages. Methods have been compared considering
the type of data and parameters 2. The type of data is linear or nonlinear data.
Note that nonlinear data are much more complex, and their low dimensional
representative lies on a nonlinear manifold. There are also some data that their
low dimensional representation lies on more than one manifold.

From a practical viewpoint, high dimensional data is not necessarily always
high dimensional, as the data analysis community have agreed that high dimen-
sional data points reside on low-dimensional manifolds [26]. In other words, a
large number of variables can be represented by a smaller set of new variables,
with no or less redundancy 3. From a theoretical perspective, all the difficulties
that arise when faced with high dimensional data are related to curse of dimen-
sionality. The curse of dimensionality is a phenomenon occurred when working
with high dimensional data, which refers to the situation where the number of
samples required increases exponentially with the number of variables to esti-
mate a function of several variables to give a certain accuracy [26]. To address
the issues associated with the curse of dimensionality, two main approaches and
techniques have been explored: Feature Selection and Feature Extraction. Fea-
ture Selection is closely related to keeping some original variables highly corre-
lated with the label variable, and the rest can be eliminated. Feature Extraction
transforms an original set of variables into a set of new variables with a reduced

2 Parameter include all parameters that each technique has to tune to achieve the best
by excluding optimisation parameters

3 i.e. variables are independent of each other.
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number of variables by preserving their inherent characteristics. This presented
research focuses on feature extraction, which will be referred to as dimensionality
reduction in the rest of the paper.

The dimensionality reduction methods presented in Table 1 will be compared
based on the two main criteria:

1. Parameters4 refers to the parameters that impact the performance type of
the dimensionality reduction method.

2. Type of data refers to the shape of a manifold (linear or nonlinear) that
contains the low dimensional representation of the original data.

Table 1: DIMENSIONALITY REDUCTION METHODS
Year DR algorithm Parameters Type of Data References

1901 Principal Component Analysis (PCA) none linear [1]
1962 Multidimensional Scaling (MDS) none linear [2]
1969 Sammon Mapping none nonlinear [3]
1997 Curvlinear Commponent Analysis (CCA) λ nonlinear [4]
1997 Curvelinear Distance Analysis (CDA) λ nonlinear [4]
1997 Generative Topographic Embedding (GTE ) K(., .) nonlinear [5]
1998 Kernel PCA (KPCA) K(., .) nonlinear [6]
1998 Self-organizing Maps (SOM) σ ,vλ nonlinear [7]
2000 Isomap k nonlinear [8]
2000 Locally Linear Embedding (LLE) k nonlinear [9]
2001 Laplacian Eigenmaps (LE) k, σ nonlinear [10]
2003 Hessian Locally-Linear Embedding (HLLE) k nonlinear [11]
2004 Maximum Variance Unifolding (MVU) k nonlinear [12]
2005 Nonlinear PCA NetSize nonlinear [13]
2005 Local Tangent Space Alignment (LTSA) k nonlinear [14]
2006 Diffusion Maps σ, t nonlinear [15]
2006 Autoencoders NetSize nonlinear [16]
2007 Modified Locally Linear Embedding (MLLE) k nonlinear [17]
2007 Data-Driven High-Dimensional Scaling (DD-HDS) λ1 nonlinear [18]
2008 t-Stochastic Neighbor Embedding (t-SNE) pr nonlinear [19]
2008 Manifold Sculpting k nonlinear [20]
2009 RankVisu k nonlinear [21]
2010 Topologically Constrained Isometric Embedding (TCIE) k nonlinear [22]
2018 Trimap k nonlinear [23]
2018 Uniform Manifold Approximation and Projection (UMAP) k nonlinear [24]
2020 Multi Same Degree Distributions (MSDD) deg nonlinear [25]

Some symbols and parameters used throught this paper are clarified as fol-
lowing:

4 Parameter include all parameters that each technique has to tune to achieve the best
by excluding optimisation parameters.
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N Number of samples
n Number of degree-distributions
D Number of dimensions of the original data
d Number of dimensions in low dimensions space data
XN×D Original space dataset

Y N×d Low dimensional space dataset
k Number of neighbours
pr Perplexity
dis(a, b) Euclidean distance between data samples a and b
τ Kendall’s Tau
λ User-defined parameter
λ1 User-defined parameter in DD-HDS method
K(., .) Kernel function
σ Density in Gaussian distribution
t Timestep in Diffusion Maps

PCA and MDS are two linear dimensionality reduction methods that do
not require parameter tuning. Although they can save computational time, they
neglect the maintenance of the local data information.

Sammon’s mapping has been considered a nonlinear version of MDS, which
unfolds non-heavy manifolds; however, Sammon’s mapping boosts the contri-
bution of very close data points in the cost function employed to the method
and neglects the preservation of the global data structure. It also fails to unfold
heavy manifolds (complex manifolds).

CCA is another variant of MDS by modifying the cost function with a pa-
rameter Fλ, where

Fλ = H(λ− dis(yi, yj)) (1)

where yi and yj are two data points in a dataset and H(u) is defined as follows:

H(u) =

{
0 if u ≤ 0
1 if u ≥ 0

(2)

Ṫhe performance of CCA depends on the hard border of λ, which is a user-defined
parameter. Because Fλ depends on the distances on the embedded space, CCA
is prone to tearing.

A different variant of MDS is Isomap, which uses Geodesic distance instead
of Euclidean distance for calculating the distance between high dimensional data
samples. However, Isomap can only be successfully used for developable mani-
folds, not for nondevelopable manifolds such as a sphere or a hollow piece, or
if any hole exists in manifolds [26]. Furthermore, the performance of Isomap
depends on tuning the number of neighbours, which is a very time-consuming
process.

Geodesic Sammon’s mapping and CDA are two variants of Sammon’s map-
ping and CCA, employing Geodesic distances instead of Euclidean distances to
calculate distances between high dimensional data points. However, they have
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6 Hajderanj et al.

the same limitations as Sammon’s Mapping and CCA, and also they are limited
to only developable manifolds. Kernel PCA suffers from a tedious process in
selecting a right kernel and its parameters. Some existing kernels include

1. Polinomial Kernel :

κ(u, v) = (〈u · v〉+ 1)int (3)

2. Gaussian kernels:

κ(u, v) = exp

(
−‖u− v‖

2

2σ2

)
(4)

3. MLP Kernel :

κ(u, v) = tanh(〈u · v〉+ b) (5)

MVU suffers from the short-circuiting problem, and MVU captures global
data structure, although its main aim is to preserve local data structure.

SOM and GTM are two methods aiming to preserve the topology of data.
However, the topology to be considered is pre-defined, and as a result, these
methods do not perform well if the topology data manifold is not the same
with the pre-defined topology. Furthermore, these methods depend on parameter
tuning, which is a tedious task.

LLE, LTSA, HLLE and LE perform well with smooth manifolds, and their
performance is related to the number of neighbours.

Diffusion map requires tuning of parameters time and and number of neigh-
bours (k), and it performs better in capturing global structure.

DD-HDS is a variant of MDS, but their performance is related to a user-
defined parameter with a positive value ranging between 0.1 and 0.9. It should
be noted that this method is not good in preserving the global structure of data
due to the sharptails of the Gaussian distribution employed. Furthermore, em-
ploying the Gaussian distribution makes this method more expensive. RankVisu
is similar to DD-HDS; however, it considers the rank of neighbours instead of
distances and, the performance of this method depends on the number of neigh-
bours.

All the above-mentioned methods work well with linear, simple smooth, or
developable manifolds. However, suppose the low dimensional representation is
located on heavily curved manifolds. In that case, a group of methods such as
SNE, t-SNE, UMAP and TriMap are able to capture the structure of data. Fur-
thermore, in t-SNE, UMAP, and TriMap, Gaussian and Student-t distributions
are introduced to provide a softer border between local and global structure
maintenance. However, as previously discussed, these methods require tuning
the number of neighbours (perplexity) to generate the best low dimensional
representation in maintaining the data structure. Multiscale approaches such
as Multiscale-SNE attempted to overcome this shortcoming; however, it is still
a costly method because both the multiscale calculations and the utilisation
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of Gaussian distribution consumes much more computational time than using
Student-t distribution. Note that, employing different distributions in high and
low dimensional spaces, respectively, can lead to tears and false neighbours prob-
lems [26].

Considering the problems of t-SNE, UMAP, and TriMap, the Same Degree
Distribution (SDD) method has been proposed to capture a better geometry
of data by employing the same degree-distribution(s) in the high and the low
dimensional spaces. SDD also saves significant computational time by employ-
ing degree-distribution, which does not need to calculate perplexity or num-
ber of neighbours but the degree of degree-distribution. Also, using degree-
distribution to calculate high and low similarities is less computational since
a degree-distribution does not include exponential in the formula as Gaussian
distribution does. In summary, SDD takes all advantages of t-SNE, UMAP, and
TriMap over all other dimensionality reduction methods, including its ability to
capture the data structure, having their low dimensional representation located
on non-smooth, non-developable manifolds, and even in more than one mani-
fold. On the other hand, SDD overcomes t-SNE, t-SNE, UMAP, and TriMap
performances by maintaining a better data structure and in less computational
time.

2.2 SAME DEGREE DISTRIBUTION (SDD) APPROACH

Kullback-Leibler is the loss function used in SDD to approximate the degree-
distribution in the low dimensional space with the degree-distribution in the
high dimensional space:

C1 =
∑
i 6=j

(pdegm)ij log(
(pdegm)ij
(qdegm)ij

(6)

where degm is the degree of degree-distribution m, m = 1 : n. SDD intends to
minimize the cost function C1 as (6):

loss1 = min (C1) (7)

where

(pdegij )ij =
(1 + dis(xi, xj))

−degm∑
k 6=l

(1 + dis(xk, xl))−degm
(8)

(qdegij )ij =
(1 + dis(yi, yj))

−degm∑
k 6=l

(1 + dis(yk, yl))−degm
(9)

Despite all the benefits of using SDD, there exist some limitations: 1) SDD
still requires tuning the degree of degree-distribution, and it is costly since it
consumes significant computational resources; and 2) SDD is a non-parametric
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method, and as such, the data embedding process needs to re-start whenever a
new data point becomes available and needs to be considered. In the following
section, a parameter-free method is proposed and discussed in detail, aiming
to better capture data structure, particularly improving local data structure
capturing by increasing the range of distances. In addition, a parametric SDD
has also been proposed in Section 4.

3 Proposed Parameter-free SDD Approach

The all benefits using the SDD comes from the degree-distribution with degree 1
(deg = 1), which is equivalent to Student-t distribution with deg = 1. Student-
t distribution generates higher similarity values to short distances, and values
decrease smoothly as distance increases. When distance increases infinitely, the
Student-t distribution with deg = 1 approaches to zero, making Student- t dis-
tribution unfeasible to capture of data with large distances. To deal with this,
Hajderanj et al.[ 25] proposed re-scaling the pairwise distances of the original
data into the range [0, 1]. It has been demonstrated that the original data X
re-scaled by a single value (maximum value of pairwise distances), then the
distribution of pairwise distances of the re-scaled data is the same as the distri-
bution of pairwise distances of the original data X, as shown in Figs 1. (a), (b),
and (c).

Re-scaling the pairwise distances of the original data is the key to the suc-
cess of SDD, which has been demonstrated to be capable to capture a good
structure of the data; however, SDD still requires tuning the degree (deg) of
degree-distribution, which normally ranges from 1 to 15. As seen in Fig. 2,
degree-distributions with degrees deg = 20 and deg = 5 are not sensitive to
distances between 0.5 and 1, and that means they can not captures the neigh-
bourhood structure of far away data points.

To evaluate if close (far away) neighbours in the original high-dimensional
space are kept close (far away) in the embedded low dimensional space, two met-
rics are commonly used: Trustworthiness and Continuity. Trustworthiness mea-
sures the far away data points that embedd close in the low dimensional space,
whereas Continuity measures close data points that embedd far away in the low
dimensional space. As shown in Figs 3. (a) and (b), measured by Trustworthi-
ness and Continuity, degree-distribution with deg = 1, demonstrated a poorer
performance in maintaining the local data structure than degree-distribution
with deg = 7 and deg = 15 (where under consideration is a small number of
neighbours). However, in situations where the number of neighbours under con-
sideration is large, degree-distribution with deg = 1 shows a better performance
in capturing the global data structure than the degree-distribution with deg = 7,
shown in Fig. 4.

Overall, using the degree-distribution with deg = 1 is similar to using the
degree-distribution with best degree (deg = 7). However, it can be shown that
degree-distribution with deg = 1 does not perform as good as degree-distribution
with deg = 7 in short distances (a small number of neighbours under consid-
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(a)

(b)

(c)

Fig. 1: Euclidean Distance (a), re-scaled Euclidean distance to [0, 1] (b) and re-scaled
Euclidean distance to [0, 2] (c).
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10 Hajderanj et al.

Fig. 2: Three degree-distributions with deg = 1, deg = 5 and deg = 20.

eration). To deal with that issue, it is proposed in the research to increase the
range of pairwise distance of the original data in [0, 2].

3.1 Idea and Theoretical Proof

Re-scaling pairwise distances in the range [0, 2] can generate a wider range
of similarity, as shown in Fig. 5. The range of similarity generated by degree-
distribution with deg = 1 has pairwise distances in [0, 1], ranges in the interval
[1, 0.5], whereas the similarity generated by degree-distribution with deg = 1
has pairwise distances in [0, 2], ranges in a wider interval [1, 0. 2]. Moreover, it
can be theoretically proven that re-scaling the pairwise distances of the original
data in the range [0, 2] generates a wider range of similarity produced by degree
distribution with deg = 1, as in Proposition 1 below.

Proposition 1 By increasing the rescaled distance range interval, the simi-

larity range of degree-distribution pij =
(1+dis(xi,xj))

−1∑
k 6=l

(1+dis(xk,xl))−1 also increases.

Proof

Let’s define with d1(xi, xj) the rescaled distance of dis(xi, xj) in the interval
[0, 1], and d2(xi, xj) the rescaled distance of dis(xi, xj) in the interval [0, 2] and
d2(xi, xj) = 2×d1(xi, xj), where d10(xi, xj) = 0, d11(xi, xj) = 1, d20(xi, xj) = 0,
and d22(xi, xj) = 2. Let’s also define with [L1, U1] and [L2, U2] the the similarity
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(a)

(b)

Fig. 3: Trustworthiness (a), and Continuity (b) for SDD with deg 1, 7 and 15 .
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Fig. 4: Two degree-distributions and the sensitivity to large pairwise distances.
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Fig. 5: Degree-distribution (deg = 1) in the pairwise distances re-scaled in [0, 2].
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14 Hajderanj et al.

ranges of [0, 1] and [0, 2], respectively.

L1 =
(1 + d10(xi, xj))

−1

S1
=

(1 + 0)−1

S1
=

1

S1
=

1∑
k 6=l

(1 + d1(xk, xl))−1
(10)

where S1 =
∑
k 6=l

(1 + d1(xk, xl))
−1

U1 =
(1 + d11(xi, xj))

−1

S1
=

(1 + 1)−1

S1
=

1

2(S1)
=

1

2
∑
k 6=l

(1 + d1(xk, xl))−1
(11)

L2 =
(1 + d20(xi, xj))

−1

S2
=

(1 + 0)−1

S2
=

1

S2
=

1∑
k 6=l

(1 + 2d1(xk, xl))−1
(12)

where S2 =
∑
k 6=l

(1 + d2(xk, xl))
−1 =

∑
k 6=l

(1 + 2d1(xk, xl))
−1

U2 =
(1 + d22(xi, xj))

−1

S2
=

(1 + 2)−1

S2
=

1

3(S2)
=

1

3
∑
k 6=l

(1 + 2d1(xk, xl))−1

(13)

Based on Eqs. (10) and (11), the interval of similarity is:
[L1, U1] = [

∑
k 6=l

(1 + d1(xk, xl)),
1

2
∑
k 6=l

(1+d1(xk,xl))−1 ],

and based on Eqs. (12) and (13) the interval of similarity is:
[L2, U2] = [ 1∑

k 6=l

(1+2d1(xk,xl))−1 ,
1

3
∑
k 6=l

(1+2d1(xk,xl))−1 ]. As such, the length of the

interval is

L1 − U1 =
1∑

k 6=l
(1 + d1(xk, xl))−1

− 1

2
∑
k 6=l

(1 + d1(xk, xl))−1
=

1

2
∑
k 6=l

(1 + d1(xk, xl))−1

(14)

L2 − U2 =
1∑

k 6=l
(1 + 2d1(xk, xl))−1

− 1

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
=

2

3
∑
k 6=l

(1 + 2d1(xk, xl))−1

(15)

To proof that [L2, U2] is wider than [L1, U1], then based on Eqs. (14) and (15)
it has to be proven that

2

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
>

1

2
∑
k 6=l

(1 + d1(xk, xl))−1
=⇒

2

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

2
∑
k 6=l

(1 + d1(xk, xl))−1
> 0
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(L2 − U2)− (L1 − U1) =

=
2

3
∑
k 6=l

1
(1+2d1)

− 1

2
∑
k 6=l

1
(1+d1)

=

4
∑
k 6=l

1
(1+d1)

− 3
( ∑
k 6=l

1
(1+2d1(xk,xl))

)
6
∑
k 6=l

1
(1+2d1(xk,xl))

∑
k 6=l

1
(1+d1(xk,xl))

=

∑
k 6=l

4
(1+d1(xk,xl))

−
(

3
(1+2d1)

)
6
∑
k 6=l

1
(1+2d1)

1
(1+d1)

=

∑
k 6=l

4((1+2d1))−3((1+d1))
(1+d1)(1+2d1(xk,xl))

6
∑
k 6=l

1
(1+2d1(xk,xl))(1+d1(xk,xl))

=

∑
k 6=l

1
(1+d1(xk,xl))(1+2d1(xk,xl))

∑
k 6=l

4((1 + 2d1(xk, xl)))− 3((1 + d1(xk, xl)))

6
∑
k 6=l

1
(1+2d1(xk,xl))(1+d1(xk,xl))

=

∑
k 6=l

4(1 + 2d1(xk, xl))− 3((1 + d1(xk, xl)))

6

=

∑
k 6=l

(1 + 5d1(xk, xl))

6

Since

∑
k 6=l

(1+5d1(xk,xl))

6 ≥ 0, then the similarity range provided by pairwise
distances rescaled in the range [0, 2] is wider than the similarity range provided
by pairwise distances rescaled in the range [0, 1]. �

However, a further question arises: are the similarity ranges of both short and
large distances expanded the same as the range of pairwise distances increases?
To examine the question, consider short distances d1 short ∈ [L1, H1], d1 large ∈
]H1, U1], d2 short ∈ [L2, H2], and d1 large ∈]H2, U2] as in Fig. 6.

To evaluate whether short and large distances have been affected mainly by
increasing the range of pairwise distances, has defined and proven in Proposition
2.

Proposition 2 By increasing the range of rescaled pairwise distances, the
similarity range of short distances increases more than the similarity range of
large distances.

Proof
Since L1, U1, L2, U2 have been calculated in the Proposition 1, then let cal-

culates the H1 and H2 which are the middle samples of [L1, U1] and [L2, U2],
respectively.
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16 Hajderanj et al.

Fig. 6: Two data segments.

H1 =
(1 +

(d10(xi,xj))+(d11(xi,xj))
2 )−1

S1
=

2

3(S1)
=

2

3
∑
k 6=l

(1 + d1(xk, xl))−1
(16)

H2 =
(1 +

(d20(xi,xj))+(d22(xi,xj))
2 )−1

S2
=

1

2(S2)
=

1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
(17)

Finally,[
L1, H1

]
=
[

1∑
k 6=l

(1+d1(xk,xl))−1 ,
2

3
∑
k 6=l

(1+d1(xk,xl))−1

]
, and[

L2, H2

]
=
[

1∑
k 6=l

(1+2d1(xk,xl))−1 ,
1

2
∑
k 6=l

(1+2d1(xk,xl))−1

]
Then,

L1 −H1 =
1∑

k 6=l
(1 + d1(xk, xl))−1

− 2

3
∑
k 6=l

(1 + d1(xk, xl))−1
=

1

3
∑
k 6=l

(1 + d1(xk, xl))−1

(18)

L2 −H2 =
1∑

k 6=l
(1 + 2d1(xk, xl))−1

− 1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
=

1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1

(19)

To proof that [L2, H2] is wider than [L1, H1], then based on Eqs. (18) and (19)
have to be checked if 1

2
∑
k 6=l

(1+2d1(xk,xl))−1 >
1

3
∑
k 6=l

(1+d1(xk,xl))−1 which is equivalent

with 1
2
∑
k 6=l

(1+2d1(xk,xl))−1 − 1
3
∑
k 6=l

(1+d1(xk,xl))−1 > 0
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Title Suppressed Due to Excessive Length 17

(L2 −H2)− (L1 −H1)

=
1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

3
∑
k 6=l

(1 + d1(xk, xl))−1

=

3
∑
k 6=l

(1 + d1(xk, xl))
−1 − 2(

∑
k 6=l

(1 + 2d1(xk, xl))
−1)

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

3 1∑
k 6=l

(1+d1(xk,xl))
− 2 1∑

k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

3
∑
k 6=l

(1+2d1(xk,xl))−2
∑
k 6=l

(1+d1(xk,xl))∑
k 6=l

(1+d1(xk,xl))
∑
k 6=l

(d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1)+4
∑
k 6=l

(d1(xk,xl))∑
k 6=l

(1+d1(xk,xl))
∑
k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1) + 4
∑
k 6=l

(d1(xk, xl))
1∑

k 6=l

(1+d1(xk,xl))
∑
k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1) + 4
∑
k 6=l

(d1(xk, xl))

6

Also, based on Eqs. (16) and (11)
[
H1, U1

]
=
[

2
3
∑
k 6=l

(1+d1(xk,xl))−1 ,
1

2
∑
k 6=l

(1+d1(xk,xl))−1

]
,

and based on Eqs. (17) and (13)
[
H2, U2

]
=
[

1
2
∑
k 6=l

(1+2d1(xk,xl))−1 ,
1

3
∑
k 6=l

(1+2d1(xk,xl))−1

]
then,

H1 − U1 =
2

3
∑
k 6=l

(1 + d1(xk, xl))−1
− 1

2
∑
k 6=l

(1 + d1(xk, xl))−1
=

1

6
∑
k 6=l

(1 + d1(xk, xl))−1

(20)

H2 − U2 =
1

2
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

3
∑
k 6=l

(1 + 2d1(xk, xl))−1
=

1

6
∑
k 6=l

(1 + 2d1(xk, xl))−1

(21)
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18 Hajderanj et al.

To proof that [H2, U2] is wider than [H1, U1], then based on Eqs. (20) and (21)
has to be checked if 1

2
∑
k 6=l

(1+2d1(xk,xl))−1 >
1

3
∑
k 6=l

(1+d1(xk,xl))−1 which is equivalent

with 1
6
∑
k 6=l

(1+2d1(xk,xl))−1 − 1
6
∑
k 6=l

(1+d1(xk,xl))−1 > 0

(H2 − U2)− (H1 − U1) =

=
1

6
∑
k 6=l

(1 + 2d1(xk, xl))−1
− 1

6
∑
k 6=l

(1 + d1(xk, xl))−1

=

∑
k 6=l

(1 + d1(xk, xl))
−1 − (

∑
k 6=l

(1 + 2d1(xk, xl))
−1)

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

1∑
k 6=l

(1+d1(xk,xl))
− 1∑

k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(1+2d1(xk,xl))−
∑
k 6=l

(1+d1(xk,xl))∑
k 6=l

(1+d1(xk,xl))
∑
k 6=l

(d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(d1(xk, xl))
1∑

k 6=l

(1+d1(xk,xl))
∑
k 6=l

(1+2d1(xk,xl))

6
∑
k 6=l

(1 + d1(xk, xl))−1
∑
k 6=l

(1 + 2d1(xk, xl))−1

=

∑
k 6=l

(d1(xk, xl))

6

As proved above, when increasing the pairwise distances ranges from [0, 1] to

[0, 2], the similarity range of short distances is increased by

∑
k 6=l

(1)+4
∑
k 6=l

(d1(xk,xl))

6

and similarity range of large distances increased by

∑
k 6=l

(d1(xk,xl))

6 . Having a wider
interval of similarity means a small change in distance derives a bigger change
in similarity. As such, data samples A1, A2, ..., Am have pairwise distances in the
interval [L1 = 0, H1 = 0.5] if pairwise distances are rescaled in range [0, 1] and
in and in interval [L0 = 0, H2 = 1] if pairwise distances are rescaled in range
[0, 2]. �

Based on the proof of Proposition 2, the interval of similarity between data
samples A1, A2, ..., Am with pairwise distances rescaled in the interval [L0 =

0, H2 = 1] is

∑
k 6=l

(1)+4
∑
k 6=l

(d1(xk,xl))

6 and wider than the interval of similarity be-
tween data samples A1, A2, ..., Am with pairwise distances rescaled in the inter-
val [L1 = 0, H1 = 0.5]. So, if data samples A1 and A2 are close and A1 and
A3 are far away, with pairwise distances d1(A1, A2) = 0, d1(A1, A3) = 5 and
d2(A1, A2) = 0, d2(A1, A3) = 1, then is more possible that data points A1, A2
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Title Suppressed Due to Excessive Length 19

and A3 will maintain their structure using pairwise distances rescaled to the
interval [0, 2] rather than scaled in the interval [0, 1], due to the huge difference
provided between small distances similarities and large distance similarities.

Fig. 7: Data samples A1, A2, ..., Am whose distances is in in the range [L1, H1] and
[L2, H2].

In other words, a wider similarity interval means a better-maintained struc-
ture. It is also visible that increasing the pairwise distance range has an impact
more on short distances than on large distances. Overall, the increase of the
rescaled range has a negative impact on capturing local data structure, which is
one of the disadvantages of using degree-distribution with deg = 1 in the rescaled
distance range [0, 1].

Additionally, based on Proposition 2, if the range of rescaled pairwise dis-
tances increases to [0, 2], the global structure destroys. Consequently, rescal-
ing the pairwise distances in the interval [0, 3] or [0, 4] may improve the local
structure maintenance. However, it destroys the maintenance of the global data
structure because degree-distribution converges to zero when the pairwise dis-
tances increase. In conclusion, this research proposes rescaling original data in
the interval [0, 2] due to the sensitivity that degree-distribution with deg = 1
has in this interval.

As such, it is proposed to use SDD with degree (deg = 1) in the rescaled pairwise
range in [0, 2]. Using SDD with deg = 1 in the rescaled range [0, 2] is named as
parameter-free SDD as shown in Algorithm 3, and like SDD, it uses Kullback-
Leibler to approximate the degree-distribution in the low dimensional space with
the degree-distribution in the high dimensional space:

C1 =
∑
i 6=j

pij log(
pij
qij

) (22)

Parameter-free SDD intends to minimize the cost function C1 as :

loss1 = min (C1) (23)

where

pij =
(1 + dis(xi, xj))

−1∑
k 6=l

(1 + dis(xk, xl))−1
(24)
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20 Hajderanj et al.

Algorithm 1 Parameter-free SDD

Require: Input :

Let beX a dataset with N number of samples and D number of dimen-
sions (features per each sample), calculate matrix DIS of pairwise distance
of X and rescale into the range [0, 2], number of iterations H, learning rate
η, momentum α, initial low dimensional data Y 0 = y1, ..., yN ∈ N(0, 10−4I), ε.

Step 1 :

Compute the high dimensional space similarities (pij) using (24) and store them in P .

Step 2 :

Compute the low dimensional space similarities (qij) using (25) and store them in Q.

Step 3 :

Compute the gradient δC1
δ yi

where C1 is defined in (22).

Step 4 :

Minimize the objective function using the Gradient Descent optimisation al-
gorithm: Y h = Y h−1 + η δC1

δyi
+ α(Y h−1 − Y h−2).

The optimisation algorithm will stop either achieves the maximum number of
iterations H or the Kullback-Leibler value is lower than the minimum threshhold ε.

Output :

Low dimensional space represenation Y .

qij =
(1 + dis(yi, yj))

−1∑
k 6=l

(1 + dis(yk, yl))−1
(25)

3.2 Complexity Analysis

Parameter-free SDD needs to create two matrixes with N ×N to store distances
in both high and low dimensional spaces and another matrix that stores the
difference P −Q with N ×N . In total, the computational and space complexity
of parameter-free SDD is O(N2) and is significantly less than the computational
and space complexity of SDD and MSDD.

3.3 Experimental Results

Parameter-free SDD is an innovative method that takes the highes performance
of SDD but saves computational time significantly. As mentioned in Section 3,
parameter-free SDD does not require tuning any parameter, and it uses only
deg = 1, which results to be the bestdeg due to rescaling the pairwise distances
in the range [0, 2].

The performance of parameter-free SDD has been evaluated using Kendall’s
Tau, Trustworthiness and Continuity and is compared with three different de-
grees of SDD including 1, 15 and bestdeg. The experiments have all be conducted
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on Python with the same number of iterations and optimisation parameters. The
dataset considered are Iris, Breast Cancer, Swiss and MNIST. The first dataset
considered is the Iris dataset, which contains 150 flowers and 4 attributes for each
(length and width of petal and sepal). There are three different types of flowers
and fifty samples per type. As shown in Fig. 8, the largest fraction of samplesof
Iris data has relatively short and medium distances, in which, SDD approach has
proved to perform better than other methods [25]. The Breast Cancer dataset5

Fig. 8: Euclidean distance distribution of Iris dataset.

with 30 attributes is the second datasets considered. The distance distribution
of breast cancer data is shown in Fig. 9, where the majority of samples have
relatively short distances, in which SDD is expected to maintain better the data
structure [25]. Swiss Roll data is a popular synthetics dataset with 1600 samples

Fig. 9: Euclidean distance distribution of Breast Cancer dataset.

and three attributes and forms a swiss roll shape, as shown in Fig. 10(a). The
largest fraction of samples has the pairwise distances in medium range from 5
to 20 as presented in Fig. 10(b).

MNIST with 2500 samples (hand written numbers) and 784 attributes (pix-
els) is the fourth dataset considered,with distance distribution shown in Fig. 11,
dominated by entries with medium, large distances.

5 Load breast cancer from sklearn, Python.
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(a) (b)

Fig. 10: Swiss Roll data (a) and its Euclidean distance distribution (b).

Fig. 11: Euclidean distance distribution of MNIST data.

Based on experimental results, SDD itself has proved to be a very good
method in capturing data structure on data having majority of samples with
relatively short or medium distances, parametric-free SDD appears provenly
appropriate to capture local and global data structures due to the high sensitivity
of degree-distribution with deg = 1 has in the short and large distances into the
intervals 0 and 2. As shown in Fig. 5, parameter-free SDD (SDD with deg = 1
in [0, 2]) captures slightly the same the local data structure (short distances)
compared with SDD (deg = best) in [0, 1]. However, parameter-free SDD can
capture global data structure better than SDD (deg = best), as demonstrated
in Figs. 12 and 13.

In addition, the performance of parameter-free SDD has been evaluated using
Kendall’s Tau, which, as is demonstrated in Table 2, is very similar to SDD
(deg = best). However, in terms of computational time, parameter-free SDD is
significantly less expensive than SDD, as shown in Table 2. Parameter-free SDD
takes 0.41, 7.79, 36.93, 183.94 seconds to generates low dimensional data of Iris,
Breast Cancer, Swiss Rolls and MNIST data instead of 9.49, 111.33, 552.96 and
2452.12 seconds that SDD takes.

In summary, parameter-free SDD can capture the structure of the data very
well due to 1) the long tail of Student-t distribution in capturing the global data
structure and 2) to the advantages of re-scaling the pairwise distances DIS in
the interval [0, 2], which improves capturing the local data structure. It might
happen that because the sensitivity for large distances is small when distance is
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(a) Trustworthiness (Iris) (b) Continuity (Iris)

(c) Trustworthiness (Breast Cancer) (d) Continuity (Breast Cancer)

(e) Trustworthiness (Swiss Roll) (f) Continuity (Swiss Roll)

(g) Trustworthiness (MNIST) (h) Continuity (MNIST)

Fig. 12: Trustworthiness and Continuity for SDD with deg = 1, degbest and 15 for
re-scaled distances in range [0, 1], and parameter-free SDD.
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(a) Trustworthiness (Iris) (b) Continuity (Iris)

(c) Trustworthiness (Breast Cancer) (d) Continuity (Breast Cancer)

(e) Trustworthiness (Swiss Roll) (f) Continuity (Swiss Roll)

(g) Trustworthiness (MNIST) (h) Continuity (MNIST)

Fig. 13: Trustworthiness and Continuity for SDD with degbest, and parameter-free
SDD.
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Table 2: THE PERFORMANCE OF SDD AND PARAMETER-FREE SDD IN
TERMS OF KENDALL’S TAU COEFFICIENT AND COMPUTATIONAL TIME

Datasets

Iris Breast Cancer Swiss Rolls MNIST

deg 6 10 1 1

τ 0.967328 0.998118 0.914711 0.606525
SDD

time(sec) 9.49 111.33 552.96 2454.12

τ 0.967339 0.998086 0.914578 0.607947
parameter-free SDD

time(sec) 0.41 7.79 36.93 183.94

increased into [0, 2], they may be negligible from the cost function, making the
global structure not as good as degree-dsitribution with deg = 1. However, the
global structure captured by parameter-free SDD is better than the global data
structure captured by SDD with deg = best in pairwise distance ranges in [0, 1].

Furthermore, as shown in Table 2, parameter-free SDD is capable to main-
tain the same data structure as SDD but in significantly less computational
time. Note that SDD has been demonstrated to be best methods in maintaining
data structure [25], and parameter-free SDD is capable to maintain the same
performance in terms of maintaining the same data structure with spending
significantly less computational time. This makes parameter-free SDD a very
useful approach for visualization high dimensional data having different data
type including nonlinear data and with complex manifold representations.

4 Parametric SDD

PCA is one of the most famous parametric dimensionality reduction methods;
however, it is a linear method that favours preserving global data structure at the
expense of neglecting local data structure. Also, RBMs, a parametric method,
favours capturing the global data structure, and it is a more complicated method
due to the number of parameters required to tune. RBMs were proposed [27] to
make t-SNE a parametric method. Parametric t-SNE is intended to maintain
the local data structure, whereas RBMs maximises the data covariance, and that
it means it captures the global data structure. And as a result, parametric t-
SNE is ineffective in preserving well-separated clusters it contrasts with RBM’s
objective function that maximises the variance. To deal with this problem, using
supervised learning with neural networks was proposed by [28] to make t-SNE a
parametric method. A neural network was trained to learn the two-dimensional
data generated by a given dimensionality reduction method (t-SNE). This ap-
proach has been very effective in using high dimensional data in data structure
capturing, scalability, and simplicity of genericity [27]. It minimises the distance
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between the two-dimensional data generated by the standard method and the
two-dimensional data generated by the trained neural network.

Although SDD is an excellent structure capturing method, it is still not fea-
sible for the out-of-the sample data. It was inspired by the effectiveness of using
neural networks (ANN) to learn how to transform the original high-dimensional
data to its corresponding low-dimensional data, i.e., embedding generated by
SDD. The logical flowchart of the project for training an NN to learn an em-
bedding is shown in Fig. 14. A successfully trained NN can be used to embed
any new data, and therefore, this makes SDD a parametric method. In other
words, the trained NN provides an explicit model to estimate the implicant data
embedding formed by SDD.

Fig. 14: Framework of Learning Projection.

To testify the neural network, the dataset X will be split into training set Xe

and testing set Xt, where Xe is used to train the neural network, and Xt to test
the neural network. The neural network uses Xe and the two-dimensional data
generated by dimensionality reduction techniques DR(Xe). Each datasets used
is randomly split into 80% training the network and 20% to validate the net-
work. After the ANN has achieved satisfactory results in terms of classification
accuracy, the network is used to embedd will predict Xt.

The architecture of the ANN employed is shown in Fig. 15, and it has three
fully connected hidden layers with 256, 512 and 256 units, respectively, using the
ReLU activation function as shown in Fig. 11. The last layer has two elements
and uses a sigmoid function to encode the two-dimensional projection, scaled to
the interval [0,1]. The optimisation method used for the training is the ADAM
optimiser, a derivate of the stochastic gradient descent. The training lasts up

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 27

to 80 epochs and stops when there is no significant change to the loss in three
successive epochs. The loss function used is the Mean Squared Error (MSE), and
can be expressed as following:

MSE =
1

N

N∑
i=1

‖DR(Xe)i −NN(Xe)i‖2 (26)

, where DR(Xe)i, NN(Xe)i are the ground truth of two dimensional data gen-
erated by the dimensionality reduction method (DR) and the network (NN),
respectively.

Fig. 15: Network Architecture employed.

4.1 Experiments and Results Discussion

The dimensionality reduction techniques considered are PCA, MDS, Isomap,
LE, t-SNE, UMAP, and MSDD, run with the same iteration using Python.
The performance of these methods depends on some tunning parameters, so we
have tuned parameters to check their performance estimated by Kendall’s Tau
correlation coefficient (τ). Dataset considered in this section are non-temporal
data, such as Synthetic data (MNIST), Medical data (SEER Breast Cancer),
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Customer data (Churn data), Image processing data (AVletters (LIPS)). The
same architecture of CNN has been applied to two-dimensional data generated
by PCA, Isomap, t-SNE, Umap and parameter-free SDD. PCA is a parametric
method, and there exists a parametric t-SNE; however, for comparison reasons,
the same Neural Network architecture has been applied to all methods. The
MNIST data with 60,000 gray images from 0 to 9 with 28 × 28 pixels will be
flattened into 784 dimensional record.6 The SEER Breast Cancer data contains a
totally of 291,760 incidences registered in the US from 1974 to 2017. The original
data sets need to be pre-processed and transformed to a target data set for
analysis. The most crucial task in the data pre-processing process is to identify
any data quality issues and further adopt appropriate strategies to address them
accordingly. The data pre-processing process was very time-consuming, and it
has eventually led to a resultant target data set with 260,000 incidences and 961
variables. The variable survival that represents if a patient survived has been
considered the target variable since this analysis aims to identify crucial factors
that potentially affect the survival of a breast cancer patient. The Churn data
contains 9786 customers that are described by 2 variables, a customer is churn
or no. The AVletters database (LIPS Reading data) consists of three repetitions
by each of 10 talkers, five male (two with moustaches) and five female, of the
isolated letters A-Z, a total of 780 utterances. Each talker was requested to
begin and end each letter utterance with their mouth in the closed position.
No head restraint was used, but talkers were provided with a close-up view of
their mouths and asked not to move out of the frame. The full face images were
further cropped to a region of 80× 60 pixels after manually locating the centre
of the mouth in the middle frame of each utterance.

6 MNIST data from Keras.
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Table 3: THE PERFORMANCE OF METHODS (ROWS) IN DATASETS
(COLUMNS) IN TERMS OF KENDALL’S TAU COEFFICIENT

DR algorithm Churn SEER LIPS MNIST

PCA 0.9691 0.5154 0.7391 0.3533
PCA (predict train) 0.9688 0.5152 0.7401 0.3489
PCA (predict test) 0.9693 0.5194 0.7417 0.3401

t-SNE 0.7466 0.2729 0.3824 0.2395
t-SNE (predict train) 0.8509 0.2764 0.3825 0.2413
t-SNE (predict test) 0.8562 0.2796 0.3799 0.2432

Isomap 0.9043 0.4778 0.7399 0.4021
Isomap (predict train) 0.9062 0.4783 0.7399 0.4018
Isomap (predict test) 0.91081 0.4845 0.7416 0.3984

SDD 0.9723 0.7279 0.7948 0.6199
SDD (predict train) 0.9711 0.7258 0.7838 0.6130
SDD (predict test) 0.9715 0.7247 0.7849 0.6059

(a) Churn-PCA (b) SEER-PCA (c) LIPS-PCA (d) MNIST-PCA

(e) Predict-train
Churn-PCA

(f) Predict-train
SEER-PCA

(g) Predict-train
LIPS-PCA

(h) Predict-train
MNIST-PCA

(i) Predict-test
Churn-PCA

(j) Predict-test
SEER-PCA

(k) Predict-test
LIPS-PCA

(l) Predict-test
MNIST-PCA

Fig. 16: The visualisation of the two-dimensional representation of the Churn (23
attributes), SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784
attributes) generated by PCA.
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(a) Churn-t-SNE (b) SEER-t-SNE (c) LIPS-t-SNE (d) MNIST-t-SNE

(e) Predict-train
Churn-t-SNE

(f) Predict-train
SEER-t-SNE

(g) Predict-train
LIPS-t-SNE

(h) Predict-train
MNIST-t-SNE

(i) Predict-test
Churn-t-SNE

(j) Predict-test
SEER-t-SNE

(k) Predict-test
LIPS-t-SNE

(l) Predict-test
MNIST-t-SNE

Fig. 17: The visualisation of the two-dimensional representation of the Churn (23
attributes), SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784
attributes) generated by t-SNE.
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(a) Churn-Isomap (b) SEER-Isomap (c) LIPS-Isomap (d) MNIST-Isomap

(e) Churn-Isomap (f) SEER-Isomap (g) LIPS-Isomap (h) MNIST-Isomap

(i) Churn-Isomap (j) SEER-Isomap (k) LIPS-Isomap (l) MNIST-Isomap

Fig. 18: The visualisation of the two-dimensional representation of the Churn (23
attributes), SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784
attributes) generated by Isomap.

(a) Churn-SDD (b) SEER-SDD (c) LIPS-SDD (d) MNIST-SDD

(e) Predict-train
Churn-SDD

(f) Predict-train
SEER-SDD

(g) Predict-train
LIPS-SDD

(h) Predict-train
MNIST-SDD

(i) Predict-test
Churn-SDD

(j) Predict-test
SEER-SDD

(k) Predict-test
LIPS-SDD

(l) Predict-test
MNIST-SDD

Fig. 19: The visualisation of the two-dimensional representation of the Churn (23
attributes), SEER Breast Cancer (960 attributes), Lips (4800 attributes), MNIST (784
attributes) generated by SDD.
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Note that the ratio of training/testing samples in % is different in differ-
ent datasets as shown in Table 4. Training/testing samples (%) is 70%/30%,
50%/50%, 50%/50%, 25%/75% in Churn, SEER Breast Cancer, LIPS and MNIST
datasets, respectively.

Table 4: DATASETS (ROWS) AND TRAINING, TESTING SAMPLES AND DI-
MENSIONALITY
Datasets Training Samples (%) Testing Samples (%) Dimensionality

Churn 6850 (70 %) 2936 (30%) 23
SEER Breast Cancer 15000 (50 %) 15000 (50 %) 960
LIPS 9280 (50 %) 9280 (50 %) 4800
MNIST 15000 (25 %) 45000 (75 %) 784

Although the ratio of training/testing samples varies with different datasets,
it can be said that the employed ANN has been trained very good to embedd the
training samples and testing samples. Low dimensional visualisations generated
by PCA, t-SNE, Isomap and SDD, and their prediction have been presented in
Figs. 16, 17, 18, and 19, respectively. Based on the experimental results shown
in Table 3, it can be seen that the method that has been captured the best data
structure is SDD to all datasets. As a result, the best structure of testing data
has been captured by parametric SDD.

In summary, parametric methods employ ANN to capture the same data
structure that their corresponding versions capture. The better the training data
structure has been captured, the better the data structure of testing data will
be captured.

5 Conclusion

SDD is a nonlinear dimensionality reduction method proposed recently, and it
has demonstrated an outstanding performance in structure capturing and saving
computational time compared to other states of the art methods. However, SDD
still requires tuning the degree of degree-distribution to get the best performance,
which may be more costly than other parameter-free methods, including PCA
and MDS. This paper proposes a parameter-free SDD that can preserve a pretty
similar data structure with SDD but in significantly less computational time. The
benefits of parameter-free SDD are by using degree-distribution (deg = 1) in high
and low dimensional space but re-scaling the pairwise distances of original data
in the interval [0, 2] instead of [0, 1]. The performance of parameter-free SDD
has been demonstrated experimentally that it achieves the same performance
in terms of structure maintenance but in significantly less time than SDD. In
terms of structure maintenance, parameter-free SDD outperforms all considered
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methods. And in terms of computational time, it outperforms t-SNE, UMAP,
Trimap, Isomap, LE, LLE, and MDS. A theoretical proof also supports the
excellent performance of parameter-free SDD.

This paper also addresses the problem of out-of-sample data points for SDD
by proposing the parametric SDD approach. Parametric SDD proposes using
Neural Networks to mimic the two-dimensional data produced by SDD. It has
been demonstrated experimentally that parametric SDD maintains the training
data structure (where the networks have been trained) and testing data (for
unseen data for network).

However, parameter-free SDD and parametric SDD over-perform all consid-
ered methods when the fraction of data has short and medium distances. For
data with a large fraction of large pairwise distances, it remains for further
studies.
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