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ABSTRACT Multi-Access Mobile Edge Computing (MEC) is proclaimed as a key technology for reducing
service processing delays in 5G networks. One of the use cases in MEC is content caching as a way of
bringing resources closer to the end-users. Consequently, both latency and QoE are reduced. However,
MEC has a limited storage space compared to the cloud. Therefore, there is a need to effectively manage
the cache storage. This paper proposes and evaluates a novel scheme (PCR) that combines proactive
prediction, collaboration among MECs and replacement algorithm to manage content caching in MEC.
Results show that the proposed replacement scheme outperforms conventional baseline content caching
algorithms LFU, LRU, MQ, FBR, LFRU. This has been validated with experimental results using a real
dataset (MovieLens20M dataset).

INDEX TERMS Edge Intelligence, intelligent caching, MEC, predictive caching,

I. INTRODUCTION

ULTRA-Reliable Low-Latency Communications (URLLC)
[1] is likely the most talked-about 5G use case mainly

because of the huge services it can support. URLLC aims
to deliver a vastly reliable mobile wireless network with
extremely low latency requirements. Low latency is tremen-
dously important to support 5G applications [2]. This is
exceptionally challenging as Cisco predicted the overall
mobile data traffic is expected to grow to 77 exabytes per
month by 2022 [3]. This growth is attributed to the rise of
IoT and Machine to Machine (M2M) communication, use of
social media and video streaming platforms, and the adoption
of Augmented Reality /Virtual Reality (AR/VR) applications
and 360 video streaming.

One of the ways to reduce the latency is by bringing
the resources closer to the user through caching. Hence the
need for Multi-Access Edge Computing (MEC) is crucial
to reduce delay. MEC is defined by Taleb et al [4] as
an ecosystem which aims at combining telecommunication

and IT services and reducing latency by providing a cloud
computing platform at the edge of the radio access network.
Therefore, caching on the edge is a promising solution.

Employing an appropriate caching algorithm is pivotal to
increase the overall Quality of Experience (QoE) in content
distribution systems as 1% increase in hit ratio can have
a positive impact [5]. The conventional caching algorithms
such as First In First Out (FIFO) [6], Least Recently Used
(LRU) [7], Least Frequently Used (LFU) [8], Least Fre-
quently Recently Used (LFRU) [9] and their variants [10]
[11] [12] [8] follow vastly specific rules. Therefore, these
algorithms alone cannot adapt and adjust to the ever-caching
user request patterns. Following the increasing popularity of
machine learning and data analytics, there has been progress
made on the prediction based caching algorithms [13], [14],
[15], [16]. Most of these algorithms use Recurrent Neural
Network (RNN) algorithms like Long Short-Term Memory
(LSTM) [17] which involves data preparation and feature ex-
traction, model training and finally cache replacement using

VOLUME 4, 2016 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the trained model. The model training is usually overly time
consuming and therefore is mostly done offline. However,
once the model is trained with appropriate hyperparameters
[18] and adequate feature engineering, it can achieve ex-
tremely high hit ratio. One major drawback is that the model
created is immensely dependent on the data used on training
and hence it is not hugely adaptive.

Podlipnig et al [19] have stated that a good caching algo-
rithm must consider 4 factors. This includes the frequency of
the cache object, the recency, the size of the cache object and
the cost of retrieving the cache object. This is of no surprise
as prior to this, Zhou et al [8] also listed 3 factors a good
cache algorithm. Two among them (frequency and recency)
have already been mentioned. The third factor is the temporal
frequency. This is to solve the problem of cache objects that
were frequently accessed in the past, obtains an excessively
high frequency. As a result, such objects are never replaced
even if they are no longer popular. Addressing this problem
has been another motivation for this research paper.

In this paper, the aforementioned concerns of the caching
algorithms have been addressed by proposing a three-fold
algorithm solution to improve the cache hit ratio and access
delay within a MEC environment. This includes a novel
delay aware replacement caching algorithm that can find a
victim in O(1), a proactive online association-based caching
strategy that prefetches cache objects based on anticipated
user behaviour and finally a MEC collaborative caching al-
gorithm. Experimental results show that the proposed scheme
outperforms conventional algorithms with regards to hit ratio.
Additionally, it outperforms an offline caching algorithm
with a pre-trained model.

The remainder of the paper is structured as follows. The
review of related relevant work is presented in section II.
Section III explains the system architecture and system
model. Section IV details the proposed algorithms. Section
V presents the experimental results and evaluates the per-
formance of the algorithms. Finally, the paper concludes in
Section VI and possible future works have been included in
section VII.

II. LITERATURE REVIEW
Caching algorithms have been studied widely by the research
community in different research fields including MEC. This
ranges from operating systems to network caching and in-
between. In this section, a review is carried out on the caching
algorithms that are relevant to this study.

A. CONVENTIONAL REPLACEMENT ALGORITHMS
In this section, the popular conventional algorithms that are
still commonly used have been reviewed. The vast aim of
these algorithms is to increase the hit ratio.

1) First in First Out (FIFO)
This is one of the simplest replacement policies in terms of
time complexity and implementation. In a FIFO queue, cache
objects are placed in the tail of the queue. If there is a need

for replacement, cache objects are removed from the head
until there is enough space for the incoming request. The time
complexity of this algorithm is O(1).

2) Least Recently Used (LRU)
LRU [7] is still one of the commonly used algorithms.
When the cache is full, the policy replaces the cache object
which has not been referenced for the longest of time. The
strategy is based on the observation that blocks that have
been recently referenced are likely to be used again in the
future. LRU works well with workloads that exhibit strong
temporal locality. However, according to [20], LRU does not
work well with file server caches. The time complexity of
LRU algorithm is O(1).

3) Least Frequently Used (LFU)
LFU is another classic cache replacement algorithm. LFU
maintains a reference count for all cache objects. Therefore,
when the cache is full it replaces the cache object with the
lowest reference count. The rationale of the algorithm is
that some cache blocks are more frequently accessed than
others. Therefore, the frequency count is a good estimate of
the probability of a cache object to be requested. LFU has
two main drawbacks. Firstly, there may be a tie if two cache
objects have the same frequency. Secondly, a cache object
may accumulate large reference count and never replaced
even if the cache object is no longer active. There have been
many improvements proposed to address the drawback of
LFU. One of these improved versions is the aged LFU. This
policy gives different weight to recent and old references.
Aged LFU performs better than the original LFU [8]. The
time complexity of LFU is O(log(n)).

4) Least Recently Used K(LRU-K)
This algorithm combines both LFU and LRU schemes. It
was first introduced in database disk buffering. The basic
idea of LRU-k [10] is to keep track of the times of the last
K references to popular cache objects. This information is
then used to statistically estimate the interarrival times of
references on a request by request basis. The replacement
decision is based on the reference density observed during
the past K references. When K is small, cold cache objects
are identified quicker as such cache objects have a wider span
between the current time and the kth-to-last reference time.
The time complexity of LRU-K is O(log(n)).

5) Least Recently Frequently Used (LRFU)
LFRU [9] is another algorithm that combines LFU and LRU.
The strategy of this algorithm is to replace cache objects that
are least frequently used and not recently used. Each cached
object is associated with a Combined Recency and Frequency
value (CRF). The cache object with the lowest CRF value
is replaced. Each request of a cache object contributes to
its CRF. LRFU has a time complexity of between O(1) and
O(log(n)).
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6) Frequency Based Replacement (FBR)
FBR [11] algorithm is a hybrid replacement scheme which
combines both LRU and LFU to capture the benefits of both
algorithms. FBR has been initially proposed for managing
caches for file systems, management systems or disk control
units. FBR maintains LRU queues of cache objects with
the same frequency count. To address the problem of cache
objects accumulating large reference counts, the algorithm
maintains 3 sections. These include Fnew, Fmiddle and Fold.
These sections are used to bound the frequency count of
certain cache objects and they are required algorithm param-
eters. FBR also requires 2 additional parameters, Amax and
Cmax. Amax refers to the maximum average of frequency
counts to be maintained while Cmax is the maximum chain
count. More details can be found in [11]. The replacement
decision is primarily based on the frequency count. Accord-
ing to [20], FBR is the best algorithm compared to LRU
and LFU. The time complexity of FBR ranges from O(1)
to O(log(n)).

7) Two Queue (2Q)
2Q algorithm [12] has been proposed as an improvement to
LRU-k. The motivation is to reduce the access overhead and
remove cold cache objects quickly. The 2Q uses two LRU
queues A1out and Am and an additional FIFO queue A1in.
The cache objects are initially stored in the A1in when first
accessed. When the cache is evicted from A1in it is then
added to A1out. If a cache object in A1out is accessed, it
is moved to Am. The authors have proposed a scheme to
select the efficient sizes for both A1in and A1out. The 2Q
performs better than FBR, LRU and LFU for second-level
buffer caches [8]. The time complexity of 2Q is O(1).

8) Multi-Queue (MQ)
MQ [8] has a comparable technique to 2Q. The motivation
is to create an algorithm that supports minimal lifetime for
cache objects, has a frequency-based priority and supports
temporal frequency. The MQ usesm number of LRU queues,
where m is a parameter. Cache objects in certain queues
have a longer lifetime than others depending on the queue
the object lies. MQ also uses a history FIFO queue Qout of
limited size to store recently evicted cache objects. MQ evicts
the cache object in the tail of the LRU queue with the least
frequency. MQ [8] performs better than FBR, Q2, LRU and
LFU. The time complexity is O(1).

B. NETWORK AWARE REPLACEMENT ALGORITHMS
Many factors affect the performance of the replacement algo-
rithms used in network caching. These include the requested
object size, latency, bandwidth, miss penalty, temporal local-
ity and long-term access frequency. Successful application of
these algorithms can reduce network traffic, response time,
and server load. The algorithms reviewed in this section take
at least one of these parameters in consideration during cache
replacement.

1) GreedyDual (GD) Algorithms

GD Algorithm has several variations, but the key objective
is to replace the cache object with the lowest cost value
based on a specified cost function. These variations have
different cost functions. The original GreedyDual [21] has
been proposed by Young. The motivation of the algorithm
has been to deal with cache objects that have the same size
but incur a different cost in bringing it to the cache-store.
When a cache object is retrieved, a value H is assigned to
it. This is the cost of bringing the cache object to the cache-
store. The algorithm replaces the cache object with the min
H and then all cache objects reduce their H value by min H .
The time complexity for this is O((n − 1) × log(n)). Two
other variations of GD are listed below:

a: GD-Size

GD-size [22] extends the original GD by adding the size
of the cache object to the cost function. Therefore, H =
cost/size, where size refers to the cache size and cost could
vary depending on the cache priority. The cost could be set
to 1 if the goal is to maximize the hit ratio. It could be set
to the downloading latency if the goal is to minimize average
latency. Finally, it could be set to the network cost if the goal
is to minimize the total cost. The time complexity of GD-Size
O(log(n)).

b: GreedyDual-Size with Frequency (GDSF)

GDSF [23] has been proposed as an extension of GD-Size.
The limitation of GD-Size is that it does not consider the
popularity of the cache objects during cache replacement.
GDSF has H = F ∗ (cost/size) + L, where F is the
frequency count and L is a running age factor. L starts at
0 and is updated for each replaced object if the priority key
of this object in the priority queue.

2) Least Unified-Value (LUV)

LUV [24] allocates a calculated value to each cached object.
When the cache is full, the cache object with the lowest
value is replaced. The value is calculated by weight × H ,
where weight is the retrieval cost (cost/size) and H is the
probability that the object is going to be re-referenced in the
future. The time complexity of LUV is O(log(n)).

3) Lowest-Latency-First (LLF)

LLF ranks the cache objects based on its download latency.
When the cache is full it replaces the cache object with the
lowest latency. The motivation of this scheme is to minimize
the total latency in the system. The time complexity of the
algorithm is O(log(n)).

C. SIZE AWARE ALGORITHMS
In this section, algorithms that predominately makes cache
replacement decisions based on the requested object size are
reviewed.
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1) Size
The Size algorithm [23] replaces the largest cache object
when the cache is full. The strategy is to increase the cache
hits by increasing the number of cache objects in the cache
queue. Therefore, to minimize the miss ratio, one large object
is replaced rather than many smaller ones. The limitation of
this approach is that the smallest cache objects which are
rarely accessed are never replaced.

2) Size-Adjusted LRU
The size-adjusted LRU [23] associates a cost-to-size ratio to
each of the cached objects. The cost value is a function of
the size and access time of the cache object. The cost-to-size
ratio is 1

Size×∆T . ∆T is the elapsed time from last access
time to current time. The time complexity of the algorithm is
O(log(n)).

3) Least Recently Used – Size adjusted and Popularity
aware (LRU-SP)
LRU-SP [25] uses two extensions of the LRU algorithm,
namely Size-adjusted LRU and segmented LRU. The cost
to size function of LRU-SP is (nref/(size × ∆T )). Cache
objects are put into a limited number of groups according to
[log(size/nref)]. When the cache is full, only the last 20
cache objects is considered for replacement. Therefore, the
cache object with the lowest cache-to-ratio value is replaced.
The time complexity of the algorithm is O(1).

4) Log(Size)+LRU
Log(Size)+LRU [23] uses log(size) as a cost function.
Therefore, it evicts the cache object with the largest log(size)
and is the least recently used.

5) Pitkow/Recker
Pitkow/Recker [23] removes the least recently used cache
object, except if all cache objects are accessed within a given
time interval, in which case the largest one is removed.

D. EDGE CACHING ALGORITHMS
There has been a considerable amount of research carried out
on MEC to enhance its cache performance. To accomplish
this, the caching algorithm must be designed to support cache
sharing among MEC nodes, reduce latency and bandwidth
and increase network robustness and reliability. In this sec-
tion, such relevant algorithms have been reviewed.

Wu et al [26] have proposed a collaborative edge caching
mechanism for ICN. The scheme advocates cache redun-
dancy by replicating cache object to the next hop whenever
a cache hit occurs. Ndikumana et al [27] have proposed a
collaborative scheme for edge computing with a collaborative
space defined by the network administrator based on hop
count distance between edge nodes. In the proposed scheme,
the edge nodes periodically exchange resource and cache
updates. Chen et al [28] have proposed a content popularity
prediction on the edge based on neural collaborative filtering.

In [29], an inter and intra tier collaborative hierarchical
caching mechanism over 5G edge computing have been
proposed. The scheme makes caching decisions to minimise
the number of wireless hops in obtaining a cache object
while maximizing the hit ratio. Liu et al [30] have proposed
a collaborative online edge caching algorithm. The scheme
uses a Bayesian clustering technique to group users based on
their request preference. Popular preferences are then cached
to improve the global cache hits. Saputra et al [31] have
proposed two proactive and cooperative caching framework
for mobile edge network. In the first approach, the edge
nodes send data to a central server, which then creates a deep
learning model based on the data popularity and sends it to
the edge servers. The second approach allows each edge node
to create a local model and then send it to the central server
for model aggregation. The aggregated global model is then
sent back to the edge nodes.

Chen et al [32], have proposed a neural collaborative
filtering caching strategy for edge computing. The proposed
method incorporates a greedy algorithm, popularity predic-
tion algorithm and a content cache replacement algorithm.
Simulation results show that the proposed algorithm can
outperform baseline algorithms with regards to hit rate, trans-
mission delay and content cache space utilization

Xu et al [33] have proposed a hybrid edge caching scheme
for tactile internet in 5G. The proposed scheme has been
aimed at energy efficiency improvement in proactive in-
network caching. The cache replacement policy proposed
assumes that the cache files follows Zipf distribution. Simu-
lation results have shown that the proposed method achieves
better latency compared to conventional caching algorithms.

E. PREDICTIVE CACHING ALGORITHMS
The optimal caching algorithm is an algorithm that can
accurately predict the cache request pattern for t + 1, where
t is the current time and use this to make appropriate caching
decisions. For such algorithms, the prediction cost is usually
expensive, and many at-times fail to be consistently accu-
rate. Therefore, there are only a handful of such caching
algorithms. These algorithms are reviewed in the following
paragraphs.

Qi et al [34] have proposed a proactive caching scheme
for the wireless edge. The proposed scheme applies federated
learning for cache popularity prediction. The authors high-
lighted a security vulnerability with centralised learning as
it needs to collect information from users during the learn-
ing process which can be personal. Utilizing the proposed
approach, each user uploads a weighted sum of preference
and file popularity to the base station where models are ag-
gregated. Simulation results show that the proposed scheme
achieves a close cache-hit ratio to a centralised learning
approach.

Tan et al [35] have proposed a reinforcement learning-
based optimal computing and caching scheme for edge net-
works. The problem has been formulated as an infinite-
horizon average-cost Markov decision process (MDP). The
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authors aimed at maximizing the bandwidth utilization and
decreasing the quantity of data transmitted. The scheme
considers long-term file popularity and short-term temporal
correlations of user requests to fully utilize bandwidth. Sim-
ulation results show that the proposed policy scheme can
predict content popularity and user future demands.

Dutta et al [14] have proposed a caching framework for
mobile wireless networks. The proposed technique uses a
predictive scheme for both replacement and cache prefetch.
The problem has been formulated as a QoE optimization
problem and solved using Markov Predictive Control and
Markov Decision Process. Prediction is done using the FP-
Growth association rule-based algorithm. Empirical results
have shown that the proposed algorithm performs better than
LFU, LRU and FIFO in terms of hit ratio.

Chan et al [15] have proposed a big data-driven pre-
dictive caching at the wireless edge. The framework have
applied a machine learning-based approach to anticipate user
behaviours and content patterns and then prefetch content
with expected high popularity. The framework uses a generic
Markov prediction model for prediction. The authors state
that the machine learning-based approach is useful in im-
proving the cache performance when the popularity distribu-
tion fails to follow Zipf distribution. The proposed algorithm
performs better than the LRU algorithm.

Rahman et al [36] have proposed a deep learning predic-
tive caching framework for edge networks. The proposed
framework uses a Long Short-Term Memory (LSTM) Re-
current Neural Network (RNN) model for predicting the
popularity of cache objects. The authors have used Movie-
Lens 20M [37] dataset for training the model. The authors
assume there will be little changes in the dataset and therefore
they have not considered model update during runtime. The
model error rate has been evaluated. However, the proposed
algorithm hit rate ratio has not been analysed.

To address the problem of predictive model inaccuracy
due to changing popularity distribution of cache objects,
Song et al [38] have proposed a dynamic content placement
caching framework. The novel learning framework predicts
the temporal cache distribution of future cache contents. The
content placement is periodically updated based on future
requests. Empirical results have shown that the algorithm
performs better than conventional online caching algorithms.

F. CONTRIBUTIONS
The contributions of this article can be summarized as fol-
lows:
• A novel cache replacement strategy has been designed

which selects victim based on popularity, recency and
network cost. The scheme can identify cold cache ob-
jects through its selective caching approach. Addition-
ally, the problem of temporary frequency has been ad-
dressed.

• A proactive caching algorithm has been designed that
utilises association rule mining to predict cache be-
havioural patterns based on historic events. Further-

more, cache objects are prefetched when necessary to
optimise cache storage and reduce network delay.

• A collaborative caching strategy has been designed for
sharing and retrieving cache among MECs while reduc-
ing cache redundancy in the cooperative space.

III. SYSTEM MODEL
MEC aims to reduce the load at the core network by bringing
computational and caching resources closer to the users.
Mobile operators and content providers would benefit from
caching popular content in the MEC local cache to improve
the QoE of the users. Let’s consider a typical system archi-
tecture as shown in Figure 1. Here, there is a set of MECs
in a cluster that defines a collaborative space to support
the core network. Let C = {C1, C2, C3..Cn} denote a set
of collaborative spaces. Each collaborative space contains a
set of MEC servers Ci = {M1,M2, ..Mn}. Without loss
of generality, it has been assumed that the MEC is co-
located with the base station to provide computational and
caching resources. It is assumed that the collaborative space
is defined by the network administrator based on the hop
count distance between the MEC nodes [27]. This is done
to reduce the communication delay within the collaborative
space and reduce the communication overhead. The users are
connected to the MEC in the collaborative space closet to
them. The MEC maintains a disjoint one-to-many cardinality
with the UE. Here an edge node is connected to many
UE, but no UE is connected to multiple edge nodes. Lets
denote Ui = {u1, u2, ..un} as a finite non-empty set of UEs
connected to an MEC Mi. Each ui request data ri to be
retrieved through the MEC where ri ∈ R. R = {r1, r2.., rn}
is a finite non-empty set of data that can be retrieved from
C or P , where P denotes the cloud platform. Requests that
cannot be retrieved from C are sent to P through the core
network.

IV. PROPOSED SCHEME (PCR)
In this section, the problem of temporal frequency has
been addressed. Additionally, a proactive predictive caching
scheme is proposed that learns user’s request pattern, an-
ticipates requests and prefetches it, is detailed. Finally, a
collaborative algorithm is proposed for effective utilization
of the global MEC cache storage. In the following sections,
the details of the proposed schemes are outlined.

The proposed caching framework is depicted in Figure 2.
Following the numbered items in the diagram, the algorithm
is initialised with a new user request. If the requested cache
object is not in the local cache, then the MEC Collaborative
Scheme is used to retrieve the object. If it is not in the collab-
orative cache, then it is retrieved from the content server. The
Replacement Scheme handles the identification and eviction
of the cache victim when the cache is full. Finally, the Cache
Prediction Scheme generates cache sequential association
rules based on the received request patterns. Therefore, when
there is a match based on the rules generated, the cache ob-
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FIGURE 1. System Architecture for MEC Collaborative Content Caching

jects are prefetched and stored in the local cache. These three
schemes are explained in detail in the following sections.

A. REPLACEMENT SCHEME: SELECTIVE HISTORIC
LEAST FREQUENTLY USED (SHLFRU)
The rationale of the proposed content caching algorithm is
to design and develop an efficient caching algorithm with
competitive time complexity. The basis of SHLFRU is in the
combination of LRU and LFU algorithm, in which the least
frequent and least recent cache object is replaced. However,
two modifications have been made to this algorithm.

1) Selective caching

The problem of cold cache objects, which are requested once
and not requested again for an overly long time and therefore
not useful of being the cache-store is addressed. To solve
this, a selective caching approach is used where the requested
cache object ri is only cached on either two conditions.
The first condition is based on temporal locality, thus cache
objects with a higher temporal locality have higher priority.
This has been achieved using a history queue. The second
condition prioritises cache objects with higher retrieval cost.
This is to reduce user access cost. The two conditions are

FIGURE 2. PCR Caching Framework

represented as in equations 1 and 2.

r
(R−1)
i ≤ r

(R−1)
j ∀ ri ∈ H (1)
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rci > rcj (2)

Here, H is the history queue, r(R−1)
i and r(R−1)

j are the
previous recency of the new cache object ri and the least
frequently and recently used object respectively. rci is the cost
of retrieval of ri and rcj is the cost of retrieval of the rj .

rci =
size

trate
(3)

Here, size is the size of ri in bits and trate is the trans-
mission rate. rci is taken to be the miss penalty, which is the
delay in retrieving the cache object if there is a cache miss.
The history queue H is a FIFO queue of a finite size hsize. It
keeps the details of recently evicted blocks but not the cache
data. The selective caching decision is only activated when
the MEC cache store Mstore

i is full.

|Mstore
i | ≥ cachesize (4)

if either equation 1 or 2 is true, then ri is removed from H
and is pushed into Mstore

i .

2) Temporal Frequency
To address the problem of temporal frequency, a frequency
count bounding strategy is used. In this approach, the maxi-
mum distance between two consecutive cache objects rj and
ri in an LRU queue is grouped by their frequency count that
is bounded by fmax. With this approach and ri being the
lead cache object in Mstore

i , the increment of the frequency
count of a cache object rfi is determined by the function
FreqCount(rfi ) stated in the equation below.

FreqCount(rfi ) =

{
rfi + 1, rfi − r

f
j < fmax

rfi , rfi − r
f
j ≥ fmax

(5)

Additionally, to avoid the problem of overflow associated
with the practical implementation of frequency counts, a sim-
ilar technique used in FBR [11] is applied. In this approach,
the sum of all the frequency count fsum is dynamically
maintained. Therefore, every frequency count in Mstore

i is
reduced whenever the following condition occurs.

fsum
|Mstore

i |
≥ Amax (6)

Amax is a predefined maximum value which is a parameter
of the algorithm. Here, small Amax means high frequency
updates. The frequency count of the cache objects in H and
Mstore
i is reduced using the following equation according to

[11]. ⌈
rfi
2

⌉
∀ ri ∈ {Mstore

i , H} (7)

Using this approach, in a steady-state, fsum would lie
between |Mstore

i | × Amax

2 and |Mstore
i | × Amax. Note that

TABLE I. TIME COMPLEXITY COMPARISON

Algorithm Time complexity
SHLFRU O(1)
MQ O(1)
LRU O(1)
LFU O(log(n))
LFRU O(log(n))
FBR O(log(n))

in this reduction a count of one will remain at one, a count of
two would be two, a count of three would be 2, etc.

The SHLFRU algorithm uses multiple LRU queues Q to
achieve LRFU where each LRU queue Qi contains cache
objects with the same frequency count.

Q = {Q1, Q2.., Qn} s.t ∀ ri ∈ Qi, rfi = i (8)

The reference to the LRU queue that contains the cache ob-
jects with the least frequency QL is dynamically maintained.
Therefore, when a cache needs to be replaced, the victim is
the cache object in the tail of QL.

3) Time Complexity
Maintaining an LRU queue requires a tail insertion/head
taking and incurs no overhead. Since QL is maintained, a
heap data structure is not required to keep the LFU stored.
Hence, the replacement victim can be found in constant time.
If QL changes a maximum of fmax queries are required to
find the next QL. fmax is a constant that does not depend on
the scales. In all, the time complexity of SHLFRU is O(1).
The time complexity comparison is depicted in TABLE I
Taking these updates into consideration, the proposed algo-
rithm SHLFRU is depicted in Algorithm I.

4) SIMULATION EXPERIMENTS
To evaluate the efficiency of the proposed content caching
algorithm, SHLFRU has been compared with existing al-
gorithms. These algorithms have been implemented using
Python. The simulation implementation project is available
on GitHub [39] and the online application is available [40].
The purpose of the simulation is to evaluate the hit ratio of
SHLFRU compared to existing algorithms. These algorithms
are evaluated with varying Zipf-popularity distribution pa-
rameter (α) and cachesize. SHLFRU, FBR and MQ require
additional parameters. The experimental parameters are sum-
marized in TABLE II. The parameters of FBR [11] and MQ
[8] have been explained in section II. Seven algorithms have
been evaluated including LFU, LRU, FIFO, MQ, FBR and
OPT.

5) Results
The results obtained from the simulation is displayed in
Figure 3. It can be deduced that SHLFRU performs better
than the compared algorithms. Its performance is robust for
different workloads and cache sizes. It can also be seen that
MQ performs better than other algorithms except SHLRFU.

VOLUME 4, 2016 7



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Simulation Result of the comparison of Algorithms with varying Zipf parameter (α) and Cache size

TABLE II. EXPERIMENTAL PARAMETERS

Algorithm Parameter Value

SHLFRU
Amax 100
fmax 10
hsize 4× cachesize

FBR

Fnew 30%
Fold 30%
Amax 100
Cmax 11

MQ |Qout| 4× cachesize
m (No of LRU Q) 8

General

α {1.01,1.20,1.35}
cachesize {10,20,30}
No of requests 5000
No of content 100

SHLRFU maintains at least a 3% (3% of 5000 requests is
1500) improvement in hit ratio compared to MQ across the
experiment. This improved performance can be attributed to
the selective caching of SHLRFU and its ability to quickly
identify cold cache objects. FBR performs almost as good as
MQ across the simulation results. LFU surprisingly performs
better than LRU across the simulation results.

B. CACHE PREDICTION SCHEME: PROACTIVE
PREFETCH CACHING ALGORITHM (PPCA)
The cache store would be efficiently managed if the users’
future request pattern is known. This is proved from the
simulation results obtained in Figure 3, as OPT performs
way better than other algorithms. The best way to predict the
future is to study the past.The motivation of this proactive
caching algorithm is to propose a novel predictive caching
strategy based on learning the association patterns between
content request in a MEC environment, where the content
popularity is time-varying and unknown. Association rule

mining techniques are leveraged to identify content requests
with close relations. Here, for a given MEC Mi and time
tn, request history Req, from time tn−k to tn is utilized
to generate rules (Rules) that maps antecedents ruleant

to consequents rulecons. This approach is employed rather
than making predictions for tn+1. It is assumed that certain
content requests coni and conj are often requested together
or sequential by users, where coni and conj are sets of
variable lengths. Therefore, the aim is to classify coni and
conj as either ruleant or rulecons such that

coni → con(j) 6= conj → coni (9)

Let S be the FIFO request sequence with length m which
has been received by a MEC Mi.

S = {r1, r2..rm} (10)

This problem is classified as an association sequential
pattern mining. Here the order of requests are maintained but
no duplicate items may appear in the sequence. To reduce the
processing time of the algorithm, two pruning techniques are
employed. First, the dimension of the request sequence to be
mined si is bounded by k.

si = {r1, r2...rk} s.t si ⊆ S (11)

k is dynamically obtained from the number of unique
elements uno for a given window size wsize, such that the
sequence bounded by the window size sws is a subset of S.
Therefore, k is deduced from the following equation.

k = (uno)
2 (12)

This is to have enough training data that can generate
meaningful insights. Similar approach has been used by [15].
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Algorithm I SHLRFU
Input cachesize, Amax, fmax, hsize
Output None
Initialization
Mstore
i ← ∅

H ← ∅
cachedecision ← True
// Procedure to be invoked upon reference to cache object ri

1: if ri ∈Ms
i tore then

2: Qi.pop(ri)
3: else
4: D1 ← do eq.(1)
5: D2 ← do eq.(2)
6: if D1 or D2 is True then
7: V ictim← QL.pop()
8: H.push(V ictim)
9: if ri not in H then

10: H.push(ri)
11: cachedecision ← False
12: else
13: update rrecencyi

14: cachedecision ← False
15: end if
16: end if
17: end if
18: k ← FreqCount(rfi )
19: if cachedecision then
20: if Qk not in Ms

i tore then
21: Qk ← ∅
22: end if
23: Qk.push(ri)
24: end if
25: if eq(6) is True then
26: do eq(7)
27: end if

In this regard, the training dataset D is a matrix obtained
from S with a dimension of uno × uno. Therefore, for the
association mining to be performed, the following condition
must be met.

k ≤ m (13)

Secondly, the minimum support threshold supportmin is
used to reduce the number of item-sets to be evaluated as
candidates during the association mining. The support of a
given sequence set coni s.t coni ⊂ D is the number of rows
nrow in D that contain coni.

support(coni) =
nrow
|D|

(14)

Therefore, given supportmin a set Scon that contains all
coni that satisfies support(coni) ≥ supportmin is sort after.

Scon = {con1, con2..conn}∀support(coni) ≥ supportmin
(15)

Using Scon, Rulesall is generated that contains rules with
antecedents which are a subset of Scon.

Rulesall = {rule1, rule2..rulen} ∀ ruleanti ⊆ Scon (16)

The generated rules Ruleall are then ranked to evaluate
the strongest rules using the rule support (Rulesupport)
and rule confidence (Ruleconfidence) [41]. Ruleconfidence
of (coni → conj) is the proportion of transactions in D
including both coni and conj .

Ruleconfidence(coni → conj) =
Support(coni ∪ conj)

Support(coni)
(17)

Given the sorted ranked rules Ruleranked, the top p rules
are selected to be used for prefetch caching.

Ruleoutput = {rule1, rule2...rulep} ∀ rulei ∈ Ruleranked
(18)

Algorithm II PPCA
Input:S,wsize,m, supportmin,memmax, Ruleoutput

max, p
Output: Ruleoutput
Initialization:
Ruleoutput ← ∅

1: From sws obtain uno
2: k ← (uno)

2

3: if k ≤ m then
4: si = {r1, r2...rk} s.t si ⊆ S
5: obtain D from si s.t dimension = uno× uno
6: using eq.(15) obtain Scon
7: if eq.(19) is false then
8: Ruleall ← FPGrowth(D)
9: else

10: Ruleall ← Apriori(D)
11: end if
12: Ruleranked ← sort(Ruleall)
13: Ruleoutput ← slice(Ruleranked, p)
14: end if

Ruleoutput is updated every Ruletimeout to ensure that
the most relevant rules are stored. After the completion of
each user request, the rulecons of the ruleant that matches
Req((t − l) → t) is prefetched. If there is no match, no
prefetch is done. Here, t is the current position inReq and l is
the number of elements in ruleant. To ensure quick lookup,
the rules in Ruleoutput is stored in a hash table with the key
being the number of elements in ruleant. The value is also
a hash table with the key being the ruleant and the value
being the rulecons. The number of rules in the Ruleoutput is
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bounded by Rulemaxoutput. This is the maximum number of el-
ements in the ruleant that can be stored inRuleoutput. Thus,
the maximum look-up done to find matches is Rulemaxoutput.

Two major algorithms can be used for association rule
mining which are Apriori [42] and FP-Growth [43]. Apriori
generates better association with sparse dataset but it is mem-
ory intensive due to its breadth-first approach. FP-Growth
is quicker and uses a depth-first approach. However, FP-
Growth does not perform well with sparse datasets [44]. The
best of both worlds has been combined by employing both
algorithms and then choosing which one to use at runtime
based on the sparse density and a given memory threshold
memmax. In this approach, the default algorithm is FP-
Growth. However, the average memory utilized memavg

when updating Ruleoutput is stored. Therefore, Apriori is
used if the following equation is satisfied, where Mmem

i is
the current memory utilization of the MEC and Ddensity is
the sparse density of the dataset D.

Apriori |Mmem
i < memmax ∀ Ddensity > 0.5 (19)

1) Time Complexity
The time complexity of the association mining is O(2n),
where n is the number of elements inD. The time complexity
of ranking the algorithm is O(log(n)). The total runtime is
(2n + log(n)). Therefore, the time complexity is O(2n).

C. MEC COLLABORATIVE SCHEME: COLLABORATIVE
GREEDY ALGORITHM
The motivation behind this scheme is to efficiently manage
the cache in the collaborative space by reducing data re-
dundancy and increasing the sharing of cache data among
MECs. The aim here is to increase the efficiency of the
global collaborative cache by improving the efficiency of the
individual edge node. Let’s assume content-centric network-
ing for sharing cache data within the collaborative space.
Therefore, contents are retrieved using a named identifier ni.
Additionally, let’s assume a name resolution server nrs is
located in each collaborative space Ci. The contents in nrs
are populated by the MECs in Ci after each content retrieval.
To ensure security and integrity, the contents in the nrs is
stored in a blockchain. Mi stores Mnames

i |Mnames
i ⊂ nrs

locally to improve efficiency. Mnames
i is a FIFO queue with

limited size. For simplicity, let’s assume each MEC Mi has
homogeneous storage capacity and belongs to a collaborative
space Ci. The total content stored in the collaborative store
is denoted by Cstorei . Thus, Mstore

i ⊂ Cstorei . The Cstorei

is populated by event-driven updates sent by MECs. Further-
more, a binary cache function Cf(cachestore, ri) is defined
that indicates if a cache object is available in a cache-store.

Cf(cachestore, ni) ∈ {0, 1} (20)

From eq.(20), 1 implies that ni is cached in a given
cachestore and 0 otherwise. If a named content is not stored
in either Mstore

i nor Cstorei , it is retrieved from the content

Algorithm III Collaborative Offloading Decision Algorithm
Input w
Output None
Initialization
Mnames
i ← ∅

Mstore
i ← ∅

Cstorei ← ∅
TNM ← w × |Ci|
// Procedure to be invoked upon reference to cache object ri

1: if ri ∈Mstore
i not True then

2: ni ←Mnames
i (ri)

3: q = Cf(Cstorei , ni)
4: if q ∈ {1} then
5: if |Mni

i | > 1 then
6: ri ← Retrive(ni,Md)
7: else
8: ri ← Retrive(ni,Mj)
9: end if

10: if |Mni
i | < TNM then

11: Mstore
i .push(ri)

12: end if
13: end if
14: else
15: use Algorithm I to fetch ri
16: Send push request to nrs with ri
17: send cache update to Ci
18: end if
19: Use Algorithm II to prefetch cache

provider in the cloud P . However, if ni is in more than
one MEC in Ci then ni is retrieved from the MEC with the
least network delay. Let’s denote the network delay between
two MECs Mi and Mj as Mdelay

i→j . If Mni
i denotes a set of

MECs that have ni in the cache and Md is the MEC with the
least network delay. The collaborative cache retrieve function
Retrive(ni,Md) has been defined in eq.(21).

Retrive(ni,Md)← ∀ ni ∈Mni
i s.t |Mni

i | > 1 (21)

To reduce cache redundancy, the number of MECs that can
store ni is capped at w percent. Therefore, the total number
of MECs TNM that can store ni is represented in eq.(22)

TNM = w × |Ci| (22)

V. EXPERIMENTATION
To evaluate the efficiency of the proposed algorithm PCR,
an emulation environment have been implemented which
consists of a varying number of MECs {6, 8, 10} and a con-
tent server. The content server has been deployed on Netlify
[45] and the MECs have been deployed on GNS3 platform.
Each MEC is a Linux Server utilizing docker as its Virtu-
alization infrastructure. Communication among the MECs
is done using a messaging broker. The proposed algorithm
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FIGURE 4. Comparison of Hit Ratio, Access Delay, CPU and Memory Utilization of both PCR and C-LSTM

TABLE III. EXPERIMENT SETUP PARAMETERS

General Setup
Parameters Value Meaning
|Ci| {6, 8, 10} No of MEC in the collaborative space
|R| 20,000 Total no of requests

No of
content

1070 No of unique content

λ 1 Poisson parameter
Algo 1 parameter

Parameters Value Meaning
Amax 100 Max average frequency
fmax 20 frequency count bounding parameter

cachesize 50 Cache size
hsize 4× cachesize History size

Algo II parameter
Parameters Value Meaning
wsize cachesize×.5 Window size
m (wsize)

2 Length of history request S
supportmin 0.45 Minimum support
memmax 70% Maximum memory threshold
Rulemax

output 4 Max length ruleant

p 10% No of top rules selected
Algo III parameter

Parameters Value Meaning
w 10% No of MEC that can store a cache

has been compared with a contemporary deep learning-based
predictive edge caching algorithm [36]. The authors have
used a Recurrent Neural Network model, Long Short-Term
Memory (LSTM) to create a model that can make decisions
on what to cache on the edge based on cache popularity.
Henceforth, this algorithm has been referred to as C-LSTM.
C-LSTM has been trained using MovieLens 20M dataset.
Therefore, for fairness, the same dataset has been utilized

for this experimental comparison. From the MovieLens 20M
dataset, the focus was on the movie IDs that have been used
in [36] and movie IDs in the range of 1 to 1070. After data
preparation and filtering out movie Ids with little references,
444 models have been generated. The generated models have
been deployed on the MECs as per the author’s specification.
The algorithms have been implemented using Python and the
project is available on Github [39]. In the experimentation,
it has been assumed that the arrival time of the user requests
on the MEC server follows Poisson distribution λ = 1. The
parameters used for the experiment have been summarised in
TABLE III.

A. RESULTS
In this section, the results obtained from the comparison of
the two algorithms with respect to hit ratio, access delay, CPU
and memory utilization are discussed.

1) Hit Ratio
Fig. 4 shows the hit ratio comparison of PCR and C-LSTM
for varying number of MECs. It can be seen that PCR
achieves a better hit ratio than C-LSTM in all caches with
at least 25% increase. This high increase is due to the effec-
tive use of the collaborative cache and its selective caching
approach. Additionally, this is also attributed to the efficient
identification and replacement of cold cache objects and the
ability to learn and predict cache association patterns.

2) Access Delay
The comparison of access delay is depicted in Fig. 4. It can be
deduced that PCR obtains lower access delay than C-LSTM.
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This is due to the increase in hit ratio as the access delay is
dependent on the hit ratio. There is less access delay incurred
if the user request is served from the local cache or MEC
cache compared to obtaining the request from the content
server. Therefore, more hit ratio would lead to lesser access
delay. This reduction would lead to better QoE for the end
users and a step closer to achieving URLLC.

3) CPU Utilization

The CPU utilization comparison is shown in Fig. 4. C-LSTM
uses considerably lower CPU utilization than PCR. This is
because C-LSTM is an offline algorithm. Hence, the model
has already been trained with the dataset offline and the
trained model is then used for caching decisions. Therefore,
not much CPU utilization is required for prediction. How-
ever, PCR is an online algorithm, therefore, the association
prediction is done during runtime and hence obtains a higher
CPU utilization. The CPU utilization obtained is stable and
predictable. Therefore can be accounted for during live de-
ployment.

4) Memory Utilization

The memory utilization for both C-LSTM and PCR can also
be seen in Fig. 4. C-LSTM obtains a higher memory utiliza-
tion than PCR. However, it is a low percentage compared
to the overall memory. The higher memory utilization is
because C-LSTM must load each trained model into memory
which is then used for prediction. Although PCR will have
to store a lot of the parameters in memory, these parameters
are capped to prevent overflow and hence achieves lower
memory utilization. Low memory utilization is essential in
real MEC environments due to the limited computation re-
sources of MEC nodes. The memory utilization obtained
during the experiment proofs that the proposed framework
can be deployed in real MEC environment.

VI. CONCLUSION
In this paper, a comprehensive study has been done in
caching on MEC. Thereafter, PCR scheme has been proposed
which is a three-fold caching solution to increase the collab-
orative hit ratio in the MEC platform and reduce the access
delay incurred with obtaining request data. To optimise the
hit ratio, access delay and identify cold cache objects, a novel
replacement algorithm than can select a victim in constant
time has been proposed. Additionally, to dynamically ad-
just to the ever-changing user request pattern, a proactive
predictive caching algorithm to learn cache associations and
prefetch cache objects when a user request is anticipated
has been presented. Finally, to increase the total hit ratio
in the MEC platform, a collaborative caching algorithm for
MECs has been described. The proposed PCR scheme has
been compared with an existing offline caching algorithm C-
LSTM and an extensive experimentation has shown that PCR
is better than C-LSTM and other conventional algorithms
with regards to hit ratio and reduction of access delay.

VII. FUTURE WORK
The proposed novel scheme PCR, is a proactive distributed
caching framework that shares its cache details among col-
laborative MECs. However, it employs a centralised learning
approach where each MEC maintains its predictive model.
A complete predictive model of the popular cache objects
for each collaborative space can be obtained if a distributed
learning scheme is utilized such as Federated Learning.
Hence, further research can be done to determine how the
proposed predictive algorithm can be decentralised using
federated learning.

Additionally, ICN is advocated to shift the communication
focus from data location to the data itself by making the
named data the priority in the network. Therefore, data can
be sourced from the internet using the named data and not
the data location or IP address. Exploration analysis can be
done to determine if the proposed caching algorithms can be
adapted in the context of ICN. In this context, the routers
would be used instead of MEC for caching. Therefore, an
analysis should be done on where to carry out model training
for predictions to optimise latency and avoid overloading of
the router’s computational resources.
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