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Abstract: The demand for renewable energy generation, especially photovoltaic (PV)
power generation, has been growing over the past few years. However, the amount of generated
energy by PV systems is highly dependent on weather conditions. Therefore, accurate forecasting
of generated PV power is of importance for large-scale deployment of PV systems. Recently,
machine learning (ML) methods have been widely used for PV power generation forecasting.
A variety of these techniques, including artificial neural networks (ANNs), ridge regression,
K-nearest neighbour (kNN) regression, decision trees, support vector regressions (SVRs) have been
applied for this purpose and achieved good performance. In this paper, we briefly review the most
recent ML techniques for PV energy generation forecasting and propose a new regression technique
to automatically predict a PV system’s output based on historical input parameters. More specifically,
the proposed loss function is a combination of three well-known loss functions: Correntropy,
Absolute and Square Loss which encourages robustness and generalization jointly. We then integrate
the proposed objective function into a Deep Learning model to predict a PV system’s output. By doing
so, both the coefficients of loss functions and weight parameters of the ANN are learned jointly via
back propagation. We investigate the effectiveness of the proposed method through comprehensive
experiments on real data recorded by a real PV system. The experimental results confirm that our
method outperforms the state-of-the-art ML methods for PV energy generation forecasting.

Keywords: energy forecasting; photovoltaic systems; machine learning; artificial neural network;
deep learning

1. Introduction

Due to the detrimental effects of fossil fuels on the environment in one hand, and the
globally-increased demand of energy on the other hand, the need to find alternate source of energy
has been increasing over the past decades. Instead, solar photovoltaic (PV) energy as a clean and
sustainable source of energy has gained popularity among energy costumers during recent years [1].

The efficiency of power generation by a PV panel significantly improved, and the installation cost
of a PV energy generation system considerably declined in recent years. However, despite the lower
cost of solar energy generation and its lower negative impact on the environment, yet, the share of solar
energy is only 1% of the total energy generation. One of the reasons is the dependency of this source
of energy on weather conditions which is normally very intermittent [2]. Moreover, the integration
of a renewable energy source (RES) into an existing grid is a challenging task since several problems
may arise due to the dependency of the grid stability on the matching between the energy supply and
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energy consumption. If the supply and consumption do not match, then a fault will raise and require
advanced methods to be cleared [3]. The power imbalance in the system should be solved by either
curtailing clean energy in case of production surplus or load shedding in case of power deficit which
would result in techno-economic impacts [4]. Therefore, forecasting of RES generation including PV
energy generation is of significant importance for the stability of power grids and enhance its security.

To increase the accuracy of a PV power generation forecasting, many researchers have used
supervised Machine Learning (ML) approaches to automatically predict the output power generated
by a solar system [5,6]. It is also shown that deep learning is very helpful for improving the accuracy
of PV power prediction [7]. Supervised ML techniques try to train a learner using training data in such
a way that it can correctly predict new unseen data.

A challenging problem in forecasting is the negative impact of noise on the prediction [8].
To overcome this problem, a robust learner should be used to reduce the impact of noisy data on the
performance of the learner. In some studies such as [9], methods have been adopted to eliminate noise.

Loss functions are fundamental components of a machine learning system and are used during the
training of the parameters of the learner. The optimal values of parameters are obtained by minimizing
the average value of the loss given an annotated training set, thus, choosing proper loss function is
of high importance. In this paper, we propose a deep network extended with a new combined loss
function to both improve the robustness and enhance the generalization.

This paper is structured as follows: the related works are briefly reviewed in Section 2.
Our proposed method is presented in Section 4 for which we discuss the implementation procedure,
and in the following section, Section 5, we present the result of some experimental performance
evaluations. Finally, we conclude the paper in Section 6 and present a list of problems to be addressed
in the future works.

2. Related Works

In this section, we review the related works in the area of PV energy generation forecasting.
In [10], the authors specify a precise anticipation model and the associated training method.

In the mentioned paper, two specific models are compared according to some parameters of the
equivalent electrical circuit and a connective method according to the artificial neural network (ANN).
The predictions are assessed using real data which was obtained during a year from an available
PV plant placed at SolarTechlab in Milan, Italy. The results indicate slight difference between
the aforementioned models. In this paper, the foremost forecasting outcomes are attained by the
combination of ANN along with clear sky solar radiation. Moreover, the model does not require long
time for training and only demands a few days to ensure precise forecasts.

In [11], the authors use nearest neighboring regression (kNN) besides Support Vector Regression
(SVR) for PV power forecasting based on weather forecasting. The proposed technique relies on proper
prediction based on the combination of these two sources of data. The provided combined forecaster
employs predictions based on both models after the optimization of the settings. Comparison of both
models demonstrates that the performance of SVR is better than kNN except for the rapid outcomes
for which kNN is still preferable. The combined model employs the potentials of both models and
mixes them to provide a robust model to generate more precise PV power predictions.

A method based on a non-parametric model of PV power generation is introduced in [12].
This method is employing different prognoses of the meteorological variable of a numerical weather
forecast model besides active power measuring of PVs. This approach is implemented and tested
in R environment, and the quantile regression forests are used to foresight AC power with a
confidence margin. The results based on five PVs were used for the evaluation of the method.

The authors of [13] performed examining, comparing and analyzing of various machine learning
assortment techniques and data qualities on classification precision. Simulation results of two
conventional assortment techniques (i.e., kNN and SVM) indicate higher accuracy and more robustness
of SVM compared to kNN when there are only a few sample data. The accuracy of kNN improves
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when the size of learning sample data set increases. This signifies when the data distribution is
balanced relative to the contrast. In addition to the sample size, the quantity of closest neighboring is
essential for the accuracy of the kNN method as well, from which the optimal number has a direct
relationship with the amount of the tiniest category.

In [14], a novel combined technique, entitled physical hybrid artificial neural network (PHANN)
relying on an ANN and PV plant clear sky curves, is presented and evaluated versus the
conventional ANN. These methods were compared in terms of accuracy for a better perception of
internal errors developed by the PHANN and to assess its capabilities in power prediction applications.
It was shown that the precision of hybrid methodology is higher than mere ANN even when some
setting is changed. In addition, the precision of these techniques, specifically ANN, is dramatically
tied to the record of the data processing phase along with the precision of historic weather foresight
data employed for the learning stage. A study on errors illustrated how the PHANN outperforms
the mere ANN in all considered day types. However, during cloudy and partially cloudy times the
general efficiency of the technique reduces.

In [15], ANN and SVR are compared for forecasting power production from a solar PV system
in Florida in the United States. A hierarchical method is presented and tested. This research
exhibits how foresight from sole inverters leads to the improvement of whole solar energy production.
In this paper, the difference between one-step-ahead predictions are investigated for different times
utilizing both techniques. The evaluation of progressing errors, computed by the aggregation of
the variant inverter number, demonstrates the capability of the hierarchical method to specify what
smaller production unit has the utmost influence of foresight. Authors in [16] introduced a PV
power production forecasting based on weather employing ELM for a specified ahead time interval
(e.g., a day-ahead) for PV output power prediction. In this article, the weather condition is classified
into three categories including sunny, cloudy and rainy days. The training models of PV power
outputs foresight is based on these three categories. They considered the records of the PV output
from Shanghai’s testing system for the investigations. The outcomes indicate that the presented model
has a better function relative to the BP neural network in all three categories.

Prediction of PV power generation via ANN with ELM training algorithm is accomplished
in [17]. The prediction model is implemented in Matlab. The results of the applied simulation
on prediction model indicate that the presented ANN model takes advantage of high prediction
accuracy, and enhancement of the training data and variation of the input variables results in the
significant progress. In addition, the sequences of the variables have a significant impact on the
performance of the model.

In [18], a comprehensive performance assessment among some of the most popular PV power
forecasting methods are performed on a dataset. The forecasting methods used in this paper include
Artificial Neural Networks and Intelligent Algorithms. The main conclusion from this investigation
is that simple combination of several good models can generate a more reliable prediction than any
single method on its own. This may be found useful especially when there is no complete data for
model training.

A method for solving the short-term load prediction is introduced in [19] which is taking
environmental factors such as temperature and humidity into account. It erases the central deficit of
the ANN demanding a great deal of trial and error as well as design and training trend. This method
remarkably decreases the trial and error attempt for the training phase and generates a load prediction
method which is more efficient than the conventional ANN-based techniques.

In [20], a new method to improve short-term load prediction is presented while it requires only a
few amounts of sampling data. This method considers the impact of vacations and detached objects for
the prediction of the electric load trend. This method improves forecasting precision for specific days
using an algorithm which exploits information theoretic learning for pattern detection, assortment and
densifying the existing rare consumption data.
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3. Supervised Learning

Figure 1 shows the general learning process of a neural network, which consists of two phase:
training and test. The supervised learning framework generally consists of three major components
which are listed as follows:

Figure 1. The supervised learning framework.

Data:

Let (X, Y) denote all samples where X = {~x1, ~x2, . . . , ~xN} are the inputs including temperature,
timespan, etc., and Y = {y1, y2, . . . , yN} are the generated power in the given timespan which ~xi ∈ Rd

and yi ∈ R.

Model:

This represents the relationship between the independent variable ~x and the dependent variable y.
For example, if there is a linear relationship between the independent variable ~x and the dependent
variable y, the model would be as follows:

y = ~wT ·~x (1)

Loss Function:

A loss function which measures the accuracy of the predicted label based on the true label is an
important element of a learning system. The loss function is defined as a function l(~x, y; f ) where y is
the true label and f (~v) denotes the predicted label. The most intuitive loss function for regression is
square loss function which is defined as follows:

l(~xi, yi; f ) = (y− f (~x))2
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The learning algorithm intends to find the regressor f ∗ ∈ F which is optimal in the sense that it
minimizes the expected loss function defined as

Rl,P( f ) =
∫

X×Y
l(y, f (~x))dP(X, Y)

where P(X, Y) is the joint probability distribution over X and Y. Generally Rl,P( f ) cannot be computed
because the distribution P(X, Y) is unknown. However, an approximation of R( f ) which is called
empirical risk can be computed by averaging the loss function over the training set containing N
samples [21],

Remp( f ) =
1
N

N

∑
i=1

l(yi, f (~xi))

and f̂ = arg min
f∈F

Remp( f )
(2)

As it is shown in Equation (2), the loss function has an important role in the optimization problem
and finding the regressor. More precisely, loss functions assign a value to each sample representing
how much that sample contributes to solving the optimization problem. If an outlier is given a very
large value by the loss function, it might dramatically affect the obtained learner [22]. To better explain
our purpose, three loss functions with different behaviour with respect to errors are explained in
the following.

The absolute loss function which linearly penalizes samples is defined as follows:

l(y, f (~x) = |y− f (~x)| (3)

where y is the true label and f (~x) is the predicted one. We denote y− f (~x) as the distance between
the predicted label and the true one. As it is shown in Figure 2, the value that Absolute loss function
assigns to each sample is linearly dependent to the distance.

Square loss function is convex; hence, the advantage of optimization under the square loss
function is that it leads us to a global optimum. Square loss is defined as follows:

l(y, f (~x)) = (y− f (~x))2 (4)

It penalizes samples with the square of the distance. Therefore, an outlier (i.e., a very noisy sample
with big (y− f (~x)) would receive a very large number, which means that its contribution to solving
the optimization problem will be significant. Therefore, it is not robust against the outliers.

Correntropy which is rooted in the Renyi’s entropy is a local similarity measure. It is based on the
probability of how much two random variables are similar in the neighbourhood of the joint space.
The C-loss function, which is defined in the following equation, is inspired by Correntropy criteria and
is known as a robust loss function [23]. Several researchers have used the C-loss function to improve
the robustness of their learning algorithms [24]. The C-loss function is defined as follow:

lc−loss = 1− exp(
−(y− f (~x))2

2σ2 ) (5)

The three mentioned loss functions are depicted in Figure 2. There are many other different loss
functions with their own characteristics making them suitable for a certain application. Inspired by
ensemble methods, in this paper we propose the integration of an ensemble of loss functions into a
deep neural network to forecast the generated power of a PV panel.

The ensemble technique is one of the most influential learning approaches, which theoretically
boost weak learners whose accuracy is slightly better than random guesses, into arbitrarily accurate
strong learners [22].
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In this paper, in addition to integration of ensemble of loss functions into deep networks, we also
propose a new objective function which is a combination of several loss functions. By doing so we
aim to produce a strong ensemble objective function which inherits the advantages of each individual
loss function. Improvement of the results when applying a linear combination of two loss functions is
proved in [25,26]. Ensemble methods have also been applied to loss functions in [22].
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Figure 2. The Absolute loss (red), the Square loss (blue) and the Correntropy loss function (green).

We use three loss functions as the base losses (C-loss, absolute, square). While these three loss
function have quite good performance individually, we combine them to reach a stronger regressor.

These three loss functions act differently against noise. C-loss is less sensitive to outliers since it is
a bounded function. It, therefore, leads to robust classifiers. Absolute loss penalizes samples linearly,
and square loss function is a very popular loss function because it leads an easy optimization reaching
the global optimum; however, it significantly penalizes samples, which makes it very sensitive to noise.

4. The Proposed Method

Deep Learning networks are strong methods in the field of machine learning that can solve either
classification or regression problems [27]. Deep networks consist of an input layer and an output layer
and several hidden layers. By employing hidden layers, whose neurons are not directly connected
to the output, the network would be able to solve the non-linear problems. Figure 3 shows a neural
network containing the forward path and the backward path.

Let (~xi, yi) denote the ith sample where ~Xi represents the input and yi the true output. In the
forward path, the estimated value for each sample is estimated. Let W be the weights of the
network with a sigmoid function on top (to normalize data), the estimated output would be
ŷ = sigmoid( f (x; θ)).

The aim of the neural network is to make the estimated output closer to the true label. It minimizes
the average value of loss function over all samples with respect to the network’s weights. The neural
network starts with initial values for weights and in the backward path, the gradient of the loss
function flows back through the network and update all the weights in the opposite direction of
the gradient. Therefore, the loss function has an important role in a neural network’s performance.

We propose using a Deep Learning model with one hidden layer. We make use of the ensemble
loss function mentioned in Section 3. The ensemble loss function inherits the merits of each
individual loss and will get better performance in the learning process. We choose three loss functions
including Absolute, Square and Correntropy with different characteristics. As we mentioned in the
previous section, each of these loss functions has different behaviours with respect to the noisy samples.
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To avoid getting overfitted on the data, we use a L2 regularization term which not only
avoid overfilling, but also increases the network’s ability to generalization and hence, the network
would work well with the unseen data as well. The whole objective function with the regularization
term is defined as follow:

objective function =
N

∑
i=1

3

∑
k=1

lk(yi, f (~xi, W))︸ ︷︷ ︸
ensemble loss

+ ‖W‖2︸ ︷︷ ︸
regularization

(6)

where k = 1..3 denotes the three loss functions and W is the network’s weights.

Figure 3. A deep learning network.

To update the weights of the network and the weights associated to each loss function,
we reformulate the cost function proposed in Equation (6) as follows:

N

∑
i=1

3

∑
k=1

lk(yi, f (~xi, W))︸ ︷︷ ︸
ensemble loss

+η (
3

∑
j=1

λj − 1)︸ ︷︷ ︸
Constraint

+ ‖W‖2︸ ︷︷ ︸
regularization

(7)

The second term avoids λj from approaching zero values. The gradient of this new cost function
then flows back through the network to update all parameters including weights of network and λj
as well.

Three loss functions which are combined in our proposed method are Absolute, Square and
Correntropy loss functions, which are depicted in Figure 2. We use the objective function (7) as the last
layer of the neural network. The weights assigned to each individual loss function as well as network’s
weights are updated through the backpropagation stage in which the error flow back to the network
and the weights are updated accordingly.

5. Experimental Results

The presented model in the this paper has been tested and verified using the data of 39 kW
photovoltaic power plant of Birjand University located in Birjand city in South Khorasan province
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of Iran. This data includes power output (kW), measurements of temperature and solar radiation
intensity for 30 days, which are measured and recorded at intervals of 5 min during 24 h a day by the
plant’s automatic metering devices. Out of the total 39 kW generation capacity of this power plant,
30 kW is connected to the grid and 9 kW is separated from the grid. We used 20% of data for testing
phase and 80% for training. We employed 10 fold cross-validation to tune the system’s parameters.

We used a Deep Learning model with two hidden layers containing 32 and 25 nodes respectively.
Each layer follows by a ReLu activation function. L2 regularization term is used to simplify the model
and avoid overfitting.

We compared our method with other regression algorithms including Ridge Regression,
Bayesian Regression, kNN Regression, Decision Tree and SVR. All of the methods obtained good
results while ours outperforms the other methods. We used the value 5 for kNN algorithm.

Table 1 provides mean absolute error which is calculated by 1
N ∑N

i=1 |yi − ŷi| for each
method separately. The results show that although our approach does not get the best result for training,
it performed the best on test data. Therefore, its performance is the best on unseen data.

The results also show that our method prevented overfitting. Overfitting refers to a model that
fits the training data too well. Overfitting happens when a model learns the details and noise in the
training data to the extent that it negatively impacts the performance of the model on new data.

Table 1. Mean absolute error (MAE) for testing and training phase.

Method Training Error Test Error

Ridge Regression 0.000488 0.005673
kNN Regression 0.000242 0.003482
Bayesian Regression 0.000488 0.005672
Decision Tree 0.001040 0.012720
SVR 0.000842 0.009866

The Proposed Method 0.000335 0.002785

Figure 4 shows the predicted output compared with the real output. As it is shown, the predicted
and true outputs are almost similar. We show a zoomed curve in the right. The blue lines are the true
labels and the red one is the predicted values.

Figure 4. (Left) The predicted labels compared with the true labels. (Right) Zoomed curve of the
predicted and real labels.

Figure 5 shows the loss value during the training and test phase. As the curves illustrate it does
not overfit.
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Figure 5. Loss values during train and testing phases.

6. Conclusions

In this paper, we proposed a new objective function which is a combination of three individual
loss functions. Next, a deep neural network has been extended with the proposed objective function.
Performance of the proposed method is evaluated numerically based on real measurement data from
a real PV power generator panel. Our performance evaluations confirm that deep neural networks
trained using the combined loss function outperform the peer methods listed in Table 1 for predicting
the generated power with PV panels. Moreover, according to our experiments (Figure 5), the gradient
descent method converged fast.
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