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Abstract—The commensal symbiotic radio (CSR) system is
proposed as a novel solution for connecting systems through green
communication networks. This system enables us to establish
secure, ubiquitous, and unlimited connectivity, which is a goal
of 6G. The base station uses MIMO antennas to transmit its
signal. Passive IoT devices, called symbiotic backscatter devices
(SBDs), receive the signal and use it to charge their power
supply. When the SBDs have data to transmit, they modulate
the information onto the received ambient RF signal and send
it to the symbiotic user equipment, which is a typical active
device. The main purpose is to enhance energy efficiency in this
network by minimizing energy consumption (EC) while ensuring
the minimum required throughput for SBDs. To achieve this,
we propose a new scheduling scheme called Timing-SR that
optimally allocates resources to SBDs. The main optimization
problem involves non-convex objective functions and constraints.
To solve this, we use mathematical techniques and introduce a
new approach called sequential quadratic and conic quadratic
representation to relax and discipline the problem, leading to
reducing its complexity and convergence time. The simulation
results demonstrate that the proposed approach outperforms
other outlined schemes in reducing EC.

Index Terms—Symbiotic radio, backscatter communication,
6G, energy efficiency, IoT, optimal resource allocation.

I. INTRODUCTION

A. Background

Future networks such as B5G and 6G must be capable
of covering billions of internet-of-things (IoT) and wireless
devices [1]. The most critical challenges in this regard in-
clude ensuring adequate energy supply, providing the desired
frequency spectrum, and enabling devices to operate indepen-
dently of communication infrastructure [2]–[4]. The energy
efficiency (EE) and spectral efficiency (SE) can be improved
and a dense network can be managed without the need for
additional EC or heavy processing in the central core of the
network by addressing and overcoming these challenges [5].

To address these challenges, researchers have proposed
various solutions; Cognitive radio (CR) can facilitate dynamic
spectrum allocation, allowing the secondary user to access the
spectrum allocated to the primary user in an opportunistic
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or spectrum sharing manner, thereby meeting their communi-
cation requirements [6]–[8]. Wireless energy transfer (WET)
techniques can provide sustainable and efficient power to
wireless devices [9]. Another promising approach is ambient
backscatter communication, which allows passive backscatter
devices (BDs) to modulate their information onto ambient RF
signals (such as cellular, TV, or WiFi signals) and communi-
cate with each other. BDs can also harvest energy from the
incident signals in the environment, making it an attractive
solution for low-power and low-cost communication [10], [11].

However, each of these solutions comes with its own limita-
tions alongside their advantages. For example, in CR, there is a
need for complete information about the power, spectrum and
duration of its use by the primary transmitter, accurate channel
state information (CSI), and synchronization of the primary
and secondary transmitters with each other. As a result, these
requirements can only be fulfilled by active devices, which
increases EC, reduces battery life, and limits the development
of future wireless network services [12]. WET is exclusively
used for energy supply applications, but it faces its own set
of challenges, such as the doubly near far problem [13],
[14]. AmBC also faces several challenges, including non-
cooperation in information transmission between BS and BDs,
leading to interference that makes it difficult for the receiver to
jointly decode their signals. Furthermore, the performance of
AmBC is not always stable due to the possibility of changes
in the BS signal or its location [15].

Based on the above explanations, we need a comprehensive
solution that not only takes advantage of each of the above
methods but also eliminates their disadvantages. The new
technology that possesses this feature is Symbiotic Radio,
which is currently one of the fascinating topics in the scientific
and industrial fields [16], [17].

The SR network can be classified into parasitic SR (PSR)
and commensal SR (CSR) based on the relationship between
the symbol periods of the symbiotic BDs (SBDs) and the BS
[18]. In PSR setup, SBDs can exchange information at a high
rate, but it also suffers from interference between the signals
of SBDs and BS in the receiver, necessitating complex in-
terference cancellation techniques. Furthermore, PSR requires
synchronization between the BS, BD, and receiver. On the
other hand, CSR is suitable for IoT networks with low data
rates, and addresses the drawbacks of the PSR system. By
reducing interference between different network components,
the receiver can perform joint decoding of information from
both the BS and SBDs, enabled by transmit collaboration
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between them [6], [12].
To ensure that the SR networks can accommodate a large

number of devices, it’s important to design the network in a
way that supports multiple SBDs. In doing so, challenges arise,
such as the possibility of minor user interference if multiple
access schemes are not appropriately designed. On the other
hand, given the large number of users in the network, optimiz-
ing EC is vital for maintaining network stability and achieving
the desired minimum quality of service (QoS) for SBDs.
Furthermore, reducing energy consumption has significant
environmental benefits, making it an essential aspect of green
communication and facilitating the easier implementation of
self-sustaining networks [19]–[21]. To achieve these goals,
some solutions have been proposed.

The article [18], proposes a novel SR technique for passive
IoT devices. This approach involves integrating a BD with
a primary communication system, and designing a primary
transmitter and receiver to optimize both the primary and BD
transmissions. The decoding strategy used in the receiver is
based on successive interference cancellation (SIC). In [22],
[23], the authors aimed to achieve the maximum EE by effi-
ciently allocating resources while ensuring QoS requirements
in NOMA-backscatter communication networks and NOMA-
heterogeneous networks, respectively. Also, the authors in
[24] utilize the dinkelbach algorithm to solve the problem of
maximizing EE in the SR system with multiple BDs that can
harvest energy from ambient signals. The scheduling protocol
employed in this system is time division multiple access
(TDMA), which allows BDs to modulate their information on
the ambient signal without interfering with each other, as they
take turns to transmit.

Due to the fact that the TDMA technique does not support
concurrent transmissions by BDs, leading to a reduction in
both EE and SE in the network, the authors in [25]–[29]
proposed a technique for enabling concurrent transmission by
BDs in the symbiotic communication model. The article [25]
discusses the random distribution of SBDs in the network,
which causes signals to reach the receiver at different power
levels. To tackle this, a SIC process is employed to eliminate
interference from signals with higher power levels than the
desired SBD signal. Also, [26], the authors present a technique
for preventing interference among multiple reflected signals
in the symbiotic communication model. They use a simple
coding algorithm that does not require strict synchronization
and passive users use mutually orthogonal chips for encoding,
eliminating interference through orthogonal interference and
enabling concurrent transmission for multiple users. In addi-
tion, the paper [27] proposes a low-power encoding technique
called µcode to enhance the communication range and enable
concurrent transmissions in AmBC. µcode employs a form of
code division multiple access (CDMA), where each message is
assigned a single randomly generated code that is orthogonal
to all previously generated codes. This technique effectively
reduces interference and allows for concurrent transmissions.
Furthermore, article [28] addresses a multi-BD SR system,
where a cooperative receiver can simultaneously receive and
detect the data from the primary transmitter and multiple BDs.
The authors assume a random code-assisted multiple access

scheme for the multiple BDs, where the transmit power of
the primary transmitter and the reflection coefficients of the
BDs are jointly optimized. In this scheme, each BD selects
its non-orthogonal random code to backscatter its information
instantly. In [29], the authors introduce a sparse-coded AmBC
scheme for achieving massive IoT connectivity. This scheme
allows multiple devices to transmit their information concur-
rently, which reduces interference and improves the overall
network performance.

In this paper, we focus on enhancing the EE of SR networks
with the CSR setup in scenarios involving multiple SBDs.
SBDs are passive IoT sensors that rely on harvesting energy
from ambient signals and have limited power supplies [30].
These devices collect and transmit information to the destina-
tion once they have enough energy and detect changes in their
environment. In our system model, we aim to minimize the
network EC while guaranteeing a minimum required through-
put for multiple randomly distributed IoT devices (SBDs). The
major contributions of this paper are summarized as follows:

• First, we present a novel SR system that utilizes multiple
SBDs in a CSR setup, which allows for the full exploita-
tion of the mutualism relationship of SR. Specifically,
our model enables SBDs to transmit their information
to their intended destination as soon as they have data
to send. To ensure a high-quality user experience, we
also incorporate a QoS constraint in the system, which
guarantees a minimum transmission rate for SBDs.

• Second, to optimize the allocation of resources between
SBDs, we propose a multiple access technique called
timing-SR (T-SR). The T-SR model utilizes a two-mode
variable time slot consisting of energy harvesting and
environment sensing (EHS), and modulation and trans-
mission of information (MTI) modes. This approach
allows users to harvest energy as needed for their data
transmissions and reduces EC by eliminating idle modes.
Also, they can send their information in continuous time
slots without interfering with other SBDs.

• Third, the objective of the proposed model is to minimize
EC in a network while ensuring that the SBDs meet their
required throughput and energy harvesting targets. Since
this is a non-convex optimization problem, we employ
mathematical techniques such as semidefinite program-
ming (SDP) and the difference of two convex function
methods to solve it. Additionally, we introduce a novel
approach that called sequential quadratic (SQ) and conic
quadratic representation (CQR) to relax and discipline the
optimization problem and reduce its computational com-
plexity. By utilizing these techniques, we can efficiently
solve the optimization problem, which makes it suitable
for fast coverage of large-scale networks.

• Finally, in the simulation section, we compare the EC
of the proposed SR system using the T-SR scheduling
mode with the conventional TDMA scheme in the SR
network. Moreover, we evaluate the EE of the proposed
model by comparing it with other well-established IoT
protocols, thereby showcasing its effectiveness in dense
networks like B5G and 6G. Our findings reveal that the
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Fig. 1: Symbiotic radio system model with multiple SBDs

SR system with the T-SR scheduling mode is a highly
promising solution for maximizing energy efficiency in
such networks.

This paper is structured as follows. In Section II, we present
the proposed system model for the SR. Section III focuses on
the EC problem and considers the minimum user throughput
requirement. We introduce the SQ and CQR methods in this
section and use them to solve the main problem. In Section
IV, we analyze the computational complexity of the proposed
methods. In Section V, we validate our analytical findings
through simulations and comparisons with other work. Finally,
in Section VI, we summarize our conclusions and discuss
future work.

Notations: ⟨a, b⟩ denotes the inner product of a and b,
Tr (A), AH , AT , ∥A∥ denote the trace, conjugate transpose,
transpose, and norm of the matrix A, respectively. The positive
semi-definite was denoted as A ≻− 0 and ∇ shows the gradient
operator.

II. SYSTEM MODEL

As illustrated in the system model of Fig.1, in the symbiotic
radio (SR) system, the base stations (BS) equipped with N
array antennas, a single symbiotic user equipment (SUE) is
capable of functioning as a highly powerful active device,
utilizing a single antenna, and I single antenna symbiotic
backscatter devices (SBDs) are considered. The SBDs are
randomly distributed in the network with the different dis-
tance to SUE and harvest energy from the ambient signal
transmitted by BS. The proposed SR system operates in two
main phases. During the first phase, SBDs harvest energy
from ambient signals. In this phase, SBDs, as IoT devices,
can constantly sense the environment using embedded sensors
(such as temperature, humidity, etc.); hence, this phase is
called energy harvesting and environment sensing (EHS). In
the second phase, the SBDs modulate their information on the
received BS signal and backscatter the information signal to
the SUE. This phase is called the modulation and transmission
of information (MTI) by SBDs.

The SBDs receive BS signal within τj , j = 1, 2, ..., J time
slots, where J is the total number of time slots allocated
to SBDs on the network, assumed to be equal to I . In
the proposed SR system, time slots are identical, and SBDs
can use one or more slots in each frame for MTI or EHS

Fig. 2: The TDD frame for EHS and MTI modes in T-SR
instantaneous transmission model

functions, with the number of slots required for transmission
being proportional to the length of information and the energy
required for it. Fig. 2 illustrates the scheduling of energy
harvesting and data transmission between SBDs and SUEs in
the proposed SR system, which uses a time division duplexing
(TDD) scheme known as T-SR mode. Under this mode, SBDs
initiate data transmission at the beginning of a time slot within
each time frame of duration T , and can continue until the end
of that slot or the next one.

We define υi as the set of time slots used for data trans-
mission related to SBDi. As an example, in Fig. 2, SBD2
transmits data during the τ2, τ3, and τ4 time slots, so we have
υ2 = {2, 3, 4}. Therefore, in the T-SR model, we can express
the time slots as:

τj=1,2,...,J =

{
MTI j ∈ υi
EHS j /∈ υi

(1)

It is assumed that all SBDs have sufficient initial charges.
Due to the single antenna constraint, SBDs can either harvest
energy or transmit signals at a given time. Therefore, during
transmission, SBDs switch from MTI mode to EHS mode
whenever their batteries need to be recharged. The T-SR
mode in the SR network is utilized to enhance both EE
and throughput. Furthermore, there is no need for complex
processing on the network core to reallocate frequencies to
SBDs, as they use ambient signal frequencies. In this paper,
we aim to investigate the EC of the SR system and compare
the EC of the T-SR scheduling method with other technique
in the simulation section.

A. Problem Formulation

Signal Model at SBDi: In Fig.1, we assume that the BS
with N antennas and SBDs and SUE are single antenna.
The signal transmitted by n-th antenna on BS to SBDs
in j-th time slot is denoted by xn,j with zero mean and
E
[
|xn,j |2

]
= pBS which is the transmit power of n-th

antenna. In this paper, pBS is considered in xn,j and it is not
shown in relations. The ambient signal vector at the time slot
τj is defined as xj

∆
= [x1,j , x2,j , ..., xN,j ]

T and the channel
vector from n-th antenna to SBDi is modeled by hn,i. Hence,
the complex channel vector for SBDi can be represented as
hi

∆
= [h1,i, h2,i, ..., hN,i]

T , where the channel experiences flat
fading and remains constant within a single time frame. It’s
worth noting that the channel state information (CSI) is readily
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available in all scenarios. Therefore, the received signal in the
SBDi at the time slot τj ,∀j is:

yi,j = hH
i xj + ni , i, j ∈ Ψ (2)

where Ψ
∆
= [1, 2, ..., I] and ni ∼ CN (0, σi

2) is the circularly
symmetric complex Gaussian (CSCG) distribution and it is
assumed to be independent of the signal xj . Let us define εij
as the energy harvested by SBDi in τj , j /∈ υi. According to
Eq. (2), the maximum energy that can be harvested by SBDi
in τj , j /∈ υi, occurs, when the power reflection coefficient pi
(for τj∈υi ,|pi|2 ≤ 1) is equal to zero. Thus, we can express
the relation as follows:

εij ≤ ηi(1− pi)τj /∈υi
E
[
|yi,j |2

]
≈ ηiτj /∈υi

xH
j hih

H
i xj

, i ∈ Ψ, j /∈ υi
(3)

where, 0 ≤ ηi ≤ 1 is the energy conversion efficiency (for
τj /∈υi

) by SBDi.
The total energy sent by BS is the sum of energy sent by

each of antennas (ET), so:

ET =

N∑
n=1

En
TBS

(4)

ET can also be expressed as the sum of the energy of
transmitted signals by BS at all times during a frame.

ET =

J∑
j=1

τjx
H
j xj , ∀j (5)

The main purpose of this paper is to minimize ET to
increase EE in the SR system while satisfying the minimum
required data rate of the SBDs.

Signal Model at SUE: We consider the commensal sym-
biotic radio (CSR) setup, in which, for each transmission of
SBD data symbol, K( k = 1, 2, ...,K, K >> 1) symbols
are transmitted by the BS. The information signal of SBDi

is denoted by si
∆
= [si,a, si,b, ..., si,z]

T
{a,b,...,z}∈υi

. This signal
should be modulated on the RF wave of the BS signal (yi,j),
and then transmitted to the SUE during the MTI time slots
(υi). This can be done using various modulation techniques
such as ASK, PSK, and so on. Therefore, the received signal
at SUE, transmitted by k-th symbol of the BS (through the
direct link) and SBDi (through the backscatter link), in the
time slot τj , j ∈ υi is as follows:

yUE
i,(j∈υi)

(k) =
√
pih

H
i xj(k)gisi,(j∈υi)+√

pigisi,(j∈υi)ni + hH
Dxj(k) + I0 + nUE

(6)

where gi is the complex channel gain from SBDi to SUE, and
nUE ∼ CN (0, σUE

2) is the CSCG distribution at the SUE.
Also, I0 is the possibility of interference caused by signals
sent by other SBDs. Note that since SBDs have a passive
components, they receive little noise. Also, the power of the
second term of Eq.(6) is much smaller than of the nUE due
to the pathloss link. So, the noise of SBDs can be negligible
when backscattering data [28], [31].

Interference Model in The SR Network: The third term in
yUE
i,(j∈υi)

of Eq.(6), refers to the ambient signal sent from the
BS directly to the SUE. This signal can interfere with the de-
sired signal transmitted by the SBDs. Due to the double fading
effect, the power level of the SBDs signal is lower than that of
the ambient signal. To remove the ambient signal, advanced
techniques such as the ML-detector [11] and SIC [32], [33] can
be employed. For the use of SIC in SUE, certain prerequisites

must be met, including a minimum required SNR to decode
the BS signal, ensuring channel symmetry, and availability
of channel state information (CSI) at the SUE to facilitate
correct decoding of information [34]. On the other hand, we
have considered the CSR setup in this paper; therefore, we
can detect the BS signal using the ML detector. By subtracting
it from the received signal, the SBD signal can be extracted
[11]. This is possible because the decoding strategy for CSR
treats the SBD signal as a multipath component rather than
interference [18]. Also, in SR system, the BS and SBDs work
with each other in collaborative manner. This feature enables
joint design of the BS and SBDs in a way that ensures any
receiver can correctly decode their signals [12]. Ultimately,
according to the above explanations, the BS signal does not
create significant challenges for decoding the SBD information
in this scheme.

Also, in a real network, SBDs are randomly distributed
and each can be covered by a BS antenna. In this case,
Each of these devices uses a unique carrier frequency that
is transmitted by the nearest BS, causing the network to
resemble a typical frequency division multiple access (FDMA)
system. Therefor, there will be no interference in the network
[35]. When multiple SBDs are covered by a BS, they may
use the same carrier frequency for MTI sections to transmit
information simultaneously. However, when a SUE is covered
by multiple SBDs, there is a possibility of interference (I0)
which is the worst-case scenario for creating interference in
the SR network [12].

Several articles propose solutions to address this issue. For
instance, article [26], suggests utilizing mutual coding and
decoding algorithms in SBDs to generate orthogonal chips that
enable interference-free transmission among multiple SBDs.
This creates a system that achieves multi-user symbiosis.
Another article [25] discusses the random distribution of SBDs
in the network, which causes signals to reach the receiver
at different power levels. To tackle this, a SIC process is
employed to eliminate interference from signals with higher
power levels than the desired SBD signal. Also, in [28] the
SBD’s information is backscattered to the SUE by multiply-
ing the non-orthogonal random codes assigned to it, while
[27] introduces a novel orthogonal coding technique called
µcode, which offers the benefits of code division multiple
access (CDMA), reduces interference, and enables concurrent
transmissions. Therefore, according to the above explanation,
by changing the transmit power of each SBD through either
changing the power of the transmitted signal from the BS
antenna or changing the reflection coefficients of each SBD,
and ultimately using the SIC technique in SUE or assigning
different orthogonal or non-orthogonal codes to each SBD, it is
possible to reduce the interference I0, caused by the concurrent
transmission of their signals on the desired SBD signal in SUE,
and avoid it.

Finally, in accordance with the above description and as-
suming that the beamforming vector of the BS has a unit
power, the SNR for decoding si,(j∈υi) in the SUE is:

SNRUE
i =

pi
∣∣Kgih

H
i xj

∣∣2
σ2
UE

(7)



5

TABLE I: Description of the main notaition of the paper.

Notation Description
τj Duration of j-th time slot , j = 1, 2, ..., J
ET Energy consumption in the SR network
xj Ambient signal in τj with power pBS

si,(j∈υi)
Information signal of SBDi

hi Complex channel vector from BS to SBDi
gi Complex channel from SBDi to SUE
εij Energy harvested by SBDi(τj /∈ υi)
pi Power reflection coefficient by SBDi
ηi Energy conversion efficiency by SBDi

yUE
i,(j∈υi)

Received signal at SUE, sent from BS, SBDi

T Duration of time frame
K Number of BS symbol against each SBD symbol

The proposed SR network uses SBDs that are passive and do
not have active RF components. As a result, they do not emit
radiation power and can only backscatter modulated signals. In
this case, the only energy consuming component in the SBD
is the microcontroller, that controls switches and impedances.
Therefore, the circuit energy consumption of the SBDs is equal
to the energy required for backscattering the modulated signal,
which can be calculated as piτj∈υi . It can be assumed that each
SBD uses almost all of the harvested energy to backscatter

their signals. Hence, the relation piτj∈υi ≈
J∑

j=1,j /∈υi

εij is

established, and Eq. (7) can be rewritten as follows:

SNRUE
i =

∣∣Kgih
H
i xj

∣∣2 J∑
j=1,j /∈υi

εij

τj∈υiσ
2
UE

(8)

Therefore, the instantaneous achievable rate per unit band-
width (SE) (bps/Hz) of the SBDi with considering the nor-
malized bandwidth of the channel to 1Hz, is:

Ri =
τj∈υi

K
log2

(
1 + SNRUE

i

)
(9)

As we have used the CSR setup in this article, therefore,
the spectrum growth phenomenon does not occur [36], and
by using the matched filter of the SUE, the BS and SBD
signals can be well decoded. Therefore, there is no need for
synchronization between SBDs and BS. It should be noted
that SBDs are passive devices, and implementing traditional
synchronization methods on them is also challenging. For
easier access, the main notations used in this article have been
introduced in Table I.

III. ENERGY AND RATE OPTIMIZATION

In this section, we present an optimization problem aimed
at minimizing the total transmit energy of all BSs by jointly
optimizing the transmit power of signal, time scheduling, and
energy harvesting by SBDs. Additionally, the energy of the
signal transmitted by each BS must satisfy the minimum in-
formation rate requirement of the corresponding SBD, denoted
as Ci. To ensure that each SBD can transmit its information
to the destination (SUE) at a minimum rate of Ci, we use the
shannon channel capacity formula to specify the minimum
channel capacity required between each SBD and the SUE,
and we enforce this constraint for all SBDs.

According to the Eq.(3), Eq.(5) and Eq.(9), the general opti-
mization problem for the mentioned objectives and constraints
is defined as follows:

min
xj ,τj ,εij

ET =

J∑
j=1

τjx
H
j xj (10)

s.t. Ri ≥ Ci i ∈ Ψ (10a)
τj ≥ 0 j ∈ Ψ (10b)
J∑

j=1

τj ≤ T j ∈ Ψ (10c)

εij ≤ ηiτj /∈υi
xH
j hih

H
i xj i, j ∈ Ψ (10d)

where (10a) guarantees the minimum throughput requirements
for the SBDi link, while equations (10b) and (10c) impose
constraints on the total duration of all SBDs time slots within
a time frame T , and (10d) restricts the energy harvested by
the SBDi to its maximum specified value.

The problem of Eq.(10) is non-convex due to objective
function and constraint (10d). However, constraint (a) is con-
vex since it can be seen as a composition of perspective of
log (1 + αF ) , a > 0 and an affine function of F = εij . To
overcome the non-convexity of objective function, an auxiliary
variable γj = xH

j xj is defined and as a result, another non-
convex constraint appears. It can be relaxed by adding the
following convex constraint:

γj ≥ xH
j xj , j ∈ Ψ (11)

So, the new problem is:

min
xj ,τj ,γj ,εij

ET =

J∑
j=1

τjγj (12)

s.t (10a), (10b), (10c), (10d) (12a)

γj ≥ xH
j xj j ∈ Ψ (12b)

Although problem (12) remains non-convex, it contains a
logarithmic function that is convex but not disciplined-convex.
To solve disciplined-convex problems efficiently, we can use
the primal-dual interior point method along with mature solver
technologies. In subsections A, B, C, and D, we investigate the
non-convex components of the general optimization problem
and apply various techniques to transform it into a convex and
discipline problem.

A. Overcoming Non-Convex Objective Function

To overcome the non-convexity of objective function we can
rewrite it as follows:

J∑
j=1

τjγj =
1

4

 J∑
j=1

(
τj + γj

)2 − J∑
j=1

(
τj − γj

)2 , j ∈ Ψ

(13)
Eq.(13) is the difference between two convex functions. By

definition f1
∆
=

(
τj − γj

)2
, the second term −f1 is a concave

function and its upper bound can be calculated by a linear
function. The upper bound of that relation performed by inner
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approximation [37] and sub-gradient method [38] around the
feasible (initial) point

(
τ̂j , γ̂j

)
as follows:

f1 ≤
(
τ̂j − γ̂j

)2
+∇τj ,γj

f1
(
τ̂j , γ̂j

) [
(τj − τ̂j) ,

(
γj − γ̂j

)]T
=

(
τ̂j − γ̂j

)2
+ 2

(
τ̂j − γ̂j

) [
(τj − τ̂j)−

(
γj − γ̂j

)]
(14)

By replacing Eq. (14) in the second part of Eq. (13), we
obtain an upper-bounded function that serves as a tangent line
to the original function. This approximation function closely
approximates the original function, particularly near the point
of tangency, which corresponds to the point in Eq. (13) where
the replacement was made. If we iteratively solve and converge
Eq. (14), we can ensure that both Eq. (13) and Eq. (14) share
the same local optimal point.

B. Semidefinite Relaxation of Constraint (10d)

By using the trace commutative property, we have the
following equation:

xH
j hih

H
i xj = Tr

(
xH
j hih

H
i xj

)
= Tr

(
xjx

H
j hih

H
i

)
(15)

Now the constraint (10d) can be reformulated by an auxil-
iary matrix Xj = xjx

H
j and Hi

∆
= hih

H
i as follows:

εij ≤ ηiτj /∈υi
Tr (XjHi) i, j ∈ Ψ (16)

So, since Xj is a positive semidefinite matrix, the constraint
(16) can be replaced by:

ηiτj /∈υi
Tr (XjHi)/εij ≥ 1 i, j ∈ Ψ (17a)

Xj≻−0 j ∈ Ψ (17b)

Rank (Xj) = 1 j ∈ Ψ (17c)

where the notation ≻− denotes that Xj is a positive semidefi-
nite. The problem is still non-convex due to the rank-one con-
straint given in (17c). By applying the semidefinite relaxation
(SDR) technique, the rank-one constraint will be dropped, and
the relaxed version of the main problem will be obtained. The
relaxed problem will be a convex SDP problem that is solvable
by interior-point methods. If the optimal solution Xj for the
problem with the relaxed constraints (17) is rank-one, then it
is also a solution for the original problem (12), which can be
done by using randomization techniques [39]. In this state, we
can easily extract a feasible xj from Xj .

Moreover, we know Tr(Xj) ≤ λmax(Xj), where f2
∆
=

λmax(Xj) denotes the maximum eigenvalue of the Xj and
it can be rewritten as the following difference between two
convex functions [40]:

Tr (Xj)−λmax (Xj) ≤ 0 (18)

To address the non-smooth nature of the rank one con-
straint, we employ the sub-gradient method. Therefore the sub-
gradient of λmax(Xj) is:

∇Xjf2
(
X̂j

)
= vmax (Xj)v

H
max (Xj) (19)

where vmax (Xj) is the maximum eigenvector corresponding
to the maximum eigenvalue of Xj . Therefore, the lower bound

of linear approximation λmax(Xj) at the point X̂j is as
follows:

f2 ≥ λmax

(
X̂j

)
+

〈
∇Xjf2

(
X̂j

)
,
(
Xj − X̂j

)〉
= λmax

(
X̂j

)
+ vH

max

(
X̂j

)
vmax

(
X̂j

)(
Xj − X̂j

) (20)

By substituting Eq.(20) in the Eq.(18) the following rela-
tionship is obtained:

Tr (Xj) ≤ vH
max

(
X̂j

)
Xjvmax

(
X̂j

)
(21)

In order to solve the originalEq. (12), Eq. (21) is introduced
as a convex subset of the original equation’s solution space.
To enforce this constraint, a penalty function is added to
the objective function, where the coefficient ℓ determines
the strength of the penalty. To ensure numerical stability, it
is recommended to solve the resulting problem iteratively,
gradually increasing the value of ℓ from small to large values.
This approach avoids potential numerical issues and helps to
converge to a feasible solution [41].

Herein, the constraint (17a) can be represented by the
difference between two convex functions method and by
defining the auxiliary variable ϕ2

ij = εij :

ϕ2
ij ≤ ηiτj /∈υi

Tr (XjHi) (22)

The above inequality is equivalent to:

ϕ2
ij +

1

4
(ηiTr (XjHi)− τj /∈υi

)2 ≤ 1

4
(ηiTr (XjHi) + τj /∈υi

)2

(23)
Since Tr (XjHi)+τj /∈υi

≥ 0, the above CQR relation can
be written in the following form:∥∥ϕij ,

1
2

(
ηiTr (XjHi)− τj /∈υi

) ∥∥
2
≤

1
2

(
ηiTr (XjHi) + τj /∈υi

) (24)

Also, the constraint Eq.(12a) can be written as follows:

γj ≥ Tr (Xj) (25)

By changing the variable ϕ2
ij = εij , the constraint (10a)

will be non-convex versus the variables
(
ϕij , τi

)
as it is not a

perspective of function log (1 + x) anymore. In addition, any
optimization problem that includes a log function, will turn the
problem into a not disciplined convex problem and cannot be
efficiently solved using modern SDP solvers, such as SeDuMi
[42]. To overcome this problem, new solutions called sequen-
tial quadratic (SQ) and conic quadratic representation (CQR)
methods are proposed that will be described in subsections C
and D.

C. Sequential Quadratic (SQ)
An auxiliary θi variable is defined to convert the constraint

a) of Eq.(10) to the two following inequalities:

a1) θi ≤
|Kgi|2Tr (XjHi)

σ2
UE

J∑
j=1,j /∈υi

ϕ2
ij , i, j ∈ Ψ (26)

a2) KCi − τj∈υi log2

(
1 +

θi
τj∈υi

)
≤ 0 i ∈ Ψ (27)

The relation a1) is not convex and should be using the
difference of two convex functions method and linearization of
the second part by the first-order approximation. As mentioned
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in the previous sections, replacing the linear approximation
around the initial point, in the second part of Eq.(26):

â1) θi −
|Kgi|4Tr(X̂jHi

)
J∑

j=1,j /∈υi

ϕ̂2
ij

σ4
UE

×
Tr(Hi)(Xj − X̂j)

J∑
j=1,j /∈υi

ϕ̂2
ij+

2Tr(X̂jHi)(ϕij − ϕ̂ij)
J∑

j=1,j /∈υi

ϕ̂ij

 ≤ 0

(28)

The constraint a2 appears to be convex, but the presence of the
logarithm function makes it non-disciplined. To address this,
one approach is to find an upper bound approximation using
a quadratic form and apply inner approximation techniques.
A theorem provides an iterative approach that is similar to
inner approximation and can converge to a local optimum for
smooth optimization problems.

Theorem: the function f3 : D → R, ∀x, x̂ ∈ D , is convex
if a second derivative exists at each point in domain D and
∇2f3 (x̂) ≥ 0, hence, the second-order approximation is [43]:

f3 (x) = f3 (x̂) +∇f3 (x̂) (x− x̂)
T×

(x− x̂)∇2f3 (x̂) (x− x̂)
T (29)

According to the above relation, the matrix Hs (called an up-
per bound Hessian matrix) must satisfy the following relation:

∇2f3 (x̂) ≺− Hs (30)

If the above relation is established, Eq.(29) can be converted
as follows:

f3 (x) ≤ f3 (x̂) +∇f3 (x̂) (x− x̂)T + (x− x̂)Hs(x− x̂)T

(31)
where the function f3 is defined as the left-hand side of

the constraint a2). The value of ∇2f3 (x̂) can be obtained as
follows:

∇2f3 (θi, τj∈υi
) =

 τj∈υi

(τj∈υi
+θi)

2 − θi

(τj∈υi
+θi)

2

− θi

(τj∈υi
+θi)

2

θ2
i

τj∈υi(τj∈υi
+θi)

2


(32)

Matrix ∇2f3 (θi, τj∈υi
) for τj∈υi

, θi ≥ 0 does not have an
upper bound. Therefore, we consider the below feasible set to
bound it (β is a fixed number):

Di =

{
(θi, τj∈υi

)| θi ≥ 0, 0 ≤ τ̂j∈υi

β
≤ τj∈υi

≤ ∞
}

(33)

This new domain, which is an implicit constraint, is added to
the constraints of the main problem. Now to estimate an upper
bound of Eq.(32), the following matrix is replaced instead of
it ( proof : Please refer to Appendix):

∇2f3 (θi, τj∈υi
) ≤

[
9β

8τ̂j∈υi
− β

8τ̂j∈υi

− β
8τ̂j∈υi

9β
8τ̂j∈υi

]
≤ Hs (34)

Also, the gradient of Eq.(27) is as follows:

∇f3 (θi, τj∈υi) =
[

− τj∈υi
τj∈υi

+θi
,− log

(
1 + θi

τj∈υi

)
+ θi

τj∈υi
+θi

]
(35)

Therefore, according to Eqs.(27), (29), (34) and (35), the
a2) constraint is converted to:

â2)


KCi − τ̂j∈υi log2

(
1 + θ̂i

τ̂j∈υi

)
+

∇f3
(
θ̂i, τ̂j∈υi

) [
θi − θ̂i, τj∈υi − τ̂j∈υi

]T
+[

θi − θ̂i, τj∈υi − τ̂j∈υi

]
Hs

[
θi − θ̂i, τj∈υi − τ̂j∈υi

]T
 ≤ 0

(36)
Finally, according to Eqs.(10), (12), (13), (14), (17), (21),

(24), (25), (28), (33) and (36), the final convex optimization
for the SQ approach is obtained as follows:

min
τj ,Xj ,γj
ϕij ,θi

ET=︷ ︸︸ ︷
J∑

j=1


1
4

(
τj + γj

)2 − 1
4

(
τ̂j − γ̂j

)2−
1
2

(
τ̂j − γ̂j

) ((
τj − γj

)
−

(
τ̂j − γ̂j

))
+

ℓ
(
Tr (Xj)− vmaxH

(
X̂j

)
Xjvmax

(
X̂j

))


s.t. (10b), (10c), (17b) , (24), (25), (28), (33), (36)
(37)

Now this problem is discipline and convex. So, the optimal
value of variables and objective function for the SQ approach
is obtained by the algorithm 1.

Algorithm 1 Sequential Quadratic (SQ)

1- Initialize X̂j , ϕ̂ij , τ̂j , γ̂j , θ̂i, β,K, a in the feasible set
2- Choose ε ≥ 0, ηi ≥ 0
3- While counter < countermax

4- Solve (37) to obtain the solution variables
Xj , ϕij , τj , γj , θi

5- IF

{ ∥∥∥Xj − X̂j

∥∥∥ , ∥∥∥ϕij − ϕ̂ij

∥∥∥ , ∥τj − τ̂j∥ ,

∥γj − γ̂j∥ ,
∥∥∥θi − θ̂i

∥∥∥
}

> ε

6- Xj → X̂j , ϕij → ϕ̂ij , τj → τ̂ , γj → γ̂j , θi → θ̂i
7- Go to step 3
8- Else
9- Check the the Rank one constraint Eq.(18) to be

satisfied by Tr(Xj)-λmax(Xj)
Tr(Xj)

≤ ε
10- counter → counter + 1
11- IF the constraint is not satisfied in Step 9
12- then set αℓ → ℓ and go to Step 3
13- Else
14- (Xopt, ϕopt, τopt, γopt, θopt) = (Xj , ϕij , τj , γj , θi)
15- End IF
16- End IF
17- End While

D. Conic Quadratic Representation (CQR)
An auxiliary variable zi is introduced to convert the con-

straint a) to the two following inequalities:

a1)zi ≥
KCi

τj∈υi

, i ∈ Ψ (38)

a2)log2

1 +
|Kgi|2Tr (XjHi)

τj∈υiσ
2
UE

J∑
j=1,j /∈υi

ϕ2
ij

 ≥ zi , i ∈ Ψ (39)

To incorporate the constraints mentioned above into the main
optimization problem, it is necessary to ensure that these
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equations are both convex and disciplined. Therefore, certain
modifications must be made (consider zi ≥ 0, i ∈ Ψ):

zi ≥
KCi

τj∈υi

→ (zi + τj∈υi)
2 ≥ 4KCi + (zi − τj∈υi)

2 (40)

Since zi, τi ≥ 0 , the above CQR relation can be written as
follows:

(zi + τj∈υi) ≥
∥∥∥[2√KCi, (zi − τj∈υi)

]∥∥∥
2

(41)

To simplify the inequality Eq.(39), the new auxiliary vari-
able Ξi , i ∈ Ψ is defined:

Ξi ≤
|Kgi|2Tr (XjHi)

J∑
j=1,j /∈υi

ϕ2
ij

τj∈υiσ
2
UE

, i ∈ Ψ (42)

Therefore

1 + Ξi ≥ ezi , i ∈ Ψ (43)

The constraint of Eq.(43) is non-convex. In general, to solve
the above relation, it is needed to approximate it with the
following lemma.

Lemma: If a set of auxiliary variables ζq,i, q ∈
{1, ...,M + 4} , i ∈ Ψ satisfy the following inequalities, then
we can use the CQR method to approximate the equivalent of
the 1+Ξi ≥ ezi , i ∈ Ψ with is the following linear and conic
inequalities.

1 + Ξi ≥ ζM+4,i, (44a)

1 + ζ1,i ≥
∥∥[ 1− ζ1,i 2 + 21−Mzi

]∥∥
2
, (44b)

1 + ζ2,i ≥
∥∥[ 1− ζ2,i 5/3 + 2−Mzi

]∥∥
2
, (44c)

1 + ζ3,i ≥
∥∥[ 1− ζ3,i 2ζ1,i

]∥∥
2
, (44d)

ζ4,i ≥ ζ2,i + ζ3,i/24 + 19/72, (44e)

1 + ζq,i ≥
∥∥[ 1− ζq,i 2ζq−1,i

]∥∥
2
, q ∈ {5, ...,M + 4} (44f)

The accuracy of the approximation can be improved by
increasing the value of M . The optimal value of M depends
on finding a balance between achieving convergence and
minimizing computational complexity. This value of M is
referred to as the approximation coefficient.

Proof : Please refer to [44], [45]
To establish a relation between the variables ϕ2

ij and Ξi

the linear approximation for the right-hand side of Eq.(42)
should be written similar to previous sections. By placing it in
Eq.(42), the new constraint is obtained as follows and should
be added to other constraints of the main problem (Eq.(12)):

Ξi −
|Kgi|4Tr(X̂jHi)

J∑
j=1,j /∈υi

ϕ̂2
ij

τ̂j∈υi
σ4
UE

×

Tr(Hi)(Xj−X̂j)
J∑

j=1,j /∈υi

ϕ̂2
ij

τ̂j∈υi
−

Tr(X̂jHi)(τj∈υi
−τ̂j∈υi

)
J∑

j=1,j /∈υi

ϕ̂2
ij

τ̂2
j∈υi

+

2Tr(X̂jHi)(ϕij−ϕ̂ij)
J∑

j=1,j /∈υi

ϕ̂ij

τ̂j∈υi


≤ 0

(45)

Finally, according to Eqs, (10), (12), (13), (14), (17), (21),
(24), (25), (41), (44) and (45), the final convex optimization
for the CQR approach is obtained as follows:

min
τj ,Xj ,
γj ,zi,
Ξi,ϕij ,

ζq,i

ET=︷ ︸︸ ︷
J∑

j=1


1
4

(
τj + γj

)2 − 1
4

(
τ̂j − γ̂j

)2−
1
2

(
τ̂j − γ̂j

) ((
τj − γj

)
−

(
τ̂j − γ̂j

))
+

ℓ
(
Tr (Xj)− vmaxH

(
X̂j

)
Xjvmax

(
X̂j

))


s.t. (10b), (10c), (17b) , (24), (25), (41), (44), (45)
(46)

Algorithm 2 Conic Quadratic Representation (CQR)

1- Initialize X̂j , ϕ̂ij , τ̂j , γ̂j , α,K,M in the feasible set
2- Choose ε ≥ 0, ηi ≥ 0
3- While counter < countermax

4- Solve (46) to obtain the solution variables
Xj , ϕij , τj , γj ,Ξi, ξM+4,i, zi

5- IF
{ ∥∥∥Xj − X̂j

∥∥∥ , ∥∥∥ϕij − ϕ̂ij

∥∥∥ ,
∥τj − τ̂j∥ , ∥γj − γ̂j∥

}
> ε

6- Xj → X̂j , ϕij → ϕ̂ij , τj → τ̂ , γj → γ̂j
7- Go to step 3
8- Else
9- Check the the Rank one constraint Eq.(18) to be

satisfied by Tr(Xj)-λmax(Xj)
Tr(Xj)

≤ ε
10- counter → counter + 1
11- IF the constraint is not satisfied in Step 9
12- then set αℓ → ℓ and go to Step 3
13- Else
14- (Xopt, ϕopt, τopt, γopt) = (Xj , ϕij , τj , γj)
15- End IF
16- End IF
17- End While

Now this problem is discipline and convex. So, the optimal
value of variables and objective function for the CQR approach
is obtained by the algorithm 2. The advantage of the CQR
method is to obtain the optimal solution by increasing the
value of the coefficient of approximation (M ). At the end
of this calculation and after obtaining Xj , the variable xj

is obtained according to Equation Xj = xjx
H
j . Finally, the

proposed methods can be solved iteratively by starting from
the initial feasible point and performing successive updates
until convergence is achieved.

IV. COMPUTATIONAL COMPLEXITY

In this section, we present complexity bounds in terms of
real arithmetic operations before an ε-solution is obtained for
the proposed optimization problems using the interior-point
method [46]. Interior point methods were extended from linear
optimization to semi-definite optimization and the polynomial
complexity of the algorithm can be obtained theoretically [47].
As you observed, the CQR and SQ methods were implemented
as Second-order cone program (SOCP) and SDP models,
respectively. The computational complexities of these two
methods are shown in Table II.
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TABLE II: The computational complexity of the SQ and CQR
methods.

SQ method (Algorithm 1)

O(1)

√√√√1 +

V∑
v=1

κv

(
B3 +B2

V∑
v=1

κ2
v +B

V∑
v=1

κ3
v

)
ln

(
size(SQ)

ε

)

size(SQ) =

(
(B + 1)

V∑
v=1

κv (κv + 1)

2

)
+ V +B + 3

κv = I
(
2N2 + I + 1.5

)
, B = 5, V = 8

CQR method (Algorithm 2)

O(1)
√
V + 1B

(
B2 + V +

V∑
v=0

κ2
v

)
ln

(
size(CQR)

ε

)

size(CQR) =

(
V +

V∑
v=1

κv

)
(B + 1) + V +B + 3

κv = I
(
3N2 + 0.5I2 +M + 7

)
, B = 7, V = 13

In the Table II, Ln (size (.)/ε) represents the number of
accuracy digits in an ε-solution, size (.) is the dimension
of the total data of the QR or SQ problems, κi is the
dimensions of the v-th constraint, B and V is the number
of variables and number of constraints of the optimization
problem respectively. To better understand the complexity of
relationships, we have calculated these values and presented
them in Table II. Additionally, the corresponding figure has
been provided in the simulation section, which uses the exact
results of these calculations.

V. SIMULATION RESULTS

According to the system model, SBDs are randomly dis-
tributed in the network and located near the SUE. Each IoT
device can harvest energy and send its information to the in-
tended SUE, as shown in Fig. 1. In all simulations, we consider
T = 10, K = 100, η = 0.8 and σ2

i = σ2
UE = −114 dBm.

Also, we assume the carrier frequency is 2 GHz, the channel
bandwidth is 400 kHz, the pathloss exponents are 3, and the
BS antenna gain equals 5 dB. All simulation results were
obtained by averaging over 1000 randomly generated channels,
and ten different initialization points in the convex feasible
set were considered to ensure the stability of the problems.
The distance between the BS and SUE is 200 meters, and
the maximum distance of SBDs from SUE is 100 meters,
which are distributed randomly between the BS and SUE.
All simulations were performed using a laptop with a Core
i7 processor and 8 GB RAM.

A. Comparison of Proposed Methods

This paper utilizes two mathematical methods, CQR and
SQ, to solve the optimization problem. In the CQR method,
the first step involves obtaining the appropriate approximation
coefficient. To do so, we plot the diagram of the minimum
energy consumption by the BS versus the SBDs throughput
requirement, as shown in Fig. 3, assuming approximation
coefficients of M = 1, 2, ..., 6 in the CQR method. As
shown in Fig. 3, the total energy consumption (EC) in the
network transferred by the BS increases as the minimum data
transmission rate in SBDs increases, as expected. To find the
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Fig. 3: EC versus SBDs throughput requirement in CQR method
for M = 1, 2, ..., 6, I = 6

best approximation coefficient for this problem, we need to
identify the point where the shapes converge. Based on Fig.
3, this event occurs for M ≥ 4, and therefore, the appropriate
values can be obtained. By considering the computational
complexity, as shown in Fig. 6, the optimal value is determined
to be M = 4.

To determine which mathematical solution is more accurate
in finding optimal points, we compare two methods: CQR with
M = 4 and SQ. In this case, we change the basic parameters
of the network design, including the number of IoT devices in
the network. Fig. 4 shows the minimum energy transfer versus
SBDs throughput requirement for these two methods, where
the number of SBDs varies from 2 to 4 (I ∈ {2, 3, 4}).

For example, in the special case of I = 3, the CQR method
is more effective than the SQ method in minimizing the total
EC in the network while still meeting the SBDs’ throughput
requirements. At a rate of 0.9 bps/Hz, the difference in EC
between two cases of 2 and 4 SBDs is 22.71dB for the SQ
method and 6.77dB for the CQR method. As the number of
SBDs increases, the CQR method is more stable and has better
EC compared to the SQ method.

Another significant parameter to consider is the number of
energy output antennas on the BS. Fig. 5 illustrates this pa-
rameter for BSs with different numbers of antennas, including
single antenna, 2× 2, and 3× 3 antennas configurations.

By narrowing the beam of the BS antenna, more energy
can be directed towards the SBD, resulting in a higher SNR.
As a result, SBDi can achieve the desired data rate Ci while
consuming less energy (Eq. 10a). Moreover, the increased
power of the received signal at the SBD enables faster battery
charging, which, in turn, reduces the time slot assigned to
SBD in EHS mode (Eq. 10d) and limits the maximum energy
harvested. However, this reduction also implies that the energy
required to maintain the desired QoS can be obtained more
quickly.

B. Convergence and Computational Complexity

The computational complexity of the SQ and CQR methods,
presented in Section IV, and The corresponding plot is shown
in Fig. 6. The variable parameter in this figure is the number
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Fig. 5: EC versus SBDs throughput requirement
where I = 4 and N = 1, 4, 9

of IoT devices (SBDs). As shown in Fig. 6, the computational
complexity of the CQR method is much lower than that of
the SQ method. Moreover, in the CQR method, the growth
rate of computational complexity is lower than that of the
SQ method with an increase in the number of SBDs in the
network. Therefore, this method is suitable for implementing
dense networks with a large number of users. Additionally, in
the CQR method, the algorithm’s complexity slightly increases
as the value of M increases.

According to the description in the sections V.A, the CQR
method achieves the least computational complexity and clos-
est convergence to other values of the function when the
approximation coefficient is set to M = 4.

Also, the convergence plots of the proposed methods are
shown in Fig. 7. As it is evident, both CQR and SQ methods
had good Convergence speed and converged to the desired
solution after only 4 iterations. It should be noted that the
execution time of each iteration is approximately 1 second.

C. Comparison of T-SR and TDMA Modes

We are conducting a study to evaluate the T-SR system,
proposed and simulated to reduce EC in B5G and 6G net-
works. In particular, we will compare its scheduling method
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Fig. 6: Complexity of CQR and SQ algorithm with I = 1, 2, ..., 40,
N = 4 and ε = 10−6

0 2 4 6 8 10

Convergence[Iteration Number]

5

10

15

20

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

[d
B

J]
CQR(M=1)

CQR(M=2)

CQR(M=3)

CQR(M=4)

CQR(M=5)

S.Q

Fig. 7: Convergence behaviour of the CQR and SQ algorithm with
Ci = 8 bps/Hz and I = 5

with that of the TDMA system, which assigns specific time
slots to users for sequential access to the network.

As illustrated in Fig. 2, the T-SR mode was introduced in
section II. In order to facilitate comparison, we have included
a diagram of the TDMA mode in Fig. 8. The TDMA scheme,
which can be seen as a simplified version of T-SR, can
be modeled by applying certain simplifications to the T-SR
model, as per the given definitions.

In TDMA mode, each SBD takes turns transmitting its

Fig. 8: The TDD frame for EHS and MTI modes in TDMA
transmission information model
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for the T-SR and TDMA scenarios, I = 8, N = 9

information in equal time slots within designated time frames
[24]. If the SBD needs to transmit a large amount of data,
it may require more time slots and multiple time frames to
complete its transmission. This is because the amount of data
that can be transmitted within a single time slot is limited, and
larger data transmissions require more time slots, which may
extend beyond a single time frame.

The TDMA mode was simulates by assuming its successful
implementation in the network without any interference in the
receivers. Fig. 9 presents a comparison of the EC between
the T-SR mode in the SR network and the TDMA mode in
typical networks. As shown in Fig. 8, the T-SR mode consumes
significantly less energy than the TDMA mode (by about 8
dB), owing to the optimal allocation of time slots based on
the specific needs of each SBD and the ability to transmit
information and harvest energy at any time.

In TDMA mode, SBDs may transmit their data non-
continuously over multiple time frames, while the T-SR mode
enables the transmission of data to be completed within a
single time frame using sequential time slots. The reason for
this difference is that in TDMA mode, SBDs are only required
to transmit their data during their designated time slot within
the assigned time frame. As a result, if the SBD needs to
transmit a large amount of data that cannot be accommodated
within a single time slot, it must transmit the data over
multiple time frames, leading to non-continuous transmission.
In contrast, T-SR mode utilizes sequential time slots within a
single time frame, allowing for continuous transmission of data
within a single time frame.Therefore, this difference leads to
more energy loss in TDMA mode compared to T-SR mode,
resulting in decreased EE. This difference increases further
with the increase in the number of users.

D. Comparison Proposed Method With Other IoT Protocols

As technology advances, we can expect the widespread
use of IoT networks in the future. A promising method for
implementing these networks is by utilizing a semi-passive
structure, similar to the SR system. This approach is well-
suited for facilitating communication between IoT users and
upcoming cellular networks such as 6G and B5G. The use of

0 .2 .4 .6 .8 1 1.2 1.4
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SigFox

NB-IoT
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Fig. 10: Energy Efficiency versus Spectral Efficiency between IoT
protocols and SR system

TABLE III: Power Consumption (P.C) of SR and IoT protocols for
one IoT device and in one transmission slot.

Protocols Frequency BW P.C Ref
SigFox 902 MHz 200 KHz ∼100 mW
LoRa 928 MHz 500 KHz ∼150 mW [48]–[54]

NB-IoT 1.8 GHz 1 MHz ∼500 mW
ZigBee 2.4 GHz 2 MHz ∼100 mW [55], [56]

SR 2 GHz 400 KHz ∼11.6 mW This Paper

SR systems offers several advantages, including not requiring
additional infrastructure, increasing SE, and improving EE.

IoT networks can be implemented using various protocols,
such as sensor networks that use batteries like LoRa and
ZigBee, or sensors with wireless energy harvesting in wireless
powered communication networks (WPCN). These systems
require active RF energy-consuming components like mixers
and power amplifiers, and a complex electrical and communi-
cation infrastructure to transmit information. In contrast, the
SR system utilizes a passive structure with SBDs that have
extremely low EC, and leverage the existing infrastructure of
other communication networks, such as cellular and Wi-Fi. As
a result, the EC in the network is greatly reduced, making the
SR system a more energy-efficient and cost-effective approach
for implementing IoT networks.

This section aims to compare the EE of IoT devices im-
plemented with different systems, such as SR, ZigBee, LoRa,
SigFox, and NB-IoT, irrespective of the infrastructure’s EC. In
this paper, we define EE as the ratio between the instantaneous
throughput and the total power consumption. By comparing
these systems, we can determine which one is more energy-
efficient and suitable for IoT networks.

Table III provides the frequency band, bandwidth, and
power consumption values for each protocol, as specified
in their respective standards. The SR system is expected to
be implemented within the approximate frequency band and
bandwidth range outlined in the table (which corresponds to
ambient waves). Fig. 10 depicts the relationship between EE
and SE for each system, assuming identical conditions for all
systems. We assume that all energy is used for sending and
receiving information, and no energy consumption occurs in
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Fig. 12: Symbiotic radio network topology with different Locations
of SBDs

the circuit of the device. Additionally, we disregard the energy
consumption associated with the infrastructure of each system.
The diagram represents the transmission and reception of a
single signal within a single time slot. As shown in Fig. 10,
the SR system exhibits significantly better EE compared to
other IoT protocols.

E. The Impact of Different Locations of SBDs on Network
Performance

We will conduct simulations using the CQR technique with
M = 4 and I = 6, and the results can be generalized to other
cases. Assuming a coverage radius of 200 meters for the BS
and the SUE being located at the maximum distance from
the BS. We consider the SR network topology as shown in
Fig. 11, where three scenarios arise: 1) SBDs located near the
BS, 2) SBDs located in the middle space between the BS and
SUE, and 3) SBDs located near the SUE. As shown in Fig.
12, we observe that in the assumed SR network, the closer the
SBDs are to the BS, the lower the energy consumption in the
network, while the closer they are to the SUE, the higher the
energy consumption. This is because as SBDs get closer to the
BS, they receive a stronger signal and the channel gain, which
is related to the square inverse of the distance between BS-

SBDs, also increases, resulting in an increased SNR received
by SBD. Thus, based on constraints (10a), SBDi achieves
the desired rate Ci with less energy. Additionally, due to the
reduction in the timeslot assigned in EHS mode to SBD, the
maximum energy harvested (constraint 10d) by it decreases as
the energy required for transmitting information is completed
faster. This ultimately results in decreased energy consumption
in the entire network, as seen when SBDs are close to the BS.

Conversely, when SBDs are close to the SUE, the received
signal power and their SNR decrease, leading to a higher
energy consumption required to achieve the desired QoS in
the system.

VI. CONCLUSION AND FUTURE WORK
In this paper, we consider a novel solution in the SR network

with CSR setup for achieving massive connectivity of het-
erogeneous network through green communication. The base
station uses active MIMO antennas to generate an ambient
signal that is radiated into the environment and the SBDs
receive this ambient signal and use it to charge their power
supply. When the SBDs have data to transmit, they modulate
the information onto the received ambient RF signal and send
it to the intended SUE. In the CSR setup, the BS and SBDs
work collaboratively, and the decoding strategy for CSR treats
the SBD signal as a multipath component rather than interfer-
ence. The main objective of this paper is to enhance energy
efficiency in this network by minimizing energy consumption
(EC) while ensuring the minimum required throughput for
SBDs. To achieve this, we propose a new scheduling scheme
called TSR that optimally allocates resources to SBDs. We for-
mulate the TSR system as a non-convex optimization problem
that involves non-convex objective functions and constraints.
To solve this problem, we use mathematical techniques and
introduce a new approach called sequential quadratic and conic
quadratic representation (CQR) to relax and discipline the
problem, which reduces its complexity and convergence time.

In the simulation section, we compare the performance of
the CQR and SQ methods and observe that the CQR method
yields better energy efficiency (EE). Furthermore, by changing
basic network parameters such as the number of IoT devices
and the number of active massive MIMO antennas in the
BS, CQR was stable and could further reduce EC in the
network. Additionally, we compare the proposed system with
the traditional TDMA system and find that the SR system
with TDMA mode achieves better EE. Furthermore, Fig. 10
shows that the power consumption of the network is much
lower when using the SR system for communication among
a large number of IoT users compared to other current IoT
communication protocols. These findings suggest that the
proposed system has significant potential for reducing EC in
future-generation networks on a global scale.

There are many ideas for future work, including investigat-
ing the spectral efficiency of the proposed system model, using
the intelligence reflect surface (IRS), which is passive structure
and will have a great impact on reducing the amount of EC
and enhancing spectral and energy efficiency in the network
and using the deep reinforced learning to reduce the EC in the
dense IoT networks.
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APPENDIX

Lemma: The inequality g (θi, τi) ≤ g
(
(θi, τi) ,

(
θ̂i, τ̂i

))
holds for (θi, τi) ∈

{
(θi, τi)| θi ≥ 0, 0 ≤ τ̂i

β
≤ τi ≤ ∞

}
, where

g (θi, τi) = τi log
(
1 + θi

τi

)
and g

(
(θi, τi) ,

(
θ̂i, τ̂i

))
is equal to:

τ̂i log
(
1 + θ̂i

τ̂i

)
+∇f

(
θ̂i, τ̂i

) [
θi − θ̂i, τi − τ̂i

]T
+[

θi − θ̂i, τi − τ̂i
]
Hs

[
θi − θ̂i, τi − τ̂i

]T
Proof: We first obtain the minimal matrix A which satisfies

the following relation for (θi, τi):

Hs =

[ τi
(τi+θi)

2 − θi
(τi+θi)

2

− θi
(τi+θi)

2

θ2i
τi(τi+θi)

2

]
≤ A =

[
a11 a12
a21 a22

]
(47)

According to Eq.(33) the largest value of a11 is obtained when
θi and τi have their lowest values

a11 = argmax
θi,τi

{
τi
/
(τi + θi)

2} ∣∣∣∣ θi = 0
τi = τ̂i/β

=
β

τ̂i
(48)

To obtain the maximum value of a22 based on the function
θ2
i

τi(τi+θi)
2 is monotonically increasing with respect to θi and

monotonically decreasing with respect to τi:

a22 = argmax
θi,τi

{
θ2i

τi(τi + θi)
2

} ∣∣∣∣ Lim θi → ∞
τi = τ̂i/β

=
β

τ̂i
(49)

To obtain a21 = a12, the derivative of the function θi
(τi+θi)

2

is calculated and it is observed that the maximum value of
this function is obtained for τi = θi and also τi has it’s lowest
value, so:

a12 = a21 ≤ argmax
θi,τi

{
θi

(τi + θi)
2

} ∣∣∣∣ θi = τ̂i/β
τi = τ̂i/β

=
β

4τ̂ i
(50)

In addition, to satisfy the above relations, the determinant of
the matrix (47) is greater than zero. By defining an auxiliary
variable ℜ, this inequality will be simplified as follows:

(
a11 −

τi

(τi + θi)
2

)
︸ ︷︷ ︸

ℜ1

(
a22 −

θ2i

τi(τi + θi)
2

)
︸ ︷︷ ︸

ℜ2

−
(
a12 +

θi

(τi + θi)
2

)2

︸ ︷︷ ︸
ℜ


≥ 0 (51)

Consequently, based on Eq.(51) we calculate the a21 = a12:

a12 = a21 = − 1
2

(
max

(
θi

(τi+θi)
2

)
−min

(
θi

(τi+θi)
2

))
= − 1

2

(
β
4τ̂i

− 0
)
= − β

8τ̂i

(52)

The following inequality is established for ℜ :

ℜ ≥
(
− β

8τ̂i
+

β

4τ̂i

)
=

β

8τ̂i
(53)

and also, we have the following relationships:

a11 ≤ ℜ1 +
β

τ̂i
=

9β

8τ̂i
, a22 ≤ ℜ2 +

β

τ̂i
=

9β

8τ̂i
(54)

Finally, after these calculations, an upper bound of matrix
(32) is shown by Eq.(34).
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