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Abstract—Integration of renewable energy resources in
distribution networks with intermittent behaviour increases
the challenge of power balance in transmission systems. To
mitigate the undesired impacts, transmission operator involves
distribution operators to get local contribution from their flexible
resources. In this paper, we address the flexibility offered by
some electric car sharing agents which can serve some reserve
capacity to distribution system. A Markov Chain modelling based
approach is proposed to support system operator to properly
estimate the number of electric vehicles required to be booked
in advance as reserve. Underestimation would result in imperfect
demand correction, and overestimation would imply extra costs.
Using a realistic case under a near future scenario of high
PV integration and EV accommodation, we demonstrate the
contribution of our approach to this problem of planning or
scheduling. Obtained results quantifies the performance of the
proposed method in terms of average energy difference based on
number of EVs. The results can be used as a basis to decide the
appropriate number of EV reservations.

Index Terms—distribution systems, electric vehicle, Markov
Chain, photovoltaic generation, vehicle-to-grid,

I. INTRODUCTION

In traditional power systems, where distribution networks
are more passive, forecasting methods could greatly
and sufficiently support transmission system operation
and planning, through predicting aggregated amount of
consumption at the substation levels. Nowadays integration of
many small-scale distributed energy resources to distribution
systems (DS) makes these network more active [1], [2], [3].
Meanwhile exploiting clean energy with lower operational
cost is attracting interest, hence most of new installation of
distributed energy resources are renewable.

From capability of control and dispatching perspective,
there are mainly two categories of renewables: Variable
Renewable Energy (VRE), and controllable Renewable
Energy. VRE is non-dispatchable energy source because of
its fluctuating nature such as wind and solar power. In
the contrary, controllable resources are dispatchable such as
hydroelectricity and biomass which may be ramped up or
down to match demand.

The main challenges of integrating renewable energy
come from the variable type (wind and solar power) with

its limited predictability characteristics. The variability in
electrical power systems has been always an important issue in
supply-demand balancing, but what makes it crucial nowadays
is due to the variability on supply side rather than only on
demand side, and the uncertainty of the available resources.

The VRE has some characteristics which give it the potential
to impact power systems. The first property of a VRE is its
variability which is derived from variations of the wind speed
and levels of solar irradiation for power generation from wind
and solar as the main VRE resources. In this regard, even
if consumption behaviour of customers in the grid could be
captured and forecasted with high accuracy, but prediction
of aggregated amount of net consumption (i.e. the difference
between total load and total distributed generations), in case
of high VRE penetration is quite challenging [4], [5], [6].

Ignoring the impacts of VREs could bring even some
emerging threats to the transmission systems (TS) which may
make system operator decide to shed some loads to save
the whole system from frequency or voltage collapse [7]. A
general solution to this management challenge in transmission
system is to get some contribution from distribution system
operator (DSO) to mitigate the undesired impacts of VREs [8],
[9]. DSO should ensure a scheduled or definite trajectory
of power exchange at the primary substation level with its
upstream transmission system. This objective can be achieved
by either curtailing some loads or generators, or using flexible
resources like storage units in the network [10], [11]. The
former would result in higher cost, customer dissatisfaction,
and environmental issues with respect to the latter choice,
however the lather choice is efficient if there is adequate low
cost flexibility in the system [12].

As lowering the cost of flexibility is important, installation
of distributed bulk storage units may not be the best choice.
Instead, getting contribution of available plug-in electric
vehicles (EV) to system energy management could waive or
reduce initial investment or installation costs.

There are a lot of discussions in literature about the impacts
of EVs on system control and management as well their
contribution as power reserve [13], [14], [15], [16], [17].
However, the main duty of these devices is transportation, and



the way these EVs are involved in ancillary services or power
balance is similar to demand response approaches.

In this paper, we describe a context in which EVs
contribute to energy management in the same way the utility-
owned stationary storage units are utilized; this means the
contribution could be guaranteed, hence DSO can safely
alleviate the out-of-schedule power demand or supply at the
primary substation (i.e. coupling point of distribution and
transmission networks).

In this context, we assume DSO makes contracts with
some aggregators or car sharing companies who own and
manage some parking lots (PL) in the network. The car sharing
company may do some analysis to estimate some information
like the number of available cars in each PL at each time-slot
of the day, the state of the charge (SOC) of the batteries of the
cars, number of reserved/booked cars by drivers, etc. Based on
such information, it could offer some sort of power reserve to
DSO.

In our paper, we address the scheduling challenge of such
flexibility from DSO perspective. We provide a mathematical
tool to DSO to estimate how many cars to book in advance
for satisfying the scheduled profile of power exchange with
transmission network. In case of power deficit or surplus with
respect to the scheduled profile, DSO will use the batteries
of the booked cars. Of course underestimation would result in
imperfect demand correction, and overestimation would imply
extra costs.

The methodology proposed in this paper is based on
Markov Chain modelling. Charging and discharging of EVs
are described as stochastic processes. State of EVs’s charge is
modelled based on discrete time Markov Chain. It follows a
chain of linked events, in which what happens in the next state
depends only on the current state of the system. Using this
approach, a metric can be obtained to correlate the number
of EVs to be reserved, and the average energy difference
between the scheduled and real power exchange at the primary
substation. This metric gives an insight to network planner or
scheduler (e.g. DSO) to recover some level unscheduled power
exchange between Ts and DS, by reserving a certain number
of EVs in parking lots.

The rest of this paper contains the following discussions:
the methodology of our proposed solution will be introduced
in Section II. To demonstrate the performance of the new
solution, we applied it to a realistic case of an urban
distribution network accommodating several parking lots of
EVs under high PV penetration scenario. The experiments and
the results are briefly demonstrated in Section III. The paper
will be concluded with some short remarks in Section IV.

II. METHODOLOGY

In this section, proposed methodology is discussed. The
proposed model is based on developing a Discrete Time
Markov Chain (DTMC) for capturing the proper number of
required EVs for reserve. Firstly, Markov Chain modelling
is described, then the discussed problem is formulated, and
a metric is proposed to o correlate the number of EVs to
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Fig. 1. Markov Chain model for EV units contribution to DSO.

be reserved and the average energy difference between the
scheduled and real power exchange at the primary substation.
This metric is defined to support determination of appropriate
number of EVs to be booked, in cost-benefit analyses. Finally,
the procedure of applying the proposed method is summarized.

A. Markov Chain

Markov models are statistical models in which we assume
Markov property or memorylessness. Two main models in
this area are Markov chain and Markov Random Field (MRF)
that has been applied in various applications [18], [19]. The
Markov chain model is a well known tool to analyze the
behavior of the modeled system. The Markov chain model
is based on states and transition probabilities [20]. This model
satisfies Markov property in the sense that each state only
depends on the previous state. Eq. (1) expresses this property
in terms of conditional probabilities.

P (Tm|T1, T2, ..., Tm−1) = P (Tm|Tm−1) (1)

In Fig. 1 Markov chain model for our discussed problem
has been illustrated. Tn

m represents the state of available EVs
used for providing flexibility at mth time interval of the day
(i.e. m hour after midnight), where n indicates the number of
fully charged EVs. Transition probability matrix of the first
time interval (i.e. from hour 00.00 to hour 01.00) is formed
as follows:

TrPr 1 =


p0,0 p0,1 p0,2 . . . p0,N
p1,0 p1,1 p1,2 . . . p1,N
p2,0 p2,1 p2,2 . . . p2,N

...
...

...
. . .

...
pN,0 pN,1 pN,2 . . . pN,N

 (2)

where pk,l indicates the probability of availability of l fully
charged units at time j if there were k fully charged units
at time i. The overall transition probability matrix regarding



Fig. 1 would be as follows:

TransProb =


TrPr 1 0 0 . . . 0

0 TrPr 2 0 . . . 0
...

...
...

...
...

0 0 0 . . . T rPr 24


(3)

where TrPr t is the transition probability matrix that is
defined in Eq. (2) for t = 1. The size of this probability matrix
is 24 ∗ (N + 1) ∗ 24 ∗ (N + 1). The stationary distribution is
formulated in the following equation.

πl = [π1
l , π

2
l , . . . , π

k
l , . . . , π

N
l ]1×N (4)

where πk
l is the probability of availability of k fully charged

units when the state changes (i→ j).

B. Problem Formulation

The objective of DSO in operation is to minimize the energy
difference between the real and the scheduled cases , while in
scheduling phase or planning, the goal is to be able to cover
this energy difference (i.e. ∆E). In the following equation,
this energy difference has been normalized.

∆S =
∆E

Eu
(5)

where Eu is the energy capacity of each unit. In this paper,
he histograms of ∆S (see Fig. 5 for an example) are used to
obtain transition probabilities of Eq. 2.

C. Average Energy Difference between Actual and Scheduled
Demand

There are many criteria to evaluate the energy efficiency of
power grids. These criteria can be categorized into economic,
environmental, technical, feasibility and energy metrics [21].
Here a metric based on energy difference of actual and
scheduled demand has been defined as follows:

|∆Eavg| =
∑
l

∑
k

|∆E| × πk
l (6)

where πk
l is the probability of being in the specific state. This

metric has been used as a metric to evaluate the performance
of the proposed scheme.

D. Proposed Method

Having actual and scheduled demand as input data we can
use the proposed model to investigate the performance of the
method in terms of the energy difference metric. Algorithm 1
shows the pseudocode of the proposed method.

Algorithm 1 The proposed method algorithm
Data: Actual and scheduled demand
Result: Average energy difference metric

• Calculate ∆S using Eq. (5)
• Making histogram of ∆S
• Claculate transition propability matrix of Eq. (2)
• Calculate stationary probabilities of Eq. (4)
• Calculate average energy difference metric in Eq. (6)
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Fig. 2. Topology of case study grid with resources.

III. EXPERIMENTS AND RESULTS

In this section used dataset is described in III-A, and will
be followed by some results of study.

A. Dataset

The case study used for demonstration is a realistic
network based on a portion of an urban distribution system
in Northwest of Italy, city of Turin. The topology of this
network is presented in Fig. 2. This is a medium voltage (MV)
system with 3 transformers at the primary substation, 5 MV
feeders, and 53 secondary substations. 43 substations supply
low voltage grids with mainly residential loads. In order to
stress the impact of VREs, we create a future scenario of smart
grids where a high penetration of PV generation exists. In this
scenario, most of the residential buildings in this urban area
install roof-top PV panels [22]. There are 8 parking lots with
charging columns directly supplied by the MV network.

The historic data used for PV production is generated as
follow: the amount of produced energy by the PV panels
were computed by the online NRELs PVWatts Calculator [23].
It allows choosing several parameters in order to give a



Fig. 3. Maximum power generation of PV panels under each substation [kW].
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Fig. 4. Daily consumption of loads aggregated at 43 substations [kW].

reasonable estimate of the energy production. For this test,
the panel DC system size is set 1 kW with a standard module
type, fixed array type, and DC to AC size ratio of 1.1 for the
city of Turin. Hourly data of PV production for one year can be
obtained for this panel size. Then, we made an assumption of
different potential of PV production at 43 substations to scale
up the calculated profile proportionally. Fig. 3 plots maximum
production of PV panels under each secondary substations.

The loads in this network are mostly residential with a daily
profile represented in Fig. 4 for all 43 substations.

Each parking lots (PLs) in our case study can serve up to 20
plug-in EVs by the charging columns. The EVs considered for
the car sharing company of our scenario has battery capacity of
30 kWh. As described previously, the main objective of using
EVs is green transportation. Each of these EVs can drive up
to 150 km if they are fully charged. This is beyond distances
normally needed for urban paths, therefore in our case study,
when we address EVs for providing energy contribution
(charge/discharge), they are assumed to have State-Of-Charge
(SOC) in the range between 40% and 90%. This is to guarantee
a minimum stored energy for the DSO or user, and also to limit
the battery ageing effect.

B. Results

Following Algorithm 1, firstly to obtain the scheduled
demand of the whole distribution system, we used a linear
regression method to forecast the PV production of a typical
day. Then, we use this data together with the residential load
profiles presented in Fig. 4 to run a daily power flow from
which we achieve the net demand of the system at the primary
substation level.

Fig. 5. Histogram of state transition from 17.00 to 18.00 - ∆S [kWh].
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Fig. 6. Total energy difference versus total number of available fully charged
EVs.

The actual demand is the difference between the daily
consumption and the calculated PV production from PVWatts.

Then, the ∆S is calculated, and the corresponding
histograms for all 24 transitions are obtained. Fig. 5 illustrates
one example of such histograms for the state transition from
hour 17.00 to 18.00.

The transition probability matrices are then formed to be
used for calculating the stationary probabilities Eq. (4).

By considering different number of total booked EVs from 5
to 50, the average energy difference metric is calculated using
Eq. 6.

The results plotted in Fig. 6 demonstrates that increasing
number of booked EVs could reduce the difference
between the average scheduled and actual energy at the
primary substation. This trend seems logical, however the
quantification offered by our proposed metric can be used in
cost-benefit analysis tools to make decision to withstand some
level of ∆E for sake of EV reservation cost.

IV. CONCLUSION

Contribution of distribution systems to power system energy
management is becoming crucial since more and more variable
renewable energy resources are being integrated into the
distribution networks. In this paper, we addressed the real time
energy balance in distribution systems using available plug-
in EVs as low cost flexible resources. In order to properly
estimate the required capacity reserve and book EVs of some



private car sharing companies, we proposed a metric which is
based on Markov Chain approaches to quantitatively correlate
the number of sufficient required cars with the amount of
extra power demanded from upstream grid. The solution is
applied to a realistic case, and the results provide a basis for
decision makers to perform cost-benefit analysis and reserve
appropriate number of EVs for reserve.
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