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This paper makes a comparison of machine learning algorithms for the analysis of four hydroponic datasets. Data 
have been gathered daily from hydroponic systems to predict the output of the hydroponic systems. This research 
compares the performance of the federated split Learning, Deep neural network, extreme Gradient Boosting 
(XGBoost), and Linear regression algorithms on four different hydroponic systems. These algorithms have been 
used to analyze the datasets of Nutrient Film Technic (NFT), Floating (FL), Aggregate (AG) and Aeroponic (AER) 
hydroponic systems. The results have indicated the performance of each model for each hydroponic system and 
how each algorithm have used the various multiple input features to make predictions of the onion bulb diameter 
and the errors encountered by each model. From the results obtained, it has been observed that the R square score 
is varied for each hydroponic system. This variation in the result has been also reflected in the Mean absolute 
errors obtained. This research determines which of the algorithms predict the optimal Onion bulb diameter 
(mm) using days after transplant (days), Temperature (◦C), water consumption (Litres), Number of Leaves (NL), 
Nitrogen (mg/g), Phosphorus (mg/g), Potassium (mg/g), Calcium (mg/g), Magnesium (mg/g), Sulphur (mg/g), 
Sodium (mg/g) as independent variables. The results will be a guide in the choice of hydroponic system to adopt 
for food production based on the climatic parameters of the location, which is one of the numerous contributions 
of this research.
1. Introduction

Smart agriculture is the advent of a new agricultural era, where the 
Internet of Things, big data analysis, artificial intelligence, cloud com-

puting and remote sensing improve agricultural practices [1,2]. The 
agricultural production systems are improving accordingly in terms of 
nutrient, water and energy efficiency. Machine learning and Big Data 
Technologies, have enabled farmers to use sensors and other mon-

itoring devices in decision making on the choice of fertilizer, pest 
management, yield improvement, soil & water management, livestock 
management, and prediction of crop yield [3]. The need for safe food, 
available space, soil problems, water, adverse weather conditions has 
led to the rise of the soilless culture systems (hydroponics) in green-

house [4] or lately in plant factories with artificial lighting (PFALs), 
and smart PFALs which from the early 2020s are expected to be au-
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tonomous in decision making and energy reliant [5]. All such systems 
need special environmental monitoring, which nowadays is achieved 
by IoT systems [6]. Soilless culture is an alternative solution in re-

stricted and environmentally degraded areas, including local varieties, 
such as Nerokremmydo of Zakynthos, a Greek big bulb sweet onion 
[7]. Evolution of Agriculture has led to the application of robots in 
tilling of the soils, raspberry pis have been used for the gathering of cli-

matic data from the farm, automation of farm machinery, automation 
of animal processing, forecasting of the farm harvest, and monitoring of 
farm conditions. The authors in [8] have discussed that the use of the 
Nutrient Film Technic of hydroponic can grow lettuce vegetables suc-

cessfully. However, the water loss experience has not been measured 
during the growing of the crops either via evaporation or leakage or 
absorption, and the amount of light used by the plants has not been 
measured.
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According to [9], they have proposed a technique to improve the 
master’s node capability to effectively determine the range in which 
an error occurs frequently using the Markov chain model. However, 
their model has not been able to monitor the communication of the 
hydroponic system with an agricultural automotive robot on the mo-

tion. It is discussed in [10] that using a machine learning algorithm, 
the crop growth rate can be predicted for tomatoes cultivation based on 
the nutrient solution provided. It has been reported in their paper that 
Sodium (Na) and Potassium (K) nutrients uptake by the tomato crop 
has a higher uptake value compared with other nutrients in the solu-

tion used for growing the plant. Despite the remarkable achievement of 
their research, their approach did not consider other hydroponic param-

eters such as dry weight matter of the crops, and relative crop growth 
rate. Their approach has not been tested on crops grown using rain or 
recycled water to ascertain its performance. The authors in [11] have 
discussed that hydroponics farming has improved the growth of plants 
in a controlled system, their work has discussed the total leaf length to 
stem Diameter ratio where multiple input variables are considered for 
a hybrid set of machine learning and neural networks algorithm. How-

ever, a comparative performance of technology impact on hydroponic 
and soil cultivated crops has not been conducted. It has been discussed 
in [12], that the hydroponic systems enable the farmers to produce an 
improved yield in quantity and quality of crops. Crops use less quantity 
of water compared with the crops planted on soils, their survey inves-

tigation has not extensively reviewed enough existing literature on the 
hydroponic research.

We will explore a comparative analysis of the following hydro-

ponic systems, namely Aggregate, Aeroponics, floating and Nutrient 
Film Technic hydroponic systems, in this study a big bulb Onion crop 
has been grown on four systems and from the data captured, the Linear 
regression, Deep neural network, XGBoost and Federated split learning 
models will be used to analyze each hydroponic systems dataset. The 
Objective of this study is to propose which of these hydroponic systems 
will be using Temperature (◦C), water consumption (Litres), Number of 
Leaves (NL), Nitrogen (mg/g), Phosphorus (mg/g), Potassium (mg/g), 
Calcium (mg/g), Magnesium (mg/g), Sulphur (mg/g), Sodium (mg/g) 
as independent variables while the Onion bulb diameter (mm) is the la-

bel to predict an optimal Onion bulb diameters before the crop matures 
for harvest. The Lasso regression and K-Nearest neighbour algorithm 
has been used to develop a model which used Electrical conductivity, 
the potential of hydrogen (pH) of water, and temperature as the input 
variables, and the model predicts the nutrients in the plants as the out-

put. The percentage error, and accuracy from the model evaluation has 
not been provided [13]. In this work, a centralized XGBoost model and 
a decentralized Federated split learning model is used to predict the 
Onion Bulb diameter and losses respectively for the four hydroponic 
systems. The mean square errors, Root mean square errors from the 
four hydroponic systems using the DNN models, and XGBoost has been 
obtained.

Fig. 1 shows the architecture of the Floating hydroponic system, in 
this architecture, the edge devices (Raspberry pi) captures the climatic 
parameters and sends this to the servers in the cloud via wireless con-

nectivity.

Our contributions. In this work we propose the following contribu-

tions (1) The Floating hydroponic system use an Adam optimizer with 
a Learning rate of 0.01 for a Federated split Learning model, can ob-

tain convergence within 25 iterations and it performs better than the 
Aggregate, Aeroponic, Nutrient Film Technic hydroponic systems for 
an Onion crop. (2) The Aggregate hydroponic system using a central-

ized XGBoost model gives a higher R squared values compared with the 
Aeroponic, floating, Nutrient Film Technic hydroponic systems. (3) Us-

ing the DNN model, the Floating hydroponic system converges faster 
with loss values of 1.898% which was quite lower than the loss val-

ues for the Nutrient Film Technic, Aggregate, Aeroponics hydroponic 
systems. Section 2, presents Technologies for smart farming, section 3
2

gives the methodology used for this work, while section 4 illustrates the 
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Fig. 1. Floating Hydroponic system.

results and section 5 discuss the results. Section 6 is the conclusion and 
section 7 is area for future works.

2. Technologies for smart farming

Hydroponic systems are more suited for high value vegetables, 
avoiding soil born pests. It needs precise support of mineral nutrition 
by adopting the nutrient solution applied to the plants during growth. 
These demand continuous monitoring, which is achieved by the use 
of automations such as IoT [14]. Applications of such systems are al-

ready in progress; lettuce production in an NFT system controlled by 
IoT and monitoring pH level, water volume, nutrient solution, room 
temperature and humidity, on a real-time basis [8,15], crop growth 
rate prediction for tomatoes cultivation based on the nutrient solution 
provided using a hydroponic farming system [16]. Aquaponics, an inte-

grated agri-aquaculture system that combines aquaculture (mostly fish), 
hydroponic systems and nitrifying bacteria can be monitored by 19 sen-

sors, including water temperature, diluted oxygen, pH, EC, CO2, etc. for 
better operation and optimizing all steps involved in a more sustainable 
and profitable way [17]. In a DFT (Deep Flow Technique), where plants 
are supported in floating rafts and their roots are continually in an recir-

culated and aerated nutrient solution, mustard greens performed ideally 
by the use of Raspberry pi, ensuring the proper re-circulation times of 
the nutrient solution [18].

As discussed in [19], their modified system controls the hydroponic 
systems and captures data on the human responses to alarms from the 
hydroponic, such alarms as refilling the water reservoir when its de-

pleted. The authors in [20], discuss that smart farming has improved 
farming methods so that information can be accessed remotely on the 
farm, any time and from any location. However, no information has 
been provided on the number of independent & dependent features 

and, machine learning algorithm used for the analysis of their dataset. 
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According to [21], their platform enables farmers to have access to 
information from their mobile phones on weather conditions, provide 
farming information exchange with their customer. The authors in [22]

have used IoT sensors to monitor and collect data from the smart farm 
and also monitor the sensor connectivity within their platform. The 
users can remotely view the data collected from their mobile app. The 
analysis of the data collected either for prediction or forecasting has not 
been mentioned.

The light quantity, temperature, humidity, and carbon (IV) oxide 
within a smart farm can be measured using various sensors [23]. They 
have collected all these data and use them to predict future light inten-

sity within their region. However, the independent features, labels and 
machine learning algorithm used for forecasting were not discussed. 
The authors in [24] discuss challenges that are experienced by farmers 
using IoT sensors such as security of the network where it is deployed, 
procurement of the sensors, and lack of broadband connectivity since 
the farms are in rural areas where network connectivity is very poor. No 
government regulations affect the use of sensors in agriculture and the 
adverse effect of using these sensors on crops or animals within a smart 
farm has been indicated. The authors in [25] discussed that sensors can 
be used to capture climatic data from a smart farm, such data include 
temperature, humidity, and moisture of the soil, their work only cap-

tured the data but did not analyze the data, they did not also capture 
image data from the crops. According to [26], the LoRaWAN platform 
can be used for IoT data capturing and storage in their database server, 
this platform also provides visualization of the data. However, due to 
lack of training of the dataset, no prediction results have been provided. 
The platform is not an open-source platform so it’s not economically vi-

able for use by poor farmers and researchers.

2.1. Linear regression

The dependence of one or more variables using a linear dependence 
function for a regression model is known as Linear regression, [17].

The relationship between variables can be established using regres-

sion analysis. Equation (1) gives a relationship between the independent 
variables and the dependent variables,

𝐻 = 𝑓 (𝑑, 𝑐) (1)

where 𝐻 is the dependent variable and 𝑑 is the independent variable 
and 𝑐 is an unknown value. Regression can be represented in single or 
multivariate format, this is seen in equations (2) & (3) respectively.

𝐻 = 𝑎+𝑄𝑑 + 𝑝 (2)

𝐻 = 𝑎+𝑄1𝑑 +𝑄2𝑑 +…+𝑄𝑛𝑑 + 𝑝 (3)

where 𝑎 & 𝑞 are coefficients, and 𝑝 is the error observed in the regression 
analysis. In this research work the independent variables include, days 
after transplant (days), Temperature (◦C), water consumption (Litres), 
Number of Leaves (NL), Nitrogen (mg/g), Phosphorus (mg/g), Potas-

sium (mg/g), Calcium (mg/g), Magnesium (mg/g), Sulphur (mg/g), 
Sodium (mg/g) while the dependent variable is the onion bulb diam-

eter (mm).

2.2. XGBoost

The XGBoost algorithm optimizes the objective function of the 
model while regularising the model. It is a gradient boosting algorithm 
that inserts the negative gradient of the loss function in iterations con-

tinuously so as to achieve optimization [18]

𝑚∑

𝑖=1
𝐿(𝑊𝑖,𝐵𝑖) +

1
2
𝜎𝛾2 (4)

where 𝛾 is the output value. The first part is the loss function and the 
second part is the regularisation of the tree. The XGBoost Algorithm op-
3

timizes the model by minimizing the loss function to make predictions.
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2.3. Deep neural network

According to the authors in [19], Artificial neurons are components 
of deep neural networks (DNN). DNNs are represented by Layers, and 
they are indicated as nodes in graphs. DNN computes the total weights 
of all its input layers, then optimizes the sum of its weights and bias to 
produce output.

𝑦𝑖 = 𝜙(
𝑛−1∑

𝑖=0
𝐻𝑡𝑊𝑡𝑚 + 𝑏) (5)

where 𝑦𝑖 is the output of the neuron, 𝑊𝑡𝑚 are the neuron’s weights, n is 
the number of weights, 𝐻𝑡 are the neuron’s inputs, b is the bias of the 
neuron, and 𝜙 is the activation function [18].

3. Methodology

In the Department of Agriculture, University of Peloponnese, Kala-

mata, Greece, an onion crop trial has been carried out using the 4 most 
known hydroponic systems; Aeroponics, Floating, Aggregate and Nu-

trient Film Technic. The trial has produced a series of raw data, for 
a period of 92 days after transplant (DAT) from the nursery to the 
systems. The dataset included Temperature (◦C), water consumption 
(Litres), Number of Leaves (NL) and mineral concentrations of onion 
plants, i.e. Nitrogen, Phosphorus, Potassium, Calcium, Magnesium, Sul-

phur and Sodium (mg/g dry weight) and the diameter of the onion bulb. 
The dataset parameters were recorded as described in [8].

This research aims to use computer algorithms to evaluate their 
dataset. The model’s results from the analysis of the dataset will be 
compared with their baseline results. The dataset independent features 
are days after transplant (days), Temperature (◦C), water consump-

tion (Litres), Number of Leaves (NL), Nitrogen (mg/g), Phosphorus 
(mg/g), Potassium (mg/g), Calcium (mg/g), Magnesium (mg/g), Sul-

phur (mg/g), Sodium (mg/g) while the Onion bulb diameter (mm) is 
the label. The days after transplant are the measured consecutive days 
after the crop was transplanted from the nursery, water consumption is 
the measurement of the water absorbed by the plant which was calcu-

lated based on the dry weight of the crops and obtained weight after 
placing the crop in the oven. The daily temperature has been measured 
in degrees Celsius, and the number of leaves were counted each day 
after the transplant of the crop from the nursery. Linear regression mod-

els, deep neural network models, extreme gradient boosting (XGBoost) 
models, and Federated split learning models were developed and the 
dataset has been trained by each model separately, the results obtained 
are discussed in section 4. Metrics such as Root Mean Squared Errors 
(RMSE), Mean Squared Errors (MSE), R squared values (𝑅2), and loss 
during epoch training were obtained and the various outputs for each 
algorithm were analyzed.

4. Results

4.1. Deep neural network

The results obtained from the DNN model are shown in Table 1 the 
TensorFlow library has been used, when fitted to the Aeroponics, Aggre-

gate, Floating and Nutrient Film Technic hydroponic systems dataset. 
The model converges appreciably with a Loss value of 2.69%, 10.46%, 
1.90% and 3.15% respectively. The floating system converged faster 
than the other system since it loss values dropped to single digits af-

ter 18 epochs of training. This is reflected in the validation loss and 
validation mean squared error with values of 2.28% for the floating 
hydroponic system and this is the lowest values from the four hydro-

ponic systems. The AER hydroponic system evaluated its dataset with 
the fastest computational time of 2.80 seconds, unlike the AG, FL, NFT 
hydroponic systems which has a computational time of 3.14 seconds, 

3.22 seconds, 3.05 seconds respectively.



Smart Agricultural Technology 4 (2023) 100207G. Idoje, C. Mouroutoglou, T. Dagiuklas et al.

Table 1

Deep Neural Network models results for each hydroponics system for the Onion crop.

AER AG Floating NFT

Loss (%) 2.6909 10.4604 1.8988 3.1474

Mean Squared Error (MSE) (%) 2.7661 11.3189 1.8647 3.2460

Validation Loss (%) 166.8054 13.4045 2.2832 206.1946

Validation Mean Squared Error (MSE) (%) 166.8054 13.4045 2.2832 206.1946

computational time (seconds) 2.80 3.14 3.22 3.05
Fig. 2. AER DNN model MSE for the Onion crop.

Fig. 3. AG DNN model MSE for the Onion crop.

From Table 1, the validation loss for the AER and NFT hydropon-

ics system are 166.81% and 206.19% respectively while the valida-

tion Mean squared error for the AER and NFT hydroponic systems are 
166.81% and 206.19% respectively. It can be inferred that the AER and 
NFT models are under fitting and these models will require more train-

ing for evaluation, the volume of the dataset must be increased which is 
readily not available for this research, additional dataset will invariably 
increase the computational time of the model and make the AER and 
NFT systems unacceptable for prediction of the onion bulb diameter. 
The floating hydroponic system model fits very well as can be seen in 
Fig. 4, there is no under fitting or over fitting experienced by the model 
for its evaluation, therefore the floating hydroponic systems are the op-

timal system which should be considered for Onion bulb diameter using 
the DNN model.

Figs. 2 & 3 shows the AER DNN model Mean Squared Error and 
validation Mean Squared Error and AG DNN model Mean Squared Error 
and validation Mean Squared Error for the Onion Bulb crop. The MSE 
values for both AER DNN model and AG DNN model are lower than the 
validation MSE, this depicts our model is not over or under fitting and 
it converges.

Fig. 2 shows the AER DNN model MSE for the onion crop. It can be 
inferred from the graph that the AER DNN model validation MSE is fluc-
4

tuating, dropping and increasing consistently which indicate the model 
Fig. 4. FL DNN model MSE for the Onion crop.

Fig. 5. NFT DNN model MSE for the Onion crop.

is over fitting, the model cannot generalise the validation dataset, con-

firms that the AER hydroponic system is not suitable to be considered 
for the prediction of the optimal Onion bulb diameter. A different sce-

nario is obtained from the AG hydroponic system, where the model 
generalises very well on the dataset and a good fit is seen in Fig. 3. It 
can be inferred that the AG hydroponic systems which produces a loss 
value of 10.46% can be considered as a suitable hydroponic system for 
prediction of the Onion bulb diameter using the DNN model. Figs. 4

& 5 show the FL DNN model MSE and validation MSE, and the NFT 
DNN model MSE and validation MSE for the Onion bulb crop. The MSE 
and validation MSE values for the floating hydroponic system are lower 
than the values obtained for the NFT hydroponic system. The compu-

tational time for the NFT is lower than the computational time for the 
floating hydroponic system.

An over fitting is experienced by the DNN model in the NFT system 
which can be seen in Fig. 5 indicating the DNN model does not gener-

alise very well with the NFT dataset. The Floating hydroponic systems 
can be inferred to be the optimal system which generalises with the 
dataset and does not over fit or under fit with the dataset, this is seen 
in Fig. 4 and it also produces the lowest loss, MSE, validation loss and 
validation Mean square error values of 1.90%, 1.86%, 2.28%,2.28% re-
spectively.
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Fig. 6. AER Linear regression diameter predictions against the Baseline for the 
Onion crop.

4.2. Linear regression

Figs. 6, 7, 8, 9, shows the predicted Onion diameter values ob-

tained from the evaluated Linear Regression models for each hydro-

ponic system using independent features namely days after trans-

plant (days), Temperature (◦C), water consumption (Litres), Number of 
Leaves (NL), Nitrogen (mg/g), Phosphorus (mg/g), Potassium (mg/g), 
Calcium (mg/g), Magnesium (mg/g), Sulphur (mg/g), Sodium (mg/g) 
while the Onion bulb diameter (mm) is the label. The developed model 
which is an automated system will enable them to forecast their Onion 
Bulb diameter before they mature with all other conditions satisfied by 
the farmers. Figs. 6, 7, 8, 9 show the predicted Onion Bulb diameter 
for the AER, AG, FL, and NFT hydroponic systems respectively. From 
this analysis the farmer can forecast the Onion Bulb diameter for days 
they did not capture any readings such as on the 45𝑡ℎ day of the trans-

plant, the forecast Onion bulb diameter will be 40 mm as can be seen 
from Fig. 6 for the AER hydroponic system. From Fig. 7, the predicted 
Onion bulb diameter will be 100 mm on the 70𝑡ℎ day of the transplant 
which is determined by the automated system. This will help the farmer 
in evaluating the Onion bulb production.

From the linear regression Onion bulb diameter predictions shown 
in Figs. 6, 7, 8, 9 for the AER, AG, floating and NFT hydroponic sys-

tems respectively, it can be inferred that all the Linear regression model 
fits very well with the dataset and this indicates the model generalises 
with the dataset for each hydroponic system, despite all their good per-

formance as seen in the graphs the NFT hydroponic system generalises 
optimally than the others since there is a near perfect match of the 
predicted Onion bulb diameter values with the original onion bulb val-

ues as shown in Fig. 9, therefore using the regression model the NFT 
hydroponic systems is the optimal choice for the Onion bulb diameter 
prediction.

4.3. XGBoost model

Another machine learning algorithm that has been used for the anal-

ysis of the Onion bulb diameter is extreme gradient boosting algorithm 
(XGBoost), the model from the XGBoost algorithm has been used to de-

termine the R square values for each of the hydroponic system.

Table 2 shows that the Aggregate hydroponic system produces the 
highest R square (𝑅2) value of 0.996% while the Floating, Aeroponic, 
and Nutrient Film Technic hydroponic 𝑅2 values are 0.981%, 0.995%, 
and 0.988% respectively. It can be inferred from these 𝑅2 values ob-

tained from the XGBoost model that the predictions are very close to 
the observed values, also establishes the fact that there is a correlation 
between the independent variables and the Onion Bulb diameter, these 
results indicate the high-performance of our developed model. Figs. 10, 
5

11, 12, 13, demonstrates the XGBoost model’s high performance in the 
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Fig. 7. AG Linear regression diameter predictions against the Baseline for the 
Onion crop.

Fig. 8. Floating system Linear regression diameter predictions against the Base-

line for the Onion crop.

Fig. 9. NFT Linear regression diameter predictions against the Baseline for the 
Onion crop.

Table 2

XGBoost models results for each hydroponic systems for the Onion crop.

AER AG Floating NFT

MSE (%) 5.98 3.49 0.09 4.3

RMSE (%) 2.45 1.87 0.31 2.07

k-fold CV average score (%) 0.99 1 0.95 0.98

Mean cross-validation score (%) 0.99 0.99 0.94 0.99

R square value (%) 0.995 0.996 0.981 0.988

computational time 481 ms 1.35 s 1.34 s 496 ms
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Fig. 10. AER XGBoost predictions for Onion Bulb Diameter.

Fig. 11. AG XGBoost predictions for Onion Bulb Diameter.

Fig. 12. Floating XGBoost predictions for Onion Bulb diameter.

predicted values and the high R squared values obtained from the xg-

boost model indicate the predictions are optimal.

It can be inferred from Table 2 that the Aeroponic hydroponic sys-

tem has the lowest computation time of 481 milliseconds, indicating 
the model converged faster using the Aeroponic system for prediction 
despite the fact it has the highest mean square error values, and a high 
𝑅2 value of 0.995%, the model performed optimally for the Aeroponic 
system.

We compare the baseline R square (𝑅2) values for each of the hy-

droponic systems. These baseline values have been calculated manually 
from the Department of Agriculture, University of Peloponnese, Kala-

mata, Greece. Fig. 14 shows the comparison of the R square values of 
the baseline and the XGBoost model results, it can be inferred that the 
6

difference between the true Onion bulb diameter and the predicted R2
Smart Agricultural Technology 4 (2023) 100207

Fig. 13. NFT XGBoost predictions for Onion Bulb Diameter.

values for the AER hydroponic system is 0.003%, the AG hydroponic 
system has an 𝑅2 difference of 0.001%, while the floating hydroponic 
system baseline 𝑅2 value has 0.016% higher than the predicted 𝑅2

value, the NFT baseline 𝑅2 value is 0.009% higher than the XGBoost 
predicted 𝑅2 value. These values indicate that the model predicts very

well with extremely minima errors.

The XGBoost model has been used to make predictions of the Onion 
bulb diameter for the AER, AG, Floating & NFT hydroponic systems. 
Figs. 10, 11, 12, 13 show the predicted Onion bulb diameter versus 
the original Onion bulb diameter for the AER, AG, Floating & NFT 
hydroponic systems respectively, it can be inferred that the four hy-

droponic systems performed very well with regards to the predictions 
of the Onion bulb diameters, the AER, AG, floating hydroponic system 
had more dataset points which are not a match to the original onion 
bulb diameter in their system but the NFT hydroponic system produced 
an optimal prediction performance as can be seen in Fig. 13 where only 
two dataset points of the predicted Onion bulb diameter are not a match 
to the original Onion bulb diameter, therefore the NFT hydroponic sys-

tems are the preferred system for the Onion bulb diameter predictions 
using the XGBoost model.

4.4. Split learning

Split learning is a decentralized technique of machine learning 
where the Federated Aggregate model is split into two or more parts for 
training purposes. The updated weights of the last layer or cut layer are 
sent to the server for the update. None of the clients nodes see the raw 
data of each other. These provide data privacy among all the edge nodes 
within the network. The split learning model has been used to evaluate 
the Onion bulb diameter datasets for the different hydroponic systems. 
It can be inferred from Figs. 15, 16, 17 for the Aeroponic system where 
the model parameters have been hyper tuned using both the Stochastic 
gradient descent (SGD) and Adam optimizers for different learning rates 
values of 0.01, 0.1, and 0.0000001. The Adam optimizer with a learning 
rate of 0.1 is the optimal parameter where the model converges opti-

mally with minimal loss values for the Aeroponic hydroponic system. 
This is due to the optimization efficiency of the Adam optimizer which 
combines the AdaGrad and RMSProP algorithm in handling spare gradi-

ents for noisy datasets. In the Aggregate hydroponics system, as shown 
in Figs. 18 and 19, where the SGD and Adam optimizers are used to hy-

per tune the split learning model. The Adam optimizer using a learning 
rate of 0.1 is more efficient in achieving convergence of the model for 
the Aggregate hydroponic system. In the Floating hydroponic system, 
optimal convergence has been achieved with the SGD optimizer with a 
learning rate of 0.000001 at less than 5 epochs as shown in Fig. 20. The 
Adam optimizer achieved convergence with a learning rate of 0.01 at 
higher epochs as shown in Fig. 21. Figs. 22 & 23 show the loss values 
obtained from the training of the split learning model for the Nutrient 

Film Technic hydroponic system. The convergence has been achieved 
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Fig. 14. Comparison of the True R square and predicted R square values for the Onion crop.
with learning rate values of 0.000001 and 0.01 for the SGD and Adam 
optimizers respectively but the Adam optimizer achieved a lower loss 
value than the SGD optimizer. It can be inferred from the Split learning 
results that each hydroponic system achieves convergence at different 
time of training using different learning rates and optimizer. It is ob-

served that for multiple edge nodes in a decentralised network for a 
hydroponic system, particular attention should be given to choice of 
optimizer and learning rate value during training of the model for op-

timal convergence within a smart farming network. This work shows 
that SGD optimizer converges for a split learning model in a hydro-

ponic system at extremely low values as seen in Fig. 21 while the Adam 
optimizer converges at optimal performance in the floating hydroponic 
system, but using a much higher learning rate value of 0.1 as seen in 
Fig. 20. Each hydroponic system model uses different learning rate and 
optimizer for its model performance and this work has shown that each 
hydroponic system uses different federated split learning parameters to 
obtain model performance and researchers can consider these results 
when considering design of their models for different hydroponic sys-

tems.

Using the decentralised network models, this is the federated split 
learning model where the raw dataset is partly trained by the edge node 
and partly by the server during evaluation, the parameters for each hy-

droponic systems have been hyper tuned to obtain optimal performance 
of convergence for each hydroponic system. Different optimizers have 
been considered for the hyper tuning of the hydroponic systems such as 
Adam and SGD optimizers using different learning rates values ranging 
from zero (0) to one (1) to obtain the optimal convergence as shown in 
Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23 which represent the results of the 
AER Loss using Adam optimizer (Learning rate=0.0000001), AER Loss 
using Adam optimizer (Learning rate=0.1), AER Loss using SGD opti-

miser (learning=0.0000001), AG loss using Adam optimizer (Learning 
rate=0.01), AG loss using SGD optimizer (Learning rate=0.0000001), 
Float loss using Adam optimizer (Learning rate=0.01), Float loss using 
SGD optimiser (Learning rate=0.000001), NFT loss using Adam opti-

mizer (Learning rate=0.01), NFT loss using SGD optimizer (Learning 
rate=0.000001) respectively, it can be inferred that the floating hy-

droponic systems, produced the optimal convergence using the Adam 
optimizer at a learning rate of 0.01, this indicates that the float-

ing hydroponic systems is the preferred hydroponic systems for the 
Onion bulb diameter predictions using a decentralised split learning 
7

network.
Fig. 15. AER Loss using Adam optimiser, Learning rate=0.0000001.

Fig. 16. AER Loss using Adam Optimiser, Learning rate=0.1.

5. Discussion

It can be observed that using the DNN model, the Floating hydro-

ponic system converges optimally with Mean Squared Errors of 1.86%, 
while the Aeroponic, Aggregate, Nutrient Film Technic converged with 
Mean Squared Errors of 2.766%, 11.318%, and 3.246% respectively, 
indicating the floating system converged optimally when fitted to the 
DNN model. The XGBoost model produced a very interesting result, 
despite the Floating hydroponic system converging optimally with the 
DNN model, with the lowest Mean Squared Error from the analysis, 

when analyzed using the XGBoost model, the Aggregate hydroponic 
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Fig. 17. AER Loss using SGD optimiser, learning=0.0000001.

Fig. 18. AG loss using Adam optimiser, Learning rate=0.01.

Fig. 19. AG loss using SGD optimiser, Learning rate=0.0000001.

Fig. 21. Float loss using SGD optimiser, Learning rate=0.000001.

Fig. 22. NFT loss using Adam optimiser, Learning rate=0.01.

Fig. 23. NFT loss using SGD optimiser, Learning rate=0.000001.

system produced a far better R squared value of 0.996% compared with 
the other hydroponic systems, it can be inferred that the predicted val-

ues are extremely close to the Baseline values, its value is higher than 
the Floating, NFT and Aeroponics hydroponics system with 𝑅2 values of 
0.981%, 0.988%, 0.995% respectively. In the Federated split learning 
network, the Floating hydroponic system converged extremely better 
and faster than the Aeroponic, Nutrient Film Technic, and Aggregate 
hydroponic systems. It converges optimally after 50 iterations using the 
stochastic gradient descent optimizer but its performance was further 
improved when the Adam optimizer was used to hyper tune it with a 
learning rate value of 0.01, and the model is able to converge after 25 
iterations which was faster than the SGD optimizer. This indicates opti-

mal and fast convergence was achieved for both systems using the split 
learning model which can be seen in Figs. 20 & 21. The Adam opti-

mizer is more efficient in achieving an optimal convergence than the 
SGD optimizer. We can conclude that each model performs at a differ-

ent rate using the various metrics within its parameters when they are 
8

Fig. 20. Float loss using Adam optimiser, Learning rate=0.01.
 hyper tuned to obtain optimal convergence. Researchers can use these 
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contributions to explore further research in hydroponic systems. These 
findings will be a starting point in determining optimal convergence for 
hydroponic systems using Federated split learning model.

6. Conclusion

The Onion crop was planted in four different hydroponic systems 
and grown for 92 days after transplant from its nursery, a comparison 
of the performance of the Linear regression model, Deep neural network 
model, XGBoost model and the federated split learning model was con-

ducted. The Floating hydroponic system out performed the AER, AG, 
NFT hydroponic systems using the XGBoost model for evaluation, the 
Mean Squared Errors values of 5.98%, 3.49%, 0.09%, and 4.3% for 
the AER, AG, FL and NFT hydroponic systems respectively. The float-

ing hydroponic system produced the lowest MSE of 0.09% to obtain 
convergence. Evaluating the datasets from the four hydroponic systems 
using the Deep neural network model, the Floating hydroponic system 
showed its high performance with the lowest loss values of 1.898%, 
and the AER, AG & NFT values are 2.690%, 10.460%, 3.147% respec-

tively. The NFT hydroponic system shows the closest predicted values 
to the true values for the Onion bulb diameter as shown in Fig. 9 us-

ing the Linear regression model. The AG hydroponic system indicated 
the highest 𝑅2 values of 0.996% as shown in Fig. 14 but the AER has 
the lowest computational time of 481 ms using the xgboost model. Us-

ing the Federated split learning model, the Floating hydroponic system 
was hyper-tuned with different learning rates and optimizers, a learn-

ing rate value of 0.01, and Adam optimizer has the fastest convergence 
compared with the AG, AER & NFT hydroponic systems, as shown in 
Fig. 20.

It can be inferred that the floating hydroponic system is the optimal 
hydroponic system for prediction of the Onion bulb diameter using the 
DNN model. During evaluation of the hydroponic systems using the Lin-

ear and XGBoost models the NFT hydroponic systems outperformed the 
AER, AG and floating systems for prediction of the Onion Bulb diame-

ter. The decentralised network model has been used for training of the 
AER, AG, floating and NFT hydroponic systems and the floating hydro-

ponic systems produced an optimal convergence when compared with 
the AER, AG and NFT for different hyper tuned parameters of optimiz-

ers and learning rates.

7. Further work

It will be interesting to investigate the effect of parallel learning al-

gorithm models on the Aeroponic, Aggregate, Nutrient Film Technic, 
and floating hydroponic systems. Academic researchers can use this 
work as an insight into findings on hydroponic systems but other fea-

tures can be considered to see the impact of features such as Artificial 
light, the micro-nutrients (𝜇g/g dry weight), and some climatic param-

eters on the Onion crop Bulb diameter within the chosen hydroponic 
systems.

Further investigation can be explored to determine the prediction of 
onion bulb diameter for the Aeroponic, Aggregate, floating, and Nutri-

ent Film Technic hydroponic systems using the Huber and Transformed 
Target regressor algorithm.
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