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Abstract 

Research evidence supports the link between long term exposure to ultraviolet (UV) 

and the blue light hazard with ocular damage including cataract and macular 

degeneration.  Population studies to determine the prevalence of these conditions in 

pilots are inconclusive.  It is known that UV and blue light intensities increase with 

altitude.  The aim of this research was to investigate whether professional pilots are 

adequately protected from UV and short wavelength light during flight. 

Informed by the results of 22 semi-structured interviews, a questionnaire exploring 

the eye protection habits of professional pilots was developed and completed by 

2,967 participants.  The results showed a wide variation in pilot use of sunglasses, 

uncovered barriers preventing sunglass use and showed a high level of 

dissatisfaction regarding standard aircraft sun protection systems. 

 

In flight irradiance measurements were captured during 6 airline and 4 helicopter 

flights.  No measurable UVB was found.  UVA exposure was highly reliant on the 

transmission properties of the aircraft windshield.  Further ground measurements on 

15 aircraft showed the majority had windshields which transmit significant levels of 

UVA into the cockpit.  This can cause the ocular dose for the unprotected eye to 

exceed international recommended exposure limits within ½ hour of flight.  Older 

aircraft generally had superior UVA blocking windshields.  Although calculated 

retinal exposure to blue light hazard during flight fell well within international 

recommended limits, the mean radiance was 4.1 times higher at altitude.  The effect 

of this over a flying career remains uncertain. 

 

Filter transmittance measurements were taken from 34 pilot sunglasses and 20 new 

sunglasses typically used by pilots.  All sunglasses filters measured offered 

sufficient protection from UVA in flight and ensured an attenuation of the blue light 

hazard to levels equivalent to those at ground level without protection. 

 

A series of practical recommendations are made to pilots, eye care health 

professionals, industry and the aviation regulators. 
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1. Chapter 1 Introduction 

CHAPTER OVERVIEW 

This chapter explains the background to the initiation of this research and why the 

research is necessary.  The nature of non-ionising solar radiation and how it is 

affected as it passes through the Earth’s atmosphere together with the factors that 

are likely to affect the pilot’s occupational exposure will be discussed.  The issues of 

occupational exposure will be placed within the context of both UK law and 

international exposure limits.  International standards for the requirements of 

sunglass filters will also be discussed. 

 

1.1 Background 

This thesis explores and attempts to quantify the occupational exposure to 

professional pilots’ eyes from non-ionising radiation during flight, to indentify if there 

are likely to be significant risks present and where those risks may be greatest.  The 

researcher’s professional background is that of an optometrist employed by the civil 

aviation industry regulator, the Civil Aviation Authority (CAA), within the medical 

department.  In addition to its enforcement roles, the CAA also provides information 

to pilots, industry and the general public across a wide range of aviation related 

topics.  Pilots often enquire about CAA recommendations for sunglasses.  Whilst 

such recommendations exist, these are not evidence-based and no previous 

research had been undertaken to establish if these guidelines would be appropriate 

given the unique visual environment of the pilot. 

 

Advances in spectrometer technology have resulted in small, portable devices able 

to capture spectral irradiance which have the potential to collect data during flight 

without any interference to aircraft systems.  A combination of these broad factors 

led to the development of this research, which rather than solely attempt to assess 

the prevalence of non-ionising radiation related pathology in the professional pilot 

population, sets out to determine whether current pilot eye protection practices are 

appropriate using the new knowledge generated of the likely ocular irradiance levels 

expected during flight.  A key aim of this research is to produce evidence-based 

guidance to pilots on eye protection and sunglass selection for flight. 
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1.2 The electromagnetic spectrum 

Electromagnetic radiation consists of two sinusoidal waves (electric and magnetic) 

which are perpendicular to each other and to the direction of propagation. The full 

electromagnetic spectrum includes radio waves, microwaves, infrared, visible light, 

ultraviolet, x-rays and gamma rays (Figure 1-a) 

 

 

Figure 1-a Electromagnetic spectrum with expanded area showing range of visible 
light 

 

Ultraviolet radiation (UV) is normally categorised into UVC (200-280nm), UVB (280-

315nm) and UVA (315-400nm) (ISO 21348, 2007).  Radiation between around 

400nm – 780nm reaches the human retina and is termed visible light.  Short 

wavelength visible light is perceived as blue while the longer wavelength range of 

the visible spectrum is perceived as red (Table 1-a). 

 

Colour Wavelength 

violet 380-450 nm 

blue 450-495 nm 

green 495-570 nm 

yellow 570-590 nm 

orange 590-620 nm 

red 620-780 nm 

Table 1-a Wavelength ranges of visible light 

 

A photon is a single unit or quantum of electromagnetic radiation.  It has an energy 

(E), measured in Joules (J) which is related to the wavelength (λ) of radiation by the 

formula: 

E = h x f 
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Where f is the frequency of radiation, calculated by dividing speed of propagation, c 

by λ; h is Planck’s constant which is 6.63x10-34 J.  Therefore shorter wavelength 

radiation has higher photon energy and longer wavelength radiation has lower 

photon energy. 

 

UV and visible light are part of the non-ionising portion of the electromagnetic 

spectrum.  Wavelengths below 100nm would be considered to be ionising radiation 

and are not discussed as part of this research.  Cosmic radiation does not form part 

of the electromagnetic spectrum.  This is high energy radiation composed mainly of 

atomic nuclei and which originates from outside the solar system (Ernsting et al, 

2000) and does not form part of this study. 

 

1.3 Direct, scattered and filtered radiation 

Electromagnetic radiation measured may be direct, scattered, reflected or filtered or 

more likely, a combination of all components.  Radiation that is absorbed or 

reflected away from a radiation measuring device is not detected.  In the case of 

solar radiation, scattering occurs as radiation interacts with molecules and aerosols 

in the air.  Short wavelength radiation is more readily scattered than longer 

wavelengths which is known as Rayleigh scattering.  Reflected radiation can 

contribute to a total ocular dose by being reflected back from a surface such as 

water, snow or, as could be the case for pilots, cloud tops.  Filtered radiation is that 

which is found after passing through materials such as windshields or sunglasses.   

 

The reflection of UV from a surface may be specular where the angle of incidence 

equals angle of reflection, or diffuse (Lambertian) where radiation is reflected 

equally in all directions and independent of angle of incidence.  Most surfaces show 

a reflection of radiation between these two extreme cases (Madronich,1993).  For 

example, grass reflects around 0.5% of incident radiation while snow reflects around 

80%.  Apart from the reflectivity of snow covered surfaces, the reflectivity of UV is 

generally lower than for visible light.  For an area with different types of surface the 

average reflectivity is the sum of individual reflectivity weighted with the percentage 

of total area covered by each respective surface (Weihs et al, 2000a). 

 

Diffuse UV radiation as a product of scattering or reflection, provides a significant 

proportion of UV exposure. It is incident from all directions and difficult to reduce 

with use of hats and shade structures (Parisi et al, 2004).  There is proportionally 
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more diffuse UV radiation in winter months due to the sun nearer the horizon 

(section 1.4.4).  Scattered radiation has the same wavelength frequency as the 

incident radiation.   

 

In the case of an overhead midday sun, the diffuse component of the total UV 

received is reduced due to the shorter path of radiation through the atmosphere (see 

section 1.4.3 – air mass).  The increased UV exposures on the sun-normal plane 

are marginally higher in the UVA range compared to UVB due to a higher proportion 

of Rayleigh scattering of shorter wavelength UVB causing a higher relative 

proportion of diffuse UV. 

 

1.4 Solar radiation 

The Earth receives only a small proportion of the total energy radiated by the sun. 

The solar constant is the irradiance per unit area above the Earth's atmosphere 

instant on a plane normal to the sun's direction and the mean Earth-sun distance 

and has a value of approximately 1370W m-2 (Andrews, 2000).  The actual solar 

irradiance varies by approximately 6.9% on an annual cycle as the Earth’s distance 

to the sun varies due to its elliptical orbit by about +/-1.7% of the annual mean 

distance (Blumthaler, 1993).  The proportion of solar radiation in the UV waveband 

is approximately 6% (Ambach et al, 1993).  In addition to the effects of scatter, 

reflection and filtering, the amount of solar radiation received at any given time is 

also dependent on location (including latitude) and time of day. 

 

The solar constant is affected by the solar cycle which is an approximate 11 year 

cyclical variation in solar output and is affected by observed activity including solar 

flares and sun spots.  A new solar cycle began in January 2008 (NASA, 2008) with 

its peak reported in December 2013 although the cycle is weaker than previous 

cycles (Gannon, 2013).  The 11 year solar activity cycle has its greatest effect on 

UVC levels and is minimal (less than 1%) on the Earth's surface for wavelengths 

greater than 300nm (Blumthaler, 1993). 

 

The electromagnetic spectra reaching the Earth’s upper atmosphere closely 

approximates to a black body (perfect emitter of radiation) at 5777K (Guyat, 1998).  

This produces a wide spectral range with a peak emission in the visible waveband 

and a decreasing level of UV with decreasing wavelength.  The solar spectrum 

shows a series of distinctive Fraunhofer lines which correspond to absorption of 
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radiation in both the sun’s outer atmosphere and the Earth’s atmosphere 

(Encyclopaedia Britannica, no date).  These lines can be utilised in the calibration of 

spectroradiometers for solar measurements (section 5.6). 

 

1.4.1 Structure of the atmosphere 

The atmosphere is generally considered as consisting of a series of concentric 

shells, of varying thickness around the Earth with variations in the thickness of 

layers with latitude, temperature and season (Ernsting et al, 2000).  The troposphere 

is the layer closest to the earth’s surface.  As warmer air rises further and warmer air 

is present at the equator than at the poles, the troposphere extends to a higher 

altitude at the equator (approximately 58,000ft) than at the poles (approximately 

26,000ft).  The stratosphere is the next layer which extends to an altitude of 

approximately 158,000ft (Ernsting et al, 2000).  With increasing altitude through the 

troposphere, there is a temperature reduction of around 2°C per 1000ft.  Additionally 

with increasing altitude, the Earth’s gravitational effect on atmospheric gases 

weakens, thus both the air density and pressure decrease with altitude.  This 

impacts upon the degree of absorption or scatter of radiation at higher altitudes.  

 

The low atmospheric pressure found at altitude is not conducive to human survival 

and aircraft operating at high altitudes generally have pressurised cabins (usually to 

the equivalent of around 5,000 – 8,000ft) or require all crew to use breathing 

apparatus. 

 

1.4.2 Atmospheric effects 

Almost all solar UVC is absorbed at high altitudes and UVB is attenuated by the 

ozone (O3) which is generally concentrated within 50,000 – 164,000 ft of the earth’s 

surface (Blumthaler et al, 1997) predominantly in the stratosphere. Ozone is formed 

by the breakdown of O2 into atoms of oxygen by UV radiation. The single oxygen 

atoms subsequently combine with other O2 molecules to form triatomic oxygen. 

Fluctuations in atmospheric ozone occur on a daily and seasonal timeframe. Levels 

vary with latitude and time of year. Lowest levels occur within 20° of the Equator 

(Parisi et al, 2004). 

 

Ozone absorption of UV peaks around 250nm with a continuum from around 200-

350nm after which there is negligible absorption (Daumont et al, 1992).  Ozone 
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filters most of the UVB radiation, however UVA is far less affected by absorption due 

to ozone.  Of the UV reaching the Earth’s surface, it is estimated that 95% is UVA 

and 5% is UVB (Citek et al, 2011). 

 

As discussed in section 1.3, radiation is absorbed or scattered by ozone and 

aerosols but also particulate matter in the atmosphere.  Short wavelengths are 

subject to a greater degree of Rayleigh scatter due to molecular interaction.  

Another type of scatter, known as Mie scattering, is less wavelength dependent and 

caused by interaction of radiation with larger particles such as water vapour, 

aerosols and dust (Parisi et al, 2004).  It is more likely to occur in cloud or at lower 

altitude and in areas of greater atmospheric pollution. 

 

The change in UV irradiance caused by change in atmospheric ozone is not linear 

(Blumthaler at al, 1997).  Trends in the decrease in stratospheric ozone relative to 

values in the 1970s are approximately 50% in the Antarctic and 15% in the Arctic. 

The corresponding increase in erythemal UV (section 1.4.8) is estimated as 130% in 

the Antarctic and 22% in the Arctic (Madronich et al, 1998).  For mid-latitudes, the 

ozone decrease is seen in the mid 1990s is projected to return to 1980s levels 

before mid-century.  UVB irradiances at mid latitudes is reported to be less than 5% 

greater than in mid 1980s (McKenzie et al, 2011). These figures take into account 

the 1- 2% variation in the Sun's output due to the 11 year sunspot cycle and 

variations due to major volcanic eruptions (Parisi et al, 2004). 

 

Increased tropospheric pollution due to sulphur dioxide (released into the 

atmosphere during volcanic eruptions) and aerosols may reduce UVB reaching the 

ground (Tang et al, 1998).  It is however likely that the effect of this additional UV 

filtering is reduced at airline cruising altitudes (section 1.5.2). 

 

1.4.3 Air mass 

The air mass relates to the path that direct solar radiation takes through the 

atmosphere to reach the observer or sensor.  Where the solar position is directly 

overhead, radiation passes through the atmospheric layers at a normal angle and 

has the shortest path.  When the solar position involves an increasing zenith angle 

(angle from the vertical overhead), a longer path is taken through the atmosphere 

resulting in higher absorption of UV which, in turn, results in both a lower UV 

irradiance and greater absorption of shorter wavelengths causing a cut-off point at a 
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longer wavelength.  Parisi et al (2001) measured UVA spectra from the same 

location on cloud-free days during summer and winter.  The wavelength cut-off was 

around 290nm on a summer day and 300nm on a winter day.  Conversely, 

reductions in ozone will lead to a shift in cut-off to shorter wavelengths resulting in 

more UVB irradiance. 

 

Air Mass is calculated as 1/cos zenith angle.  An Air Mass of 1 therefore relates to 

an overhead solar position.  This formula is not valid where the sun is close to the 

horizon due to the earth’s curvature however more complex formula can be applied 

in these circumstances.  For a given Air Mass, the intensity of the direct component 

of the solar radiation can be estimated (Meinel & Meinel, 1976; Moreno et al, 2014).  

 

1.4.4 Solar position 

The relative position of the sun to an observer constantly changes with time.  A 

number of factors affect this position including the time of year, latitudinal and 

longitudinal position of the observer and the time of day. 

 

Time is generally defined relative to a standard such as Coordinated Universal Time 

(UTC) which starts its cycle at midnight or Greenwich Mean Time (GMT) which 

starts its cycle at midday.  Noon in solar time is the point at which the sun is at its 

highest point in the sky.  This measure of time varies from UTC and GMT due to 

eccentricity of the earth’s orbit and the earth’s tilt.  Additionally, solar position to an 

observer will vary longitudinally within a time zone.  In calculating a solar position, a 

time correction factor can be applied to correct for longitudinal variations within a 

time zone and eccentricity of orbit. 

 

1.4.4.1 Latitude and declination angle 

Declination angle is the angle between the equator and a line drawn from the centre 

of the earth to the centre of the sun.  The axis of the earth’s rotation is at an angle of 

approximately 23.45° and during its annual rotation around the sun, the declination 

angle varies seasonally from +23.45° at the summer solstice to -23.45° at the winter 

solstice.   The declination angle and latitudinal position of the observer dictate the 

length of daylight hours of any given day. 
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1.4.4.2 Azimuth angle 

The azimuth angle is the compass direction from which sunlight is coming and it is 

defined from 0° at north, 90° at east, 180° south and 270° west (Figure 1-b).  It 

changes throughout the day and varies with latitude and time of year.  The azimuth 

angle is either 0° or 180° at solar noon. 

 

Figure 1-b Diagram showing solar azimuth angle. Green area represents the surface. 
Azimuth angle is the imaginary angle on the ground that the sun would subtend 
compared to compass points. Figure taken from pveducation.org (Honsberg and 

Bowden, no date a). 

 

1.4.4.3 Elevation angle 

The elevation angle is the solar positional angle from the horizon and is 90° minus 

the zenith angle.  It varies throughout the day and is 0° at sunrise and sunset.  The 

elevation angle also varies seasonally as the maximum angle changes.  The 

maximum elevation angle in turn depends on latitude and declination angle.  For 

instance between the equator and Tropic of Cancer (most northerly point where sun 

appears at 90° at summer solstice) in summer, the elevation angle at solar noon is 

greater than 90° and appears from the north rather than from the south as is the 

case for majority of time in Northern hemisphere.  The converse is true for latitudes 

between Tropic of Capricorn and equator in southern hemisphere. 

 

Due to the large distance (1.5 x 108 km) between the sun and the observer on earth, 

the effect on elevation angle from sea level compared to airline cruising altitude is 

minimal even at low elevation angles.  For example, where the sun is near the 
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horizon, the difference in elevation angle between ground and 11,000 m 

(approximately 36,000ft) is 4.2 x 10-6 degrees of arc. 

 

1.4.4.4 Azimuth plots 

The solar position throughout a defined time period can be plotted as an azimuth 

plot.  These show both azimuth and elevation angles and can be shown graphically.  

The outermost ring represents a 0° elevation angle and each ring represents a 10° 

increase in elevation angle.  The middle point represents a 90° overhead solar 

position (Figure 1-c). 

 

 

Figure 1-c Azimuth plot. Relative solar position to an observer at a particular point can 
be defined using azimuth angle and elevation angle.  

 

Typically, the solar position throughout daylight at a given point is plotted with the 

solar position starting and finishing at the 0° elevation marker.  Figure 1-d shows the 

approximate solar path for both summer and winter solstice for an observer in 

London, UK (latitude 51.5°, longitude 0.0°). 
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This seasonal variation causes a change in radiation received (Kimlin et al 2002).  

Variation in UV exposure to a horizontal plane during the day show a bell shaped 

curve with its peak at approximately noon. 

 

 

Figure 1-d Azimuth plots showing solar path and both summer and winter solstices in 
London, UK. 

 

1.4.5 Effect of altitude 

Higher UV levels are found at altitude due to low atmospheric pressure (section 

1.4.1) and less atmospheric scattering.  Additionally, less scatter is present due to 

the lower amounts of aerosols at altitude (Ambach et al, 1993).  Blumthaler et al 

(1997) measured the increase due to altitude of 18%, 9% and 8% per 1000 m for 

erythemal UV, UVA and total irradiancies respectively (300 to 3000nm) in alpine 

areas although these figures may vary due to differences in atmospheric ozone and 

aerosols.  Therefore the effect of altitude is likely to be lower in areas where there is 

less low altitude tropospheric pollution with higher amounts of atmospheric ozone 

above. 
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The effect of altitude is likely to be greater for shorter wavelengths due to their 

increased attenuation by tropospheric ozone at lower altitude (and higher 

atmospheric pressure) and a higher degree of scattering of shorter wavelengths. 

Altitude effect is stated to be higher by 2 to 5% per thousand metres at lower 

elevation angles in the winter.  This is due to the path through the atmosphere being 

increased more at a low altitude site compared to an equivalent higher altitude site 

(Blumthaler et al, 1997). 

 

1.4.6 Effect of cloud 

Maximum exposures at ground level are generally seen on a clear day.  The 

presence of cloud obscuring the solar disc will cause a reduction in the radiation 

received.  It has been observed that levels of UVA and UVB may be enhanced from 

reflection from the side of clouds which are close to the line of sight of the sun 

(Lubin and Frederick, 1991).  Maximum enhancement has been reported to occur 

with cumulonimbus clouds (Thiel et al, 1997) when the solar disc is not obscured 

(Estupinan at al, 1996) and when cloud position is between 60-75° from the sun 

(Weihs et al, 2000b). 

 

Satellite studies have shown differences in backscattered radiance from high and 

low altitude clouds (Wen & Frederick, 1995).  The thickness of the cloud layer also 

affects the degree of scatter and reflection of radiation (Kuchinke & Nunez, 1999). 

A study capturing measurements in Australia (McCormick & Suehrcke, 1990) found 

increases of up to 30% due to cloud with the greatest effect in the 350-400nm UVA 

range.  Studies generally aim to assess the effect of cloud to the observer on the 

ground.  The consideration for the pilot operating at altitude is the potential presence 

of a cloud layer below the aircraft.   

 

Sabburg et al (2001) reported that enhancements of UVA were most likely in 

conditions of haze, light textured or cumulus cloud partially covering the solar disc.  

It was postulated (Sabburg and Wong, 2000) that this effect was due to refraction 

and scattering of direct sunlight through haze or high altitude cloud and forward 

scatter from edges of low altitude cloud.  The effect may therefore be greatest where 

multi-layer clouds are present (Krzyscin et al, 2003).   

 

Based on ground studies, it is likely that in addition to the effect of altitude, UV levels 

reaching the aircraft will be further increased by reflection from cloud top particularly 
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where there are clear skies or thin high altitude cloud conditions above the aircraft.  

Total UV exposure is likely to be a combination of direct radiation from the sun, 

reflection from cloud and ground and scattered UV from cloud and atmosphere. 

 

1.4.7 Units of measurement 

There are a number of radiant and photometric measures used in this research.  

Radiant measures are derived from spectrometer measurements (chapter 5) and 

are used to describe UV and blue light hazard exposures.  Where appropriate, 

action spectra (section 1.4.8) are applied to the data. 

 

Radiance is a measure of the power or radiant flux (W) per unit solid (radian) angle 

and per unit projected area.  Its unit is W sr-1 m-2 and it is used for retinal blue light 

hazard exposure calculations.  Irradiance is incident power (W) per unit surface area 

(W m-2).  Irradiance for a narrow spectral band (spectral irradiance) per wavelength 

interval is defined as W m-2 nm-1.  Radiant exposure is incident energy (radiant flux 

per unit time or joule) divided by surface area of receptor and is measured in joules 

(J) per square metre (J m-2). 

 

Illuminance is a photometric measure which applies the V(λ) function to radiant flux 

(lumen) to account for the ocular sensitivity to different wavelengths of visible light.  

Illuminance is lumen (lm) per unit surface area (lm m-2). 

 

A minimal erythemal dose (MED) is an erythemally weighted measure of radiant 

exposure of UVR required to produce a barely perceptible erythema.  It is influenced 

by a number of factors, particularly skin type and susceptibility to sunburn.  A 

standard erythemal dose (SED) is also an erythemally weighted measure of radiant 

exposure and 1 SED is defined as 100 J m-2 (World Health Organisation, 2006). 

 

1.4.8 Action spectra 

An action spectrum provides the relative damaging effect of radiation at different 

wavelengths for a particular biological process.  A number of action spectra have 

been formulated including the blue light hazard spectrum, erythemal action 

spectrum and the actinic UV action spectrum. 
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The blue light hazard action spectrum has a peak action between 435-440nm where 

it is normalised and its maximum effect set at 1.0.  The spectrum is applied between 

the range 300-700nm  and has values of 1 x 10-2 between 300-380nm and 1 x 10-3 

between 600-700nm.   The International Commission on Illumination (CIE) 

erythemal action spectrum is normalised (1.0) from around 240 to 300nm for 

erythema in humans (ICNIRP, 2004).  Within the UVA range, the action spectrum 

varies from 1 x 10-3 to 1 x 10-4 although Anders et al (1995) found a second 

maximum in erythemal action spectrum at 362nm at lower relative response than 

first maximum within the UVB range.   

 

The actinic UV (200-315nm) action spectrum (International Radiation Protection 

Association, 1989) has been used for assessing the effect of UV on human skin and 

eyes. The action spectrum is normalised at 270nm and has been used to calculate 

UV exposure limits to skin and eye.  

 

Further action spectra have been formulated for photoconjunctivitis (CIE, 1986a) 

and photokeratitis (CIE, 1986b).  Photobiologically damaging UV for photokeratitis 

does not extend into UVA.  With the exception of the blue light hazard, action 

spectra have higher effectiveness in the UVB range.   

 

There is no commonly used action spectrum for melanoma in humans (Parisi et al, 

2004).  Evidence from animal models and human use of sun beds implicates UVA in 

the pathogenesis of melanoma (Wang et al, 2001).  A review by Mitchell and 

Fernandez (2012) suggest that only UVB is capable of initiating melanoma and that 

both UVA and UVB are involved in the disease progression.  There is evidence that 

sunscreen users have a higher melanoma risk (Autier et al, 2011).  It is postulated 

that the cause is due to the use of sunscreen blocking UVB preventing sunburn but 

extending the user’s sun exposure for getting a tan which causes an increase in 

UVA exposure.  A UVA mediated process has also been suggested in the formation 

of non melanoma skin cancers (Bachelor and Bowden, 2004). 

 

1.4.9 Global solar UV index and ocular exposure 

The global solar UV index is a scale which describes the level of solar UV radiation 

in an outdoor location on the Earth’s surface (World Health Organisation, 2002).  

The scale has been developed to help understanding within the general public of the 
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risks of excess UV exposure, and to encourage the use of protective measures 

when exposed to UV. 

  

Solar UV levels are not related to temperature and it is not possible for humans to 

feel UV radiation during exposure. The heat often felt when sunbathing is due to 

longer wavelengths (infrared radiation).  Excessive exposure to UVB is associated 

with sunburn which is seen within the erythemal action spectrum. 

 

Around midday, when there is least atmospheric scattering due to the shorter path 

through the atmosphere, there will be a higher level of UVB and a higher UV index.  

At lower elevation angles (as found for example during mid morning and afternoon), 

a greater proportion of UVB is scattered in the atmosphere, giving a lower level 

erythemal UV and a higher relative proportion of UVA. 

 

Greater ocular exposures are likely where the elevation angle is not at its daily 

maximum.  It has been argued (Citek et al, 2011) that mid morning and mid 

afternoon periods are when ocular exposure is likely to be greatest as, due to the 

human anatomical structures of the brow, a greater degree of natural protection is 

afforded from an overhead sun.  Additionally, a slight stooped posture adopted by 

humans when walking (Sasaki et al, 2011) allows further ocular protection from solar 

radiation.  Above an elevation angle of 40°, ocular UV exposure is reported to 

decrease rapidly (Sasaki et al, 2011) with remaining exposure being caused by 

scattered and reflected radiation (Citek et al, 2011). 

 

In the context of the pilot, global solar UV index would not be the optimum measure 

of non-ionising radiation risk to ocular damage.  As discussed in section 1.5.1, a 

large elevation angle around noon is more likely to cause the sun to be obscured 

from the pilot by the aircraft structure.  Parisi and Kimlin (2000) measured UVA dose 

in different seasons in a vehicle and found highest exposure in March (Autumn, 

Australia) due to a lower elevation angle.  In summer months, more UVA was 

blocked by the roof of the vehicle. 

 

Pilot ocular exposure will be affected by radiation being filtered as it passes through 

the aircraft windshield.  Finally, as the pilot adopts a seated position during flight and 

is positioned at a slight positive angle due to the attitude of the aircraft (section 

1.5.2), the role of anatomical features in UV protection is likely to be reduced. 
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1.4.10 Personal factors 

Although exposure to UV (optimum waveband 295 – 315nm) is required to aid the 

production of vitamin D (Bendik et al, 2014), there are a number of individual factors 

which influence the risk of excess exposure to UV radiation.  The large population 

variation of skin pigment has led to the development of a classification system 

(Fitzpatrick, 1986) to aid exposure limit for various skin types.  The lower exposure 

thresholds in light pigmented skin types is also reported for ocular damage in 

individuals with lighter coloured irides (Ham & Mueller, 1989) however there is likely 

to be a large overlap in these groups as a greater proportion of blue eyed individuals 

will have lighter skin tone.  Wang et al (2003) found no association between iris 

colour and early or late age-related macular degeneration (AMD). 

 

Retinal exposure is likely to decrease with age due to a concurrent decrease in pupil 

size over a wide range of illuminance levels (Winn et al, 1994) and lenticular 

changes which selectively absorb shorter wavelength visible light (Sliney, 2002). 

Personal strategies for protection from UV exposure include the application of sun 

cream and the use of a hat, sunglasses or UV blocking contact lenses.  There is 

limited evidence (Kronschlager et al, 2013) that caffeine eye drops can be effective 

in protecting the eye against UV damage.  

 

A number of drugs including tetracycline, amiodarone and chlorpromazine are 

known to have side effects associated with a risk of increased photosensitivity.  

These can cause phototoxic or photoallergic skin reactions following UV or visible 

light exposure (Drucker & Rosen, 2011) however they are not reported to cause 

ocular damage due to photosensitivity effects.  There is increasing evidence that 

dietary intake of certain anti-oxidants can offer increased protection against the blue 

light hazard.  This is discussed in section 2.5. 

 

Finally, the pilot can control the ambient temperature in the cockpit and were skin 

damage to be occurring in flight, a lower temperature could result in a reduced 

thermal discomfort and an increased ability to remain in that environment for longer 

without any subjective symptoms. 
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1.5 Considerations for professional pilot exposure  

1.5.1 Ergonomics and the visual piloting task 

The pilots’ visual task is complex as they are surrounded by the tools required to 

interpret flight information and manage the flight of the aircraft.  Generally, the 

primary flight instrumentation is duplicated and situated in front of each pilot below 

the horizontal sight line and protected to a degree from sunlight by a cowling or 

ledge protruding at a level just below the windshield toward the pilot. 

Engine and fuel management systems together with communication systems are 

usually located between the pilots extending from next to the primary displays 

downwards in a horizontal panel situated between the pilots’ seats. 

Flight controls are present either in front of the pilot as a traditional yoke stick such 

as typically found in Boeing aircraft (Figure 1-e) or as a joystick control situated to 

the side of the pilot as typically found on Airbus aircraft (Figure 1-f). 

 

 

Figure 1-e Typical Boeing cockpit 
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Figure 1-f Typical Airbus cockpit 

Overhead panels often contain warning systems, pilot preference settings and circuit 

breaker systems and are generally not required routinely during flight (Figure 1-g).  

Emergency oxygen systems are generally located nearer the pilots’ side window 

and toward the rear of the seat. 

 

 

Figure 1-g Typical overhead panel information 
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The level of irradiance to which a pilot can be exposed during flight is limited by the 

structure of the aircraft and the size and position of the windshields.  An observer on 

the ground with no obstacles or highly reflective surface nearby would expect to 

receive a peak erythemal irradiance around noon.  However for the pilot, the sun at 

noon is more likely to be obscured by the aircraft structure, particularly during 

summer months in the northern hemisphere.  The peak irradiances that occur in 

flight are likely to be driven more by the position of the aircraft in relation to the sun. 

 

1.5.2 The pilot operational environment  

Section 1.4.1 describes the reduction of atmospheric pressure with altitude.  Aircraft 

systems use this reduction in pressure to display altitude information to the pilot.  

However atmospheric pressure is strongly influenced by weather conditions.  An 

aircraft flying from one point to another is likely to pass through fluctuations of the 

Earth’s atmospheric pressure.  This in turn would cause inaccuracies in altitude 

display.  In order for all aircraft operating within the same vicinity to display the same 

altitude setting, a standardised system is adopted above a safe height (transitional 

altitude) from the ground where a mean sea level atmospheric pressure of 1013.2 

millibars (mb) is adopted.  An altitude is then described as a flight level or FL.  

FL350 corresponds to an altitude of 35,000 ft above mean sea level using a 

1013.2mb pressure setting. 

 

Aircraft operations additionally adopt a FL height rule dependant on the direction of 

travel of the aircraft.  This ensures safe vertical separation of aircraft and means that 

an aircraft returning to base on a two sector flight will be at different FL on the 

inbound sector compared to the outbound.  Generally, unless operating above 

FL410, flights with an eastbound component use a FL with an odd second digit 

(such as FL 310, 330) and flights with a westbound component use a FL with an 

even second digit (such as FL 320, 340).  Aircraft require clearance from air traffic 

control to a particular FL and may be restricted to a lower FL where air traffic is 

busier above. 

 

For the purposes of this study, cruise altitude is considered the point at which the 

aircraft has reached its permitted FL and has achieved level flight.  It is recognised 

that this results in variations between flights in the actual altitude above sea level. 

Commercial aircraft generally follow a series of airways en route to the destination.  

These are set ‘lanes’ in the sky a certain distance wide and are generally in a 
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straight line between ground navigational beacons.  The aircraft’s navigation system 

can be set to identify and track in the direction of a ground beacon.  Aircraft with 

autopilot can be programmed by the pilot to follow a series of ground beacons.  This 

results in a cruise flight with a series of generally small changes of direction of 

heading during flight.  The wind speed and direction also affects the direction in 

which the aircraft nose points.  In order to track to a target point in a straight line, a 

small change of aircraft heading would be adopted that points the nose towards any 

oncoming wind.   

 

Most commercial jet and turboprop aircraft types generally adopt a slight nose up 

attitude for stable cruise flight.  This angle does vary between aircraft types but is 

generally around 2°.  This, together with the changes of heading during flight will 

affect the relative position of the sun to the pilot. 

 

1.5.3 Flight profiles, pilot flying hours and career length 

Flight profiles can be defined for each aircraft type although they vary considerably 

dependent on a number of factors including aircraft configuration, weight and power 

settings (Civil Aviation Authority, 1992).  However with improvements in 

aerodynamics and efficiency of engine units, modern aircraft types are generally 

able to achieve a higher cruise altitude at a faster rate than their older aircraft type 

counterparts.  In addition to a fuel saving benefit, this can also result in longer flight 

times.  This in turn may result in the pilot of a new aircraft design being able to 

spend a larger proportion of a flying career at cruise altitude. 

 

Professional pilots cannot log more than a maximum of 900 hours per annum (Civil 

Aviation Authority, 2003).  The mean pilot flying hours per annum will be less than 

this.  Clearly, for the purposes of solar radiation exposure, only those hours flown 

during daylight hours can contribute to the pilot’s annual occupational dose.  The 

typical flying schedules of a number of operators involved in this research are 

described in section 10.5. 

 

There is some anecdotal evidence that the choice of professional flying as a second 

career is less common than in previous decades.  This may to be due to a number 

of factors including the significant investment in flying training, the lack of airline 

funded training schemes and the uncertainty of securing airline employment after 

training in the current industry climate.  Applicants for professional flying training are 



20 
 

often school leavers or university graduates.  Beyond the age of 65, pilots are not 

able to fly an aircraft engaged in commercial air transport (Civil Aviation Authority, 

2013).  The minimum age for holding an airline transport pilots licence is 21 (Civil 

Aviation Authority, 2007).  Pilots can therefore achieve up to a 44 year long airline 

career. 

 

It is feasible that daytime long haul flights could expose airline pilots to high light 

levels for prolonged periods of time particularly when ‘chasing the sun’, flying east to 

west during daylight hours.   

 

1.5.4 General windshield properties 

There are a number of requirements for aircraft windshields.  The windshields on the 

majority of commercial air transport aircraft which have pressurised cabins must be 

able to withstand the effects of continuous and cyclic pressurization loadings and 

the effects of temperatures and temperature differentials at altitude. The windshield 

and side windows must be capable of withstanding the maximum cabin pressure 

differential loads together with the critical aerodynamic pressure and temperature 

effects after any single system failure (Federal Aviation Administration, 2003).  In the 

case of a single failure that is obvious to the flight crew, the cabin pressure 

differential is reduced from the maximum, in accordance with appropriate operating 

limitations, to allow continued safe flight of the airplane with a reduced cabin 

pressure altitude. 

 

All internal panes must be made of non splintering material and windshield panes 

directly in front of the pilots must be able withstand, without penetration, the impact 

of a four-pound bird during cruise flight (Federal Aviation Administration, 2003).  The 

windshield panels in front of the pilots must be arranged so that, assuming the loss 

of vision through any one panel, one or more panels remain available for use by a 

pilot to permit continued safe flight and landing (Federal Aviation Administration, 

2003).  

 

Typical designs of windshields and cockpit side windows are laminated multi-plied 

constructions, consisting of at least two structural plies, facing plies, adhesive inter 

layers, protective coatings, embedded electro-conductive heater films or wires, and 

a mounting structure.  Typically, the structural plies are made from thermally or 

chemically toughened glass, or transparent polymeric materials such as polymethyl-
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methacrylate (acrylic) and polycarbonate.  These plies may be protected from 

abrasion, mechanical, and environmental damage by use of facing plies together 

with protective coatings.  The facing and structural plies are laminated together with 

adhesive interlayer material of poly-vinyl butyral (PVB), polyurethane, or silicone 

(Federal Aviation Administration, 2003). 

 

In order to keep window areas free of ice and frost, window anti-icing, de-icing and 

de-fogging systems are used. The systems vary according to the type of aircraft and 

its manufacturer. Some windshields are built with double panels with a space in 

between, which allows the circulation of heated air between the surfaces to control 

icing and fogging.  Others use windshield wipers and anti-icing fluid, which is 

sprayed on (Federal Aviation Administration, 1976).  Many windshield designs have 

an external hydrophobic coating. 

 

1.5.5 Optical transmission properties of windshields 

The factors that may influence the optical transmission profile of a windshield 

include the type of windshield design, number of laminate plies and inter layers and 

their optical properties, the material used for the de-icing heater element and the 

number of elements used.  It is not known whether age would influence the optical 

transmission.  Cockpit windshields are assessed at periodic maintenance and 

replaced if de-lamination, abrasion or heater element problems are detected.  The 

only optical transmission requirement is for a minimum transmission of the total 

visible light (personal communication, A Goudie 01/12/09). 

 

Parisi et al (2004) report that UVB transmission is affected by the thickness of the 

material however for UVA, less than 5% difference in transmission was present 

between thin and thick glass.  Therefore, the ratio of solar UVB/UVA is significantly 

affected once filtered through glass, particular when it is of greater thickness.  The 

authors also state that erythema can be experienced due to filtered solar UV if the 

exposure period is sufficiently long enough. 

 

1.5.6 Position of windshields & incident angle of light 

Data were obtained from Airbus A320 and A330 aircraft characteristics manuals 

(Airbus, 2012; Airbus, 2014) and are presented as these aircraft types were both 

used for in flight data collection in chapter 6.  These data present the binocular 
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visibility through the aircraft windshield from the captain’s eye position and reveal 

the maximum angle subtended at the eye from the windows.  From these data, 

estimates can be made as to the relative angles up to which the solar disc would be 

directly visible to the pilot during flight.  Clearly, the windows nearest the pilot cause 

the largest angular effect.  Data of the angle subtended by the windshields on the 

opposite (first officer) side of the cockpit are given for Airbus A320 data.  The data 

from the right hand seat would be symmetrical to that of the left hand (captain’s) 

seat.  Data from A320 and A330 are shown in Figure 1-h and Figure 1-i respectively. 

 

 

Figure 1-h Airbus A320 pilot field of view diagram. Taken from Airbus A320 
specification manual. 
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Figure 1-i Airbus A330 pilot field of view diagram. Taken from Airbus A320 
specification manual. 

 

No data were available for Boeing aircraft and it is not known to what extent other 

passenger fixed wing aircraft would differ from those presented above.  Additionally, 

the data assume that no visors or blinds (section 1.5.7) are in use. 

 

Due to aerodynamic and impact resistance considerations, windshields are 

positioned at an angle away from normal to the direction of travel of the aircraft.  

This, together with the angle of the sun on the windshield which will vary as the 

aircraft travels, will affect the degree of UV attenuation through the windshield. 

 

1.5.7 Standard aircraft fitted sun protection systems 

Most modern transport aeroplanes have systems to protect the pilot from bright 

sunlight on the flight deck.  In addition to the design and placement of instruments to 

ensure optimum legibility, aircraft have visors and blinds which the pilot can deploy 

to cover the window areas.  Figure 1-j shows a diagrammatic summary of an Airbus 

cockpit with the positions of the visors and blinds. 

 



24 
 

 

Figure 1-j Diagrammatic illustration of Airbus A320 cockpit showing positioning of 
front visors and side blinds. Adapted from Airbus A320 manual. 

 

There are several manufacturers of both aircraft visors and side blinds.  The front 

visors are similar to a vehicle windscreen visor except that they consist of a dark 

tinted plastic material (Figure 1-k) which strongly attenuates radiation (see section 

8.3 for measurements) as opposed to the typical car sun visor which is comprised of 

a non transparent material.  

 

 

Figure 1-k Typical front visor. Taken from guanyiareo.com (Guanyi Aero, no date). 
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When deployed, the visor has a degree of manoeuvrability so that it can be adjusted 

to attenuate sunlight.  There are generally two designs of front visor.  Those which 

are adjusted by a swivel ball joint (Figure 1-k) at its fixing point to the aircraft 

(generally found on Airbus aircraft) or those which are stowed separately and 

attached, when required, to a fixed rail above the windshield (generally found on 

Boeing aircraft).  Front visors cover only a proportion of the total front windshield 

area. 

 

Roller blinds are made from a thin flexible material and are stowed within a spring 

mechanism cylinder.  They are deployed from either top or bottom of the side 

window and are secured by attaching the leading edge to a clip on the opposite end 

of the window.  The blinds are either a fixed width (Figure 1-l) or shaped to a 

particular window (Figure 1-m).  Side blinds offer a greater coverage of window area 

compared to the front visors.  

 

 

Figure 1-l Airbus front visor and side roller blind in use. Roller blind is of constant 
width. 
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Figure 1-m Roller blind tailored for a particular window shape. Taken from 
guanyiareo.com (Guanyi Aero, no date). 

 

Some manufacturers of visors and blinds provide information of the degree of UV 

attenuation offered (Aeroshade Technologies, no date).  Generally, more emphasis 

is placed by manufacturers as to IR attenuation and the heat reflecting properties of 

the materials (Areoshade Technologies, no date; Eire aviation Inc, no date) to 

improve comfort. 

 

Helicopters do not generally have the same level of standard fitted visor protection 

afforded.  From the author’s discussion with several helicopter pilots, larger 

helicopters may have front visors fitted but not side roller blinds. 

 

Separate stick-on visors are available to pilots through several retailers 

(mypilotstore, no date; Transair flight equipment, no date).  These attach directly to 

the inside of the windshield and can be used in addition to standard fitted sun 

protection systems.  

 

1.6 Pilot medical certification 

All pilots must hold a current valid medical certificate in order to exercise the 

privileges of their aviation licence.  There are two main classes of medical certificate 
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which are Class 1, required for all professional flying including airline, cargo, 

commercial helicopter flying, police helicopter, air ambulance, aerial work (such as 

surveying or photography) and instructing.  Class 2 medical certification is used for 

pilots flying recreationally (aeroplanes or helicopters) on a private pilot’s licence.  

Revalidation medical examinations are required routinely for ongoing certification.  

The period of time between examinations is dependent on the pilot’s age and class 

of medical held (Civil Aviation Authority, 2012). 

 

Various conditions can be placed on a medical certificate which is then only valid 

when the pilot meets these requirements.  For instance, where the pilot’s distance 

vision unaided falls below the minimum standard, the pilot has a VDL limitation 

placed on their certificate which states that corrective lenses must be worn and that 

a spare pair of spectacles must be carried.  For the presbyope, all spectacles must 

be multifocal (bifocal, trifocal or progressive).  A pilot using contact lenses may use 

these as their primary correction and must carry a spare pair of spectacles.  

Guidance currently states that one pair of spectacles must be untinted, whilst the 

second pair can be prescription sunglasses (Civil Aviation Authority, no date). 

 

A pilot with distance vision that falls within limits unaided but who is presbyopic and 

does not meet the intermediate (N14 at 1m) or near (N5 between 30-50cm) 

requirements is required to have available appropriate near vision correction in a 

narrow look-over frame style.  A VNL limitation would be required on the pilot’s 

medical certificate. 

 

The UK CAA is a member of the European Aviation Safety Agency (EASA) and 

applies, together with all other European states, harmonised medical standards and 

requirements.  EASA medical requirements were implemented in 2012 replacing the 

previous Joint Aviation Regulations (JAR) which, in turn were implemented in 1999.  

These changes and subsequent amendments have resulted in a gradual relaxation 

of the maximum limit on spectacle lens power allowable over the past 15 years for 

both Class 1 and Class 2 medical certification.  As a result, a higher proportion of 

ametropes may now be eligible for certification and it is speculated that this in turn 

may increase the percentage of UK certified pilots with a VDL limitation on their 

medical certificate. 
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1.7 Ocular absorption of UV radiation 

The ocular absorption varies with structure and wavelength.  All radiation below 

280nm is absorbed by the cornea (Figure 1-n).  At increasing wavelengths, an 

increasing proportion of incident radiation is transmitted through the cornea and 

absorbed within the aqueous, lens or vitreous.  At 380nm, 80% of radiation is 

transmitted through the cornea (World Health Organisation, 1993).  The lens 

absorption is strongest within the 340-380nm range and lenticular UV transmission 

decreases steadily with age (World Health Organisation, 1993). 

 

It is reported that approximately 1% of solar UV radiation reaches the retina (Sliney, 

2002) however this value is likely to be affected where the incident radiation has 

already been filtered by materials such as a windshield. 

 

The removal of the lens as occurs in cataract surgery has the potential to cause an 

increase in UV reaching the retina.  However, surgery generally involves 

replacement of the cataract with an intraocular lens (IOL) implant.  The material can 

be designed to ensure good UV blocking properties and a UV blocking IOL has 

become an internationally accepted standard (Augustin, 2014).  There has been 

more recent interest in ensuring that IOLs also have good blue light blocking 

properties however the potential detrimental effects to scotopic vision and circadian 

rhythm have been highlighted (Mainster and Turner, 2010; Yang and Afshari, 2014).  

 

 

Figure 1-n Percentage of absorption of UV by various ocular structures. Taken from 
'How light reaches the eye and its components' (Sliney, 2002). 
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1.8 ICNIRP guidelines for exposure 

The International Commission on Non-ionising Radiation Protection (ICNIRP) has 

published a series of guidance material documents describing ocular and skin 

exposure limits to UV, incoherent visible and infrared radiation (ICNIRP, 2004; 

ICNIRP, 2013).  These recommendations are for general use and were not 

specifically aimed at pilots.  The publications recommend exposure limits based on 

scientific evidence and describe the considerations and factors affecting exposure 

calculations. An exposure per event or repeated exposures below maximum levels 

set in ICNIRP would not be expected to cause adverse effects (ICNIRP, 2004). 

 

1.8.1 UV 

The guidelines on exposure limits for UV (ICNIRP, 2004) refer to radiation between 

180 to 400nm.  Spectrally weighted radiant exposure to the unprotected eye should 

not exceed 30 J m-2 and for wavelengths between 315 to 400nm, the unweighted 

total UV radiant exposure should not exceed 1 x 104 J m-2 within an 8 hour period.  

ICNIRP (2004) state that the exposure limit should be considered an absolute limit 

for direct exposure of the eye.  The guidelines recommend protection from solar UV 

including hats and eye protection. 

 

1.8.2 Blue light 

Within the visible and infrared radiation guidelines, the areas of ocular insult covered 

include thermal damage of the cornea, iris, lens and retina (all affected by longer 

wavelength visible and infrared radiation) and photochemical damage to the retina 

from blue light.  This photochemical damage is caused principally by wavelengths 

within the 380-550nm range and within a 300-550nm range for the aphakic eye with 

no natural crystalline lens or IOL in place.  This type of damage is known as type II 

photochemical damage (section 2.5) and has been demonstrated with shorter 

exposures, generally up to around two hours (Ham et al, 1976; Ham et al, 1980; 

Lund et al, 2006).  Photochemical retinal damage caused by lower level exposure 

and a broadband source such as the sun generally occurs with shorter wavelengths 

and longer exposure times than thermal damage (ICNIRP 2013). 
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The peak of sensitivity to the blue light hazard is around 440nm (Algvere et al, 

2006).  Exposure is affected by both irradiance and exposure duration and the 

Bunsen-Roscoe reciprocity law is applied, therefore high irradiance for short 

duration has a similar effect to a lower irradiance over a longer duration for the 

purposes of comparing to ICNIRP limits.  The ICNIRP recognise that there is a lack 

of data for determining long term chronic exposure and guidelines are based on 

threshold limits following a short delay (up to 48 hours) for onset of damage.  Long 

term exposures are discussed in section 2.6. 

 

In order to calculate the most accurate hazard assessment and to derive biologically 

effective radiance or irradiance, an appropriate action spectrum provides weighting 

(ICNIRP, 2013).  With a broadband optical source (such as the sun), a series of 

action spectra may need to be applied. For the purposes of this study, the aphakic 

hazard function is not considered.  Additionally, analysis has not been conducted 

investigating the risk of thermal retinal injury involving exposure to longer 

wavelength visible and infrared (IR) radiation. 

 

The ICNIRP exposure limits factor for any enhancement of photochemical effects 

with additional thermal effect by using a greater reduction factor incorporated into 

the limits (ICNIRP, 2013).  The ICNIRP limits are set to a level below known 

damage thresholds and include a reduction factor of at least 2.  The probability of 

damage as a function of dose is assumed to be a normal distribution. The dose 

threshold stated is the effective dose to produce a 50% probability of damage (24hr 

after exposure for overall retina or 1hr for macula).  The guidelines also make the 

assumption that most outdoor exposures would involve off-axis or indirect sources 

which would not be hazardous to the eye except potentially in environments with 

high surface reflection such as snow or water. 

 

The ICNIRP guidelines recognise that disability glare, discomfort glare (see 

glossary) and after images may be caused by exposure to bright light sources below 

exposure limits.  The presence of these symptoms does not indicate exposure 

beyond safe recommended limits.  The current guidelines do not address the effect 

of the impact of light exposure to the circadian rhythm.   

 

The basic exposure limits are based on a 3mm pupil.  Other variables affecting 

retinal exposure such as focal length and clarity of media have been taken into 

account in deriving recommended exposure limits.  It is also recognised that natural 
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aversion responses during longer exposures to bright light include voluntary eye and 

head movements which distribute light energy over a larger area of the retina.  

Normal eye movements will enlarge the irradiated retinal area and increase angular 

distribution of energy.  However, this effect is greater in the presence of a smaller 

retinal image size and has less effect in an unrestricted field. 

 

Blue light exposure is cumulative.  For exposure times up to 10,000 seconds 

(approximately 2hrs 47min), the blue light weighted effective radiance dose limit is 1 

x 106 J/m2.sr, e.g. for continuous uniform exposure longer than 10,000 seconds, the 

blue light weighted effective radiance should not exceed 100W/m2.sr.  For the 

radiance dose for exposures longer than 10,000 seconds, ICNIRP state that it is not 

necessary to consider the added radiant exposure or radiance dose and that it can 

be treated as a series of independent exposure episodes although in cases of 

irregular exposure, the time axis should be positioned to give a maximum possible 

dose calculation. 

 

1.9 Health and Safety legislation & optical radiation at work 

There are a number of acts implemented which aim to ensure the health and safety 

of employees at work.  The Health and Safety at Work Act (Great Britain, 1974), 

sets out general duties that employers have towards their employees and requires 

the employer to reduce risk as far as reasonably practical.  The Management of 

Health and Safety at Work Regulations (Health and Safety Executive, 1999) 

provides further detail as to the identification of health and safety risks at work and 

requires employers with five or more employees to conduct a risk assessment.  Risk 

assessments are usually basic unless there is deemed a potentially serious hazard 

such as in a nuclear or chemical plant.  This legislation enables the majority of 

employers to comply with the legislation without undue time or cost.  The Health and 

Safety Executive (2010) provide guidance, codes of practice and, where a risk is 

deemed to be great, regulations to ensure the health and safety of employees. 

 

The Control of Artificial Optical Radiation at Work Regulations 2010 requires 

employers to assess the level of radiation to which workers are likely to be exposed, 

to reduce exposure risks and to provide training to workers (Health and Safety 

Executive, 2010).  These regulations do not apply where radiation received is from a 

solar source. 
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The Civil Aviation Authority (CAA) is the UK specialist regulator for the aviation 

industry and regulates to ensure safe operation and maintenance of aircraft and sets 

the licensing standards and training requirements for pilots and air traffic controllers.  

The Aviation Health Unit (AHU) within the CAA Medical Department aims to provide 

information for health professionals, air crew and passengers on the health aspects 

of air travel. 

 

The issue of pilot ocular exposure to non-ionizing radiation during flight is unlikely to 

be considered a serious hazard under Health and Safety law and would therefore 

not involve a detailed risk assessment.  Although not directly within a CAA 

regulatory framework, this issue could fall within AHU remit although no AHU 

publications on this subject currently exist. 

 

1.10 Types of sunglasses 

Sunglass lenses are manufactured from either glass (such as crown glass) or plastic 

materials (such as acrylic; which is used most commonly).  Different colour tints will 

have different spectral absorption profiles and darker tints will absorb a greater 

percentage of incident visible light.  A tint may be manufactured to selectively 

absorb certain wavelength bands.  Graduated tints are darker at the top of the lens, 

and lighter at the bottom of the lens.  Tints are generally applied by dipping lenses 

into a hot coloured dye (Wilkinson, 2006). 

 

Photochromatic lenses darken when exposed to UV and sometimes, to a lesser 

extent, to visible light (Transitions Optical, 2013).  They may be manufactured from 

either glass or plastic materials.  Polarised lenses offer absorption of visible light and 

reduce glare from light reflected off surfaces such as water. 

 

There is a wide variation in sunglass frame styles although sunglasses should 

generally be of a sufficient frame size to offer protection from peripheral radiation 

which may reach the eye via a number of different routes (Figure 1-o). 
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Figure 1-o Various ways in which the eye can be exposed to peripheral radiation. 
Taken from 'The eye and solar ultraviolet radiation' Citek et al, 2011. 

 

An increase in UV exposure has been suggested (Citek et al, 2011) when wearing 

sunglasses with poor peripheral protection as a reduction in squinting reflex and an 

increase in pupil size may occur.  Therefore, wrap around style sunglasses, such as 

Oakley (Figure 1-p), are likely to provide optimum protection from peripheral 

radiation. 

 

Figure 1-p Typical wrap around frame style 

 

1.11 Transmittance properties of lens materials 

A degree of UV protection is offered from untinted lens materials.  Crown glass 

blocks UV below 320nm whilst the commonly used CR39 blocks UV radiation below 

355nm (Jalie, 2005).  Commercially available polycarbonate lens materials are 

renowned for their impact resistance and effectively absorb UV below 385nm due to 

the addition of a chemical coating improving scratch resistance (Pitts, 1990).  This 

material is less popular than CR39 in the UK as it has a lower optical quality (V-

value) than CR39 and has poorer chemical resistance and higher susceptibility to 

cracking (Gilbert, 2014).  Plastic lenses with a higher refractive index generally have 
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better UV attenuating properties.  More modern lens materials such as Trivex and 

Tribrid materials, manufactured by PPG Optical Products have effective UV 

absorption below 400nm and a higher V-value than polycarbonate (Gilbert, 2014).   

 

Anti-reflection coatings are frequently applied to spectacle lenses.  Lenses with 

these coatings transmit more visible light than their non-coated counterparts 

however they have been reported to reflect more UV radiation (Citek, 2008), which 

could increase ocular UV exposure if the source were behind the wearer and 

reflection occurred from the back surface of the lens.  Manufacturers of more recent 

anti-reflection coatings claim blue light transmission reduction through a lens by the 

coating selectively increasing the reflection of short wavelength visible light (Nikon, 

2012).  If applied to both surfaces, an increase in exposure could also occur where 

the source is behind the wearer. 

 

A number of contact lens manufacturers offer soft contact lenses with UV blocking 

properties. Contact lenses that offer UV protection are labelled as Class I or Class II.  

Class I offers the highest level of protection blocking over 90% UVA and 99% UVB 

radiation (Wolfsohnn, 2013), and is found in a number of silicone hydrogel lenses 

and in all contact lenses made by Johnson & Johnson (Acuvue brand) (Chandler 

and Nichols, 2011). 

 

1.12 Requirements for sunglass filtering 

The International Organization for Standardization (ISO) has introduced standards 

for sunglasses for general use (ISO 12312-1, 2013).  This document is applicable to 

all non-prescription sunglasses and clip-ons for general use (including road use and 

driving) intended for protection against solar radiation; it does not include standards 

for specific sports eye protectors such as ski goggles or products intended for direct 

solar viewing (ISO FDIS 12312-2).  Methods for testing sunglasses are detailed 

within ISO 12311.  These documents provide more detail and guidance on 

measuring transmittance and explanation of errors to consider in testing and 

supersede the previous European standard EN 1836:2005 which set out 

recommendations for sunglasses. 

 

ISO 12312-1 (2013) states that sunglass filters ‘shall have no material or machining 

defects within the area of 30mm diameter around the reference point that might 

impair vision, e.g. bubbles, scratches, inclusions, dull spots, pitting, mould marks, 
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notches, reinforced areas, specks, beads, water specks, pocking, gas inclusions, 

splintering, cracks, polishing defects or undulations’. 

 

Transmittance requirements are separated into five categories, dependent on the 

intended use and level of protection required.  The requirements state that there 

should be no more than +/-2% overlap of the absolute luminous transmittance 

values (380-780nm) between categories 0,1,2 and 3. No transmittance overlap 

exists between categories 3 and 4.  Table 1-b is adapted from ISO 12312-1 and 

summarises the transmittance requirements for general use sunglasses.  

 

Consumer 

label 

Usage Technical 

label 

Requirements 

Ultraviolet spectral range Visible 

spectral 

range 

Enhanced 

infrared 

absorption 

Descriptive 

label 

 Filter 

category 

Maximum 

value of solar 

UVB 

transmittance 

(τSUVB) 

280nm to 

315nm 

Maximum 

value of solar 

UVA 

transmittance 

(τSUVA) 

315nm to 

380nm 

Luminous 

transmittance 

(τV) 

380nm to 

780nm 

Maximum value of 

solar IR 

transmittance 

τSIR 

780nm to 2000nm 

Light tint 

sunglasses 

Very limited 

reduction of 

sun glare 

0 
0.05 τV 

 

τV 

 

τV > 80% 

 

τV 

 

Limited 

protection of 

sun glare 

1 
0.05 τV 

 

τV 

 

43%<τV<=80

% 

 

τV 

 

General 

purpose 

sunglasses 

Good 

protection 

against sun 

glare 

2 

1.0% absolute 

or 0.05 τV, 

whichever is 

greater 

 

0.5 τV 

 

Previously τV 

under EN1836 

18%<τV<=43

% 

 

τV 

 

High 

protection 

against sun 

glare 

3 1.0% absolute 
0.5 τV 

 

8%<τV<=18% 

 

τV 

 

Very dark 

special 

purpose 

sunglasses 

Very high 

protection 

against 

extreme sun 

glare, e.g. at 

sea, over 

snowfields, on 

high 

mountains, or 

in desert 

4 1.0% absolute 

1.0% absolute 

or 0.25 τV, 

whichever is 

greater 

 

Previously 0.5 

τV under 

EN1836 

3%<τV<=8% 

 

τV 

 

Table 1-b Summary of ISO 12312-1 sunglass transmittance requirements. Limits for 
UV and IR transmittance may be given as proportion of the filter’s luminous 

transmittance.  General purpose sunglasses are categorised as filter 2 or 3. Text in 
red highlights observed differences between ISO and previous limits under EN1836. 
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ISO specify limits on the uniformity of luminous transmittance (no greater than 10% 

relative to the higher value), except category 4, where no greater than 20% is 

allowed.  For graduated tints, uniformity measurements are taken horizontally.  For a 

photochromic lens, two transmittance values are used which correspond to faded 

and darkened states.  For graduated tints, luminous transmittance is given from the 

reference point (as defined in ISO 4007).  ISO 12312-1 also states a minimum 

polarizing efficiency for polarised lenses (categories 1,2,3 and 4), a minimum angle 

from the vertical plane and a minimum misalignment error between right and left 

lenses. 

 

There is a requirement that there is no greater than 15% difference in luminous 

transmittance between right and left filters relative to the lighter filter.  ISO 12312-1 

(2013) sets a minimum allowable change of luminous transmittance following solar 

radiation.  This is simulated by a suitable lamp for an irradiation time of 50 +/- 0.1 

hours.  In order to ensure that sunglasses do not impact on road safety, ISO specify 

additional requirements for sunglasses in categories 0,1,2 or 3 including minimum 

attenuation quotients for signal red (≥0.80), yellow, green and blue (≥0.60) and that 

luminous transmittance should be greater than 75% for twilight or night driving.  

 

ISO 12312-1 does not contain a mandatory specification for blue light hazard 

protection. It states that: ‘If solar radiation on the ground is evaluated with currently 

used limit values even under extreme illuminance conditions except for snow 

surfaces, an acute risk from exposure from the blue part of the spectrum is not to be 

expected’.  If a filter claims to have x% blue-light absorption, the solar blue-light 

transmittance should not exceed (100.5-x)% (ISO 12312-1, 2013). 

 

In cases where it is claimed that a filter has x% solar UV, UVB or UVA absorption, 

the solar UV transmittance shall not exceed (100.5-x)%.  Additionally, UV 

requirements must still be met and all claimed transmittance requirements must still 

be met.  With regard to the UV risk, ISO 12312-1 acknowledge that although eyelid 

squinting reduces risk of exposure, ‘sunglasses without side shields may permit 

peripheral exposure of biological significance due to the Coroneo effect.’(CIT)  This 

is also known as the Peripheral Light Focusing (PLF) effect and is discussed in 

section 2.4.  There is also recognition that UV exposure is highly influenced by 

latitude, solar position and altitude however the UV transmittance limits aim to keep 
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“doses below recognised safe limit even for exceptional daily exposure except over 

snow” (CIT).  In order to do this, ISO have added additional safety margins for high 

exposure scenarios at mid-latitudes.  

 

There are other worldwide sunglass standards which include the Australia/New 

Zealand standard (AS/NZ1067:2003) which has a mandatory product testing 

requirement.  There is a proposal to alter these standards to bring them in line with 

ISO (personal communication S Dain, 29/04/14).  

 

Additionally, the USA has sunglass requirements which are covered by the 

American National Standards Institute (ANSI) Z80.3-2010.  These voluntary 

consensus standards include two transmittance categories.  Class 1 lenses should 

have a minimum UVB (280-315nm) absorption of 99% and a minimum UVA (315-

380nm) absorption of 90%.  For Class 2 lenses, these absorption values are to 95% 

and 70% for UVB and UVA respectively (Citek et al, 2011).  It is not known how 

these standards differ further from ISO or whether there are proposals to adopt ISO 

in the future. 

 

1.13 Sunglasses marketed for pilots 

A number of sunglass products are specifically marketed at the pilot population.  

Companies offering these products include ‘Bigatmo’, ‘Mile High’, ‘Randolph’ and 

‘Caruso & Freeland’.  Although all products should meet a minimum regulatory 

requirement as described in section 1.12, further marketing claims are made to 

attract the pilot customer.  These can be broadly classified into additional lens 

sunlight filtering properties beyond minimum standards, protection from peripheral 

light and sunglass comfort. 

 

1.14 Summary 

There is good evidence that intensity of UV increases with altitude and levels can be 

elevated further under certain conditions in the presence of cloud.  Pilot ocular 

exposure is likely to be affected by a number of factors including the position of the 

solar disc in relation to the aircraft, the altitude of the aircraft, the type of visual task 

being undertaken by the pilot, the transmittance of the windshield and the use of sun 

blocking strategies by the pilot.  There are international guideline limits for ocular 

exposure to both UV and the blue light hazard.  These are considered the most 
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appropriate tool when considering exposure risk.  Any sunglasses used by the pilot 

should conform to minimum international standards. 
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2. Chapter 2 Literature Review 

CHAPTER OVERVIEW 

This chapter provides a review of the literature surrounding the ocular effects of UV 

and blue light, particularly with regard to long term exposure and the effect of repeat 

and cumulative dose.  The evidence concerning radiation related ocular pathology in 

pilots will be investigated together with the evidence underpinning sunglass 

recommendations to pilots.  Studies of in flight measurements of UV and blue light 

and the transmission of aircraft windshields will be discussed.  Based on the gaps in 

knowledge present within the literature and the likelihood of increased exposure at 

altitude as uncovered in Chapter 1, the research question for this thesis will be 

introduced. 

 

2.1 Introduction 

A review of the English language literature was undertaken to identify relevant 

studies.  All electronic searches were made through PubMed, Medline and 

Cochrane databases. 

 

To identify the effect of UV and blue light on the eye, searches were conducted 

using the following key words: ‘Ultraviolet’, ‘UV’, ‘blue light effect’, ‘blue light hazard’ 

with ‘ocular’ and ‘eye’.  Due to the large number of publications in this field, 

prioritisation was given to more recent publications and to review papers.  To find 

publications measuring cockpit light levels, the following keywords were used: 

‘Ultraviolet’, ‘UV’, ‘blue light’, ‘blue light hazard’ with ‘cockpit’, ‘pilot’ and ‘airline’. 

 

In order to establish literature on optical transmission properties of cockpit 

windshields, electronic searches were made through PubMed, Medline and Google 

Scholar.  Additional electronic searches were conducted through the International 

Civil Aviation Organisation, Federal Aviation Administration, Civil Aviation Authority 

and Google using keywords: ‘optical properties’, ‘optical transmission’ with ‘cockpit’, 

‘windshield’ and ‘windscreen’.  Further windshield specification information was 

sought through relevant CAA departments, aircraft manufacturers and aircraft 

windshield manufacturers. 

 

To identify the prevalence of ocular and non-ocular UV related pathology in airline 

pilots, the following keywords were used: ‘cataract’, ‘macular degeneration’, 
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‘maculopathy’, ‘keratopathy’, ‘pterygium’, ‘melanoma’, ‘skin damage’, ‘lupus 

erythematosus’, ‘infectious disease’, ‘vaccination response’ with ‘pilots’ and 

‘aircrew’. 

 

To determine studies addressing the use of sunglasses in airline pilots, keywords 

used were: ‘sunglasses’, ‘eye protection’, ‘UV protection’ with ‘pilots’ and ‘aircrew’.  

Additional searches were made through Google and Google Scholar to identify 

relevant journal articles.  Searches were also made through aviation medicine 

books, the International Civil Aviation Organisation, Federal Aviation Administration 

and the Civil Aviation Authority. 

 

Relevant papers from conferences and any relevant papers referenced from the 

original search were included.  The final electronic search was conducted on 21 July 

2014.  The paper by Chorley et al (2011) reviews the literature surrounding 

occupational ocular exposure to non-ionising radiation in professional civilian pilots.  

This included the majority of the studies described in this chapter. 

 

2.2 Aircraft windshield and visor transmittance 

One study was identified regarding the optical transmittance of cockpit windshields.  

Nakagawara et al (2007) measured the optical transmittance properties of eight 

windshields used in a wide range of aircraft types including Boeing and Airbus.  It is 

not stated whether these were front or side windshields.  All measurements were 

conducted at ground level.  The authors attempted to cut a sample from one of the 

available glass composite windshields, however crazing of the surface made 

transmittance measurements impossible. 

 

Three radiometers, sensitive to different regions of the spectrum, were used to 

measure the transmittance of the windshields for radiation in the wavelength range 

270 to 780nm in a laboratory setting.  Baseline readings without the windshield in 

place were taken between each measurement.  The authors measured two 

windscreens under laboratory and field conditions for validation purposes. 

Six windshields (from large commercial aircraft) were laminated glass with the 

remaining two being of single-layer polycarbonate material (from smaller general 

aviation aircraft).  The results showed that transmittance was less than 1% through 

both glass and plastic windshields from 280 to 320nm (UVB).  Transmittance varied 

between 0.41% and 53.5% from 320 to 380nm (UVA) with the plastic material 
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showing superior UV blocking.  For visible light between 400-600nm, the average 

transmittance was found to be over 80%. 

 

Although the UV wavelength ranges over which transmittance values were quoted 

differed from the normal ranges used (section 1.2), the study showed that a high 

percentage of UVA radiation was transmitted through some cockpit windshields.  It 

remains uncertain if the particular conditions at altitude, such as temperature, 

internal and external air pressure and use of windshield heating elements, would 

affect transmission.  The effect to pilot occupational exposure remains unknown.  

 

2.3 In-flight measurements 

Three studies were identified regarding non-ionising radiation levels within the 

cockpit during flight.  Diffey and Roscoe (1990) measured ultraviolet radiation 

exposure during flight using a ‘polysulphone film’ badge worn by pilots on the 

epaulette nearest to the side window.  Recordings were taken from the captain and 

first officer on 12 flights including long and short haul on a wide variety of routes 

worldwide.  The total exposure during flight was then measured from the badge 

although no details of this process were provided.  Further measurements were 

taken with separate badges at ground level ‘around noon’ from an unshaded 

horizontal surface in five locations worldwide. 

 

The sensitivity of the film was ‘confined principally to wavelengths less than 320nm’.  

No detail was given regarding the accuracy of measurement of the films, the range 

over which the films were sensitive or the protocol used to activate and deactivate 

the badges.  For calibration purposes, UV levels were also measured by the authors 

on one flight using a radiometer with a sensor with ‘similar spectral sensitivity’ to the 

badges although these data were not given. 

 

The results showed that all badges worn during flight had minimal exposure to UV 

radiation and were significantly less than readings taken outside at ground level.  

Although no statistical analysis was carried out, values were small and projected 

annual doses fell within recommended annual exposure for indoor workers. 

 

The second study by Roscoe and Diffey (1994) was a preliminary study of levels of 

blue light within the cockpit.  Measurements were taken using a radiometer sensitive 

to 370-520nm during a one sector flight on a Boeing 767 from London to Spain.  The 
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authors state that 50-60% of blue light was transmitted through an Airbus A320 

windshield although this differed from the aircraft type used in their study. 

 

A series of readings were taken during climb, cruise and descent with the sensor in 

various directions.  Wide variances in readings were found depending on the 

direction of the sensor but little effect was found with altitude.  Results were within 

recommended ‘threshold limit values’ defined by the American Conference of 

Governmental Industrial Hygienists.  However, these limits are based primarily upon 

the threshold irradiance levels to produce acute photokeratitis (World Health 

Organisation, 1993).  No statistical analysis was carried out and it is not known if the 

results were clinically significant.  The authors comment that ocular exposure in 

flight may be higher due to a slightly nose up aircraft attitude during cruise 

compared to a marginally stooped human posture on the ground. 

 

Recommendations for sunglasses with less than 10% transmittance of blue light 

were made.  It was not clear how this was derived based upon the data.  The 

authors acknowledge that this was a preliminary study, however no further 

published work was found. 

 

The third publication by Chorley et al (2014) describes the equipment used in this 

study and the considerations required for in-flight measurements.  This information 

is also described in chapter 5.  Some in-flight data is also presented in this paper 

which is presented, together with all other in-flight data in chapter 6. 

 

2.4 Ocular effects of chronic UV/blue light exposure 

The areas of the body at most risk of excessive exposure to UV are the eyes and 

the skin (World Health Organisation, 2006).  Less than 1% of UV radiation below 

340nm reaches the retina; the remainder is absorbed by the cornea and lens.  This 

means that most UV is absorbed by the anterior structures of the eye, the cornea 

and lens, which are therefore most at risk of damage.  There is evidence to suggest 

that long term exposure is sufficient to disrupt its structure (section 2.5).  Doses for 

UV and blue light are likely to be increased where there is good visibility with less 

atmospheric pollutants, where there is a lower solar elevation angle closer to the line 

of sight and where there may be surface reflections present such as from snow 

(Hietanen, 1991). 
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It is known that intense exposure to UV can disturb the cornea, which absorbs all 

UV below 300nm and 40% of UV at 320nm (World Health Organisation, 1993).  This 

can cause an acutely painful inflammation of the cornea, known as photokeratitis.  

This has not been reported within the cockpit as the UV levels from a broadband 

source such as the sun are not sufficiently intense to invoke this response.  It 

generally occurs following insufficient eye protection where sunlight is reflected from 

snow or during electric arc welding (Sliney, 2002).  A large body of evidence 

supports the proposition that long term exposure to UV is a risk factor for cataract 

(Cruikshanks et al, 1992; Delcourt et al, 2000; McCarty et al, 2000).  UV induced 

cataracts are likely to arise through oxidative stress causing increase in reactive 

oxygen species (chemically reactive molecules which can, in turn, cause damage to 

the lens DNA and cross-linking of proteins) (Brown and Bron, 1996).  It is 

recognised that cataract development is multi-factorial with age being a strong risk 

factor and with other reported risk factors including cigarette smoking, diabetes, 

nutrition, obesity, genetic factors, steroids and alcohol (Aspell et al, 2005).  There is 

a higher risk of cortical cataract with UVB exposure consistent through different 

study designs, different populations and varying levels of other known risk factors 

(McCarty and Taylor, 2002).   

 

Radiation incident to the eye at a peripheral angle is focused by the cornea on the 

nasal limbus and nasal lens cortex.  At the limbus, the peak was found at an angle 

around 120° from the normal plane causing an 18.3 increase in UVA (Kwok et al, 

2003).  For the lens, a peak intensity of 8.6 times increase at an angle of 84° was 

found (Kwok et al 2004).  This effect, known as the Peripheral Light Focusing (PLF) 

effect offers explanation as to the higher prevalence of early cortical cataracts in the 

lower nasal quadrant (Wolffsohn, 2013).  Although there is only weak evidence for 

any association of UV exposure with other ocular surface conditions (World Health 

Organisation, 1993), the PLF effect may offer further explanation as to the nasal 

location of pterygium (Coroneo, 2011). 

 

A multi-centre study by Brilliant et al (1983) assessed the presence of cataract in 

30,565 life-long residents of Nepal and found a positive correlation (r=0.563, 

p<0.001) between cataract and increased sunlight exposure.  Surprisingly, there 

was a negative correlation of similar magnitude between altitude and cataract 

prevalence, which the authors attribute to tall neighbouring mountains blocking the 

sun. The authors did not consider other potentially confounding factors, such as diet.  
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Increasing evidence (Young, 1988; Taylor et al; 1992, Algvere et al; 2006) supports 

an association between solar radiation exposure and the risk of age-related macular 

degeneration (AMD).  This condition involves degeneration of the photoreceptors in 

the macula area of the retina (Millidot, 1990) and is the most common cause of 

irreversible visual loss in the developed world in individuals over 50 years of age 

(Kanski, 2007) and which is likely to become more prevalent with an ageing 

population.  Taylor et al (1992) found that, in a population of watermen, those with 

advanced dry AMD had significantly higher exposure to predicted blue or visible light 

but no difference with regard to UVA or UVB exposure.  Deep blue light has been 

described as being 50-80 times more efficient at causing photoreceptor damage 

than green light (Voke, 1999).  This ‘blue light hazard’ has an excitation peak around 

440nm (due to the photobiological action spectrum).  The degree of retinal exposure 

is affected by eye movements, pupil size, transparency of ocular media and 

aversion responses (Parisi et al, 2004). 

 

Although some of the evidence is limited by the use of animal models (section 2.5), 

there is persuasive evidence that long term exposure to high levels of solar radiation 

is a factor in photoreceptor damage and a plausible mechanism for the damage has 

been identified (Ham et al, 1976; Pang et al, 1998; West and Schein, 2005).  

 

There is increased risk of late AMD following cataract removal and lens implant 

(Algvere et al, 2006) as the crystalline lens absorbs an increasing proportion of 

shorter wavelength visible light during cataract development.  UV and blue light 

hazard blocking filters have been shown in animal models to significantly protect 

against retinal damage.  Intraocular lens implants with short wavelength filtering 

properties are being used increasingly.  Additionally, it has been proposed that a 

sensitivity to glare and poor tanning ability increase AMD risk (Darzins et al, 1997).  

Outdoor leisure time has been significantly associated with an increased risk of early 

AMD in later years (Cruikshanks et al, 2001).  The risk of eye conditions such as 

cataracts, pterygium and macular degeneration may be reduced by the reduction in 

human exposure to UV (Young, 1994). 

 

The presence of cataracts have the potential to cause disability glare through 

increased intra-ocular scatter and reduced retinal image contrast (Brown, 1993).  

Retinal macula pigment has not been found to decrease significantly with age (Cuilla 

and Hammond, 2004) but is reduced in those with macular degeneration.  

Discomfort and disability glare have been shown to be increased with reduced 
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macula pigment (Stringham et al, 2011).  Additionally pupil size, which generally 

decreases with age, is associated with higher level of discomfort glare (Stringham et 

al, 2011).  These factors mean that older pilots are more likely to be affected by 

glare.   

 

2.5 Biochemical mechanism for retinal damage 

There is a large amount of published research into the effect of UV and visible light 

on the retina and there are three independent mechanisms by which retinal damage 

can occur.  These are known as photomechanical, photothermal and photochemical 

processes. 

 

Photomechanical damage can occur following high irradiances of short duration 

which in turn can generate shock waves causing permanent retinal tissue damage. 

Other types of damage may occur when photon energy is absorbed by the retinal 

tissue.  For this to occur, the photon energy must be equivalent to the energy 

difference between a retinal molecule’s energy state and a higher energy level 

excitation state.  In the photothermal process, collision of molecules as energy is 

dissipated causes an increase in temperature which, if sufficiently great, can cause 

irreversible tissue damage.  Photothermal damage generally occurs after short (less 

than 1 second) exposures (Youssef et al, 2011).   

 

Photochemical damage is associated with longer duration exposure times and 

exposure to shorter wavelength light.  It is reported to be the most common 

mechanism involved in retinal light damage (Youssef et al, 2011).  Photons interact 

with chromophore molecules in the retina and retinal pigment epithelium (RPE) and 

cause electrons to be changed from a ground to an excited state.  Where there are 

more photons of energy capable of causing this change, a greater probability exists 

that this process occurs.  Thus, photochemical reactions are dose dependent 

(Mellerio, 1994).  Electrons may return to their ground state, releasing the energy 

previously absorbed.  However, other interactions involve the generation of free 

radicals.  These are formed where a bond is split in another molecule causing the 

production of an unstable singlet oxygen species.  These free radicals can cause 

permanent damage to other molecule types including neurosensory retina and RPE 

(Wu et al, 2006). 
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There are two classes of photochemical damage described in the literature.  Both 

types of photochemical damage have been extensively studied in animals with 

various thresholds for retinal damage caused by factors such as diurnal or nocturnal 

species, axial length (Ham & Mueller, 1989) or animal rearing environment 

(Organisciak & Vaughan, 2010).  The data in humans is more limited and care must 

be taken in extrapolating findings in animal studies to humans.  

 

Type I photochemical retinal damage from chronic exposure to bright light (Noell et 

al, 1966; Mellerio, 1994) has been described and it has been suggested that  

prolonged bleaching of rhodopsin causes photoreceptor damage (Organisciak and 

Vaughan 2010).  This damage is linked to light interaction with rhodopsin within the 

retinal photoreceptors.  Its action spectrum corresponds well with the spectrum of 

the visual pigments (Noell et al, 1966) and it is likely to involve large areas of the 

retina. 

 

ICNIRP state that the exposure conditions in animal experiments to produce Type I 

damage were extreme and would exceed those levels experienced by humans to a 

broadband source.  Therefore no exposure limits are recommended by ICNIRP for 

type I (Noell) damage. 

 

Type II damage was described initially by Ham et al (1976) and is characterised by 

shorter exposure times to higher irradiances with an action spectrum which peaked 

towards short wavelength visible light.  Typically, this damage results in a smaller 

area of retinal damage as the incident radiation has had to be collimated to produce 

retinal damage in a laboratory setting (Youssef et al, 2011).  Type II retinal damage 

shows clinical signs that bear close resemblance to the early stages of AMD (Ham 

and Mueller, 1989). 

 

It is thought that blue light damage may be the result of a number of processes, 

(Ham et al, 1976) and this is supported by subsequent literature (Mellerio, 1994), 

however it does appear to involve the production of free radicals, particularly 

oxygen.  Melanin, which is found in the RPE, protects its cells from oxidative 

damage.  It has been suggested that ageing and years of daily light doses can 

cause the anti-oxidant properties of melanin to decrease which in turn increases the 

risk of retinal damage. 
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The macular pigments lutein, zeaxanthin and meso-zeaxanthin are reported to offer 

retinal protection through absorption of higher energy blue light (Youssef et al, 

2011).  The absorption spectrum peaks at 460nm and it is estimated that 

approximately 40% of visible blue light is absorbed by these macular pigments 

(Loane et al, 2008).  Individuals with higher levels of macular pigment are reported 

to be at lower risk of AMD (Kaya et al, 2012). 

 

An elevation in body temperature reduces the repairing capacity and subsequently 

reduces the threshold for photochemical damage (Mellerio, 1994).  Susceptibility to 

photochemical damage may vary depending on the point on the circadian cycle at 

which exposure is received.  In animal experiments, Duncan and O’Steen (1985) 

showed that greatest retinal damage occurred with exposures at the end of dark and 

beginning of the light cycle. 

 

2.6 Effects of cumulative dose 

Photochemical damage is reported to be both dose dependent and cumulative in 

nature (Youssef et al, 2011; ICNIRP, 2013).  Albert et al (2010) showed progressive 

stages of retinal degeneration and choroidal neovascularisation in albino rats 

following long-term cyclic light exposure of up to 6 months.   

 

It has been shown that repeated exposures below levels at which retinal damage 

would be expected to occur during a single dose, can still cause retinal damage.  

Noell et al (1966) showed that while a 5 minute exposure to light caused no 

significant damage to retinae in rats, four separate 5 minute exposures separated by 

a one hour recovery caused significant retinal damage.  Additionally Greiss and 

Blankenstein (1981) suggested a cumulative dose effect of retinal exposures for up 

to 4 days based on approximately 17 minute exposures of blue light to rhesus 

monkeys.  The authors suggest a formula to provide an estimation of a revised 

exposure limit in cases of repeat exposure within four days.  However, the 

cumulative effect of repeated doses are unlikely to be additive for a number of 

reasons including the effect of aversion responses and the potential of retinal repair 

between exposures (Mellerio, 1994).  It is reported that where incident radiation 

destroys molecules faster than they can be repaired, the net effect will be an 

increase in damage.  Where exposure times are long and irradiances low, the repair 

process may balance the damage mechanisms, known as photostatis (Penn and 
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Williams, 1986).  The presence of raised levels of retinal lipofuscin may predispose 

the retina to photochemical damage (Loane et al, 2008). 

 

Numerous publications have explored the relationship between long term light 

exposure and changes seen to the central retina including pigmentary changes to 

the RPE, drusen, macular oedema and AMD (Ham and Mueller, 1989).  The 

conclusion drawn is that prolonged light exposure affects the phagocytic ability of 

the RPE with accumulation of cellular debris around Bruch’s membrane (Ham and 

Mueller, 1989). 

 

Due to difficulties in research into lifetime light exposure and the risk of retinal 

damage and AMD, studies have used proxies including sun avoidance behaviour, 

iris colour, skin tone, facial wrinkles and history of severe sunburn or skin cancers to 

estimate overall solar exposure.  Results for sunlight and AMD are inconclusive 

even in large scale studies such as the Beaver Dam Eye study (which found a 

higher incidence of RPE changes in blue eyed individuals) (Cruikshanks et al, 1993) 

and Blue Mountains Eye Study (which found no association in 5 year longitudinal 

data) (Wang et al, 2003).  Additionally, the applicability of the use of proxies would 

be questionable for a pilot population who occupationally are receiving solar 

radiation filtered by the windshield.  

 

2.7 Prevalence of UV/blue light exposure related pathology in 
pilots 

Four studies were found investigating the presence of cataracts in airline pilots.  No 

studies assessing the incidence of other UV related conditions including AMD in 

pilots were found. 

 

Nicholas et al (2001) investigated self-reported disease rates among 6,609 active 

and retired American and Canadian airline pilots from two airlines through 

questionnaires.  Data collected included age, gender, race, start and end years for 

commercial flying, lifestyle questions, presence of cataract, cancer and non-cancer 

disease endpoints.  The authors utilised an estimated standardised incidence ratio, 

using the length of time as a commercial pilot, to compare their data with available 

data from the general United States population.  It was acknowledged that this could 

induce error as self-reported data in the pilot group was compared to record-based 

data in the control group.  Additionally, the study group would have had to be free 
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from disease at their initial medical and may not be representative of the general 

population. 

 

A significantly higher incidence of cataracts in the pilot population was found.  It was 

unclear how the authors or subjects defined cataract or how the questionnaire was 

worded in order to collect these data.  The type or grade of cataract present was 

also not known.  The authors found a significantly higher rate of motor neuron 

disease, which they felt was due to inaccuracy of pilot reporting.  This may raise 

some doubt over the accuracy of the other data. 

 

Rebok et al (2007) studied a cohort of 3,019 male pilots (age 45-54 years) 

retrospectively over a 10-year period.  Data were collected through the United 

States aviation medical records system.  The research aim was to identify age-

related visual problems.  The study contained no control group and therefore no 

comparison could be made to the general population.  The authors aimed to assess 

the risk of visual problems with flight experience and age through parametric 

modelling. 

 

Data were collected on a wide range of ocular pathologies and grouped into broad 

categories.  The most prevalent visual pathology was ‘corneal problems’.  No further 

details were given and it is unknown if any were attributable to UV exposure.  

Cataract was the third most common visual disorder.  No details of type or grade of 

cataract were given.  For analysis, all data were combined to give a relative risk of 

‘visual problems’ with flight experience.  With regard to the presence of UV related 

pathology, it can only be concluded that cataracts were present in some pilots. 

 

Kagami et al (2009) conducted a retrospective cohort study over a 12-month period 

to determine the prevalence of cataract in 3,780 Japanese airline pilots.  Medical 

records were examined by one of the authors for the presence of cataract.  Those 

cases detected had further data collected including age at diagnosis and 

aeromedical decision outcome.  The cataract type was classified by the authors 

based upon the documented appearance on record.  It is not clear if this diagnosis 

differed from that of the original examiner and no inter-observer reliability measures 

were taken.  Cataracts were documented as congenital or secondary/age-related. 

 

The authors compared their results to a Japanese population study and concluded 

that the prevalence of cataracts in the pilot population was ‘significantly lower’ than 
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the general population.  The most common age-related cataract detected was 

cortical followed by nuclear.  No raw data were given and no statistical analysis was 

conducted.  The authors question whether the pilot population is healthier than the 

general population but conclude that early cortical cataract at aeromedical 

examination may be missed as routine dilated eye examination was not carried out.  

It is not known how these data compare to pilots of mixed racial origin as in the UK.   

 

Rafnsson et al (2005) conducted a population based case-control study using 71 

pilots and 374 controls.  Cataracts were quantified and graded according to World 

Health Organisation classification and all participants completed a lifestyle 

questionnaire.  Cumulative cosmic radiation doses were estimated for the pilot 

group.  Cosmic radiation consists of ionising sub-atomic (mainly proton and alpha) 

particles that do not form part of the electromagnetic spectrum.  A higher prevalence 

of nuclear cataracts was found within the pilot group, which was attributed to cosmic 

radiation.  The two groups were not age-matched and the study group had a higher 

prevalence of smoking, a risk factor for nuclear cataract (Kelly et al, 2005).  No 

acknowledgement was made in the paper of the potential effect of UV radiation to 

the pilot population.  Criticism was received (Facius, 2006) as the authors’ estimated 

cosmic radiation doses were argued to be comparable with normal background 

levels. 

 

Hammer et al (2009) reviewed the evidence of cancers in aircrew.  An 

approximately two fold increased risk of melanoma was found in cohort studies.  A 

weak link was found to cosmic radiation but an established link was present 

between UV exposure and melanoma and non-melanoma skin cancers.  A recently 

published meta-analysis of melanoma in airline pilots and cabin crew (Sanlorenzo, 

2014) found a standardised incidence ratio for melanoma of 2.22 (p=0.001) for 

pilots.  It was suggested that this increased incidence in pilots was due to 

occupational exposure.  Dos Santos Silva et al (2013) assessed the incidence of 

cancers in 7,878 flight crew and 1,822 air traffic controllers based on aviation 

medical records and the results of postal questionnaires assessing lifestyle and 

demographic variables.  Skin melanoma showed a higher incidence in both 

occupations and showed increasing incidence rates with flying hours (p-trend = 

0.02).  Further analysis between the two occupations showed no significant 

difference in melanoma incidence rates.  Skin type and sunbathing habits were 

reported as the strongest risk predictors. 
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2.8 Use of eye protection by professional pilots 

There was one publication on this topic (Chorley et al, 2013) which was written 

following the results of the interviews described in chapter 4.  There were no other 

studies investigating pilot use of sunglasses were identified in peer-reviewed 

journals.  A number of articles published in aviation magazines and electronically 

were identified.  These articles (Dully, 1990; Federal Aviation Administration, no 

date; Spencer 2003a; Spencer, 2003b) aim to offer guidance to a pilot or medical 

examiner and are summarised in Table 2-a together with the CAA guidance material 

(Civil Aviation Authority, 2008). 

 

Source CAA guidance 

material, 2008 

Dully,1990 FAA guidance, no 

date  

Spencer, 2003 

Lens material Not stated Glass or polycarbonate CR39 plastic or 

polycarbonate 

CR39 plastic, glass 

or polycarbonate 

Tint colour Grey or brown 

Graduated tint 

may be useful 

One that allows short 

wavelength blue block, 

no colour distortion, 

contrast enhancing 

without misrepresentation 

UV blocking grey, 

gray-green or brown 

No appreciable 

colour distortion 

Grey, green or 

brown 

Graduated tint may 

be useful 

Tint absorption Up to 80% Up to 75% 70-85% 80-85% 

Spectacle frame Well fitting  Sturdy, comfortable, 

compatible with 

headset 

Comfortable fit 

Photochromic 

lenses 

Discouraged Inappropriate Discouraged Try before buying 

Polarising lenses Discouraged Inappropriate Inappropriate Inappropriate 

Other 

recommendations 

Graduated tint  

Lens large 

enough to allow 

sufficient 

protection from 

oblique sunlight 

Optimum tint will vary 

between individuals More 

than 1 tint may be 

needed during flight. 20% 

absorption yellow tint in 

low visibility 

Small lenses not 

practical 

Large lens 

Tint should not 

completely block 

part of the visible 

spectrum 

Table 2-a Summary of published material offering advice to pilots selecting 
sunglasses 

 

Within the cockpit, the effectiveness of photochromic lenses, which react to UV 

radiation, may be reduced due to absorption properties of the windshield.  As the 

lenses take longer to lighten, they may not react rapidly enough when descending 

through cloud.  As polarising lenses allow through light’s transverse wave motion in 

only one direction (Millidot, 1990), they can cause distortion patterns from some 

laminated cockpit windshields, render certain liquid crystal display (LCD) 

instruments invisible, alter cloud appearance and reduce ground reflections useful 
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for pilots.  All authors recommend against the use of polarised lenses by aircrew and 

warn against the potential drawbacks of photochromic lenses. 

 

Rosenthal et al (1988) assessed the UV protection qualities of 32 pairs of ‘discount 

price’ sunglasses (16 glass and 16 plastic) purchased from drug stores in the United 

States.  Measurements were taken with two separate UV detectors and a 

radiometer.  A manikin head was used with a detector placed at the eye position 

behind a 4mm and 10mm aperture.  Readings were taken in natural daylight in a 

horizontal plane with and without sunglasses.  Measurements were taken with the 

sunglasses fitted against the manikin forehead and repeated ‘approximately 6mm’ 

away. 

 

Results showed that UV exposure ranged from 0.8 to 14.1% with no difference 

between glass and plastic lenses.  At the 6mm position, the exposure ranged from 

3.7 to 44.8%.  No statistical analysis was presented, however the study did highlight 

the importance of frame fitting on sunglass selection.  Increased exposure to UV 

(295-350nm) was also measured by Rosenthal et al (1986) where prescription 

spectacles were moved to 6mm away from a manikin forehead. 

 

2.9 Research underpinning pilot marketed sunglasses 

Due to the lack of research evidence as to the levels of irradiance received during 

flight or the prevalence of non-ionizing radiation related ocular pathology in the pilot 

population, the need for a pilot to use sunglass filters with higher attenuating 

properties than the current standards such as ISO, cannot be substantiated. 

Whilst it would seem logical that sunglasses should be lightweight, offer a 

reasonably low luminous transmittance and offer good protection from peripheral 

radiation, only this researcher has produced a peer-reviewed scientific publication 

addressing common issues with sunlight that pilots encounter during flight.   

 

2.10 Discussion 

Decreasing (shorter) wavelength radiation has progressively more energy per 

photon.  Certain wavebands are associated with a higher risk of cellular damage 

through photochemical reactions.  The effect of solar exposure on ocular health has 

been extensively researched and there is strong evidence that UV radiation 

exposure is a risk factor for cortical cataract formation (Cruikshanks et al, 1992; 

McCarty and Taylor, 2002; World Health Organisation, 1993).  The presence of 
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cataract, even in early stages, can affect visual performance particularly in low light 

conditions.  It can reduce visual acuity as measured by a standard visual acuity 

chart, it can reduce the ability to see objects that have low contrast against their 

background (Bennett, 2007) and glare may become troublesome because the 

cataract causes intraocular light scatter. 

 

There is no strong evidence in the literature indicating an increased prevalence of 

cataracts in airline pilots.   In particular, no study questioned pilots on their use of 

optical correction and sunglasses.  There is increasing evidence of retinal damage 

with prolonged UV or blue light exposure (Algvere et al, 2006; Cruikshanks et al, 

2001; Young, 1998), however there is no evidence available in the literature of the 

prevalence of AMD in civilian aircrew.   

 

Nakagawara et al (2007) demonstrated that at ground level, many airline cockpit 

windshields transmit a higher percentage of light of wavelength over 320nm (UVA) 

but effectively block UVB.  This does offer one explanation of the finding by Diffey 

and Roscoe (1990) that pilots were exposed to insignificant levels of UV.  The 

detectors used in the study were sensitive to wavelengths below 320nm, however 

these frequencies would have been blocked by the windshield assuming it to be a 

similar design to that measured by Nakagawara et al (2007).  Roscoe and Diffey’s 

1994 study was not followed up yet requires further data to address the variation of 

blue light in flight under differing conditions. 

  

With a projected increase in UV in excess of 170% at cruise altitude compared to 

sea level, the transmission properties of airline windshields at altitude are likely to be 

important but remain uncertain.  Whilst it seems likely that UVB radiation remains 

negligible in the cockpit at altitude, significant levels of UVA and short wavelength 

light around the blue light hazard (440nm) may be present.  If this hypothesis is 

confirmed experimentally, any occupational risk to ocular health will be best 

assessed using ICNIRP exposure limit guidelines.  

 

Many pilots are required to wear corrective spectacles in order to meet the 

regulatory vision standards for flying.  A degree of UV protection is offered from 

untinted prescription glasses.  Where pilots choose to wear prescription sunglasses 

in situations of bright light and glare, further enhanced eye protection should be 

afforded.  Additionally, the use of aircraft sunshields and protective headwear may 

further control the level of short wavelength light entering the eye.  Pilots flying in 
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daylight hours are exposed to solar radiation often for periods of many hours during 

a flight.  Reflectance from cloud tops is likely to increase incident solar radiation.  

Pilots are protected by the aircraft windshield, which ideally should absorb most 

ultraviolet radiation but there is very little data to show they reliably do so.  There is 

no standard for the optical transmittance properties of aircraft windshields. 

 

2.11 Research question 

Based on the evidence of increased irradiance at altitude and the gaps in knowledge 

discovered regarding both pilot ocular pathology and measured exposure, a 

research question was generated.  This is: “Is there a risk to the ocular health of 

airline pilots from exposure to UV and short wavelength blue light during flight?” 

 

It is recognised that the research question would be influenced by a number of 

factors.  Therefore a series of research aims were established which together would 

address the research question.  These aims are as follows: 

- Establish the extent to which sunlight may be an issue to commercial pilots 

and to explore the range and frequency of eye protection used. 

- Measure light spectra and irradiance during flight within the cockpit with 

particular reference to irradiance at the pilot’s eyes. 

- Assess the effectiveness of those sunglasses used by pilots during flight 

- Produce the data to inform evidence-based guidelines to pilots on sunglass 

and prescription lens selection. 
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3. Chapter 3 Research Design 

CHAPTER OVERVIEW 

This chapter introduces the ontological and epistemological stance for this research 

and introduces a series of objectives which together aim to address the research 

question.  These objectives translate into three main project research phases.  The 

results of one phase may inform the methods of a subsequent phase or contribute to 

answering the research question.  A summary of how these phases and project 

components interlink is introduced together with the format for subsequent chapters.  

 

3.1 Philosophical framework 

Scientific research involves the systematic study of the phenomena of interest by 

detailed observation using the senses and often aided with the use of technical 

instruments (Bowling, 2009).  Accurate measurement is essential and should be 

taken under controlled conditions to minimise any contamination of results by 

external factors.  These may include experimenter bias or inaccuracies in 

equipment.  Research should strive to obtain freedom from bias and demonstrate 

rigour in that it shows validity and is repeatable.  Validity can be demonstrated by 

ensuring that the methods and instruments used measure what is intended. 

 

The development of the research design has been formulated by deductive 

reasoning as the initial pilot enquiries described in section 1.1 led to a hypothesis 

and research question which would be tested by data gathering and analysis.  The 

ontological and epistemological stance of the researcher is a positivist one in that it 

is felt that there is a single objective reality (Bowling, 2009) and that the areas of 

interest in order to answer the research are measurable and can be tested using 

data.  The results should therefore be undistorted by the researcher as objective 

systems of measurement were used.  

 

3.2 Research objectives 

There were a number of important factors which would influence the area of 

research.  A study designed to address only one aspect would not be able to 

satisfactorily answer the research question.  Three sub-part questions were 

formulated which it was felt together would comprehensively address the research 
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question: “Is there a risk to the ocular health of airline pilots from exposure to UV 

and short wavelength blue light during flight?”  These sub-part questions were: 

1) What are the eye protection practices employed by pilots during flight and 

how commonly are they used? 

2) What typical ocular irradiance is received during flight? 

3) How effective are the typical sunglasses used in reducing the pilot’s 

occupational ocular irradiance? 

From these, a series of related yet independent studies were designed using 

different research methods.  The research has been categorised into three distinct 

phases.  Phase 1 addressed sub-part question 1, the aim of phase 2 was to answer 

question 2 while phase 3 addressed question 3.  The data required was 

predominantly quantitative in nature. 

 

3.3 Structure of research 

A diagrammatic summary is provided on the next page which details the 

components of each research phase.  The summary also demonstrates the 

proposed outcomes from each phase and how this may assist in answering the 

research question or informing the methods of another component of the research.  

The summary also shows the methods used in the research and the numbers of 

participants, flights or aircraft involved during the data collection. 

 

In order to gain insight into the solar protection practices of professional pilots 

operationally, some form of interaction with the pilots themselves was required.  

Phase 1 commenced with a series of semi-structured interviews exploring the issues 

for the pilot of sunlight in flight, the use of sunglasses and of other eye protection 

habits.  The results of these interviews informed the development of a questionnaire 

completed by a large number of professional pilots.  In addition to sunglass use, the 

questionnaire also investigated the use of other eye protection strategies, the pilots’ 

flying background, the type of sunglasses worn and issues with their use, the 

prevalence of ocular non-ionising related pathology and pilot concerns regarding 

occupational exposure and eye health.  An audit of CAA medical records was also 

undertaken to determine the number of UK professional pilots, the prevalence of a 

spectacle requirement and the prevalence of ocular non-ionising related pathology 

reported or found at medical examination.  These studies comprise phase 1 which is 

described in chapter 4. 
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Figure 3-a Diagrammatic summary of research including methods used, size of sample and proposed outcomes. 

Phase 1 – Solar eye protection habits of professional pilots Phase 3 – Sunglass transmission  Phase 2 – Spectral irradiance measurements  

measurements  

 

 

 
Interviews 

One to one interviews 

with CAA pilots 

 

Audit 

CAA medical 

records 

 

Sunglass Measurements 

Spectral transmission 

measurements from new 

and used pilot sunglasses 

Measurements during flight 

Spectral irradiance of UV and 

visible light 

22 completed, 

transcribed 

and analysed 

Inform questionnaire 

sample size, assess 

questionnaire 

reliability 

11 aeroplane sectors 

(European and trans-Atlantic) 

and 4 helicopter flights on 

various aircraft types 

Questionnaire 

Designed, piloted 

and administered 

Outcome 

Establish pilot 

eye protection 

habits 

Outcome 

Prevalence of 

UV/blue light 

related ocular 

pathology 

Outcome 

Establish types 

of sunglasses 

currently used in 

flight 

Outcome 

Assessment of 

effectiveness 

in cockpit 

environment 

Comparison 

of 

sunglasses 

used 

Outcome 

Establish level and 

increase of UV and 

blue light at altitude 

Outcome 

Comparison of levels of 

ocular exposure during flight 

to sample office workers and 

guideline limits 

Overall study recommendations 

Evidence based guidance to professional pilots regarding sunglass selection 

Development of protective tint for spectacle wearers compatible with night flying 

Education of pilots on potential exposure levels and effects to eye health 

Changes to aircraft windshield properties 

Improvements to cockpit sun protection systems 

34 used and 20 new 

pairs of sunglasses 

measured 

Measurements 

at office 

workstations 

Ground measurements 

transmission of aircraft 

windshields and visors 

Measurements taken 

from 15 aircraft of 

various types 

Outcome                     

Assessment of risk of ocular 

damage through occupational 

non ionising radiation exposure 

Questionnaire 

Completed by 2,967 

participants 

Measurements 

taken over 7 days 

at 3 workstations 
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For phase 2, an observational study was not valid to measure spectral irradiance 

levels as the human eye is not able to assess the spectral components of a 

broadband source, is not sensitive to UV radiation and cannot reliably quantify the 

intensity of radiation.  Therefore specialised equipment was required in order to 

measure irradiance levels across a spectrum.  The equipment used was a 

spectrometer and is detailed in chapter 5.  Irradiance measurements were captured 

throughout a number of commercial aeroplane and helicopter flights in order to 

ascertain potential pilot ocular exposure and are described in chapter 6.  In order to 

offer some comparison of ocular exposure, a series of spectral irradiance 

measurements in an office environment were undertaken.  This forms chapter 7 

whilst chapter 8 describes the results of a series of ground transmittance 

measurements captured from various aircraft windshields, visors and blinds in order 

to assess likely ocular exposure in a wider range of aircraft. 

 

Phase 3 consists of a series of transmittance measurements through sunglass 

filters.  These are measurements from both used pilot sunglasses and new 

sunglasses typically worn by pilots.  Using the knowledge gained in chapter 6, the 

filtering effectiveness of the sunglasses in flight can be ascertained.  Chapter 9 

describes phase 3 of the research.  An appraisal of research methods is described 

within each relevant chapter. 

 

3.4 Interpretation of results 

Although this research contains mixed methods, it should be considered as a series 

of smaller studies with the results of one part informing other parts or adding direct 

value to addressing the research question. 

 

For example, the results of the interviews were used to inform the development of 

the questionnaire.  The results of the questionnaire informed the selection of 

sunglasses for phase 3 as well as directly providing data to address the research 

question.  The results of irradiance measurements determined the level of protection 

that will need to be afforded by sunglasses.  The research was not considered to be 

true mixed methods (Gelling, 2014) and therefore has not been subject to a typical 

documented means of triangulation (Murphy et al, 2014). 
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3.5 Ethical considerations 

3.5.1 Phase 1 

In addition to formal ethical approval (section 3.5.4), approval for approaching select 

CAA staff for interview was sought and given by both the Chief Medical Officer and 

Head of Flight Operations at the CAA.  The identified study group, who were all 

professional pilots, were sent research information sheets at the time of invitation 

(appendix D).  If agreeing to participate, the researcher discussed the content of the 

research information just prior to interview and a written consent form (appendix E) 

was signed by all participants.  Audio recordings of the interviews were saved as an 

anonymised electronic file and stored on the researcher’s password secured 

computer.  Subsequent transcripts were kept in a locked cupboard in the 

researcher’s office.  A separate electronic file was kept to track the participants 

interviewed and the file name to which the recording was saved.  Files are to be 

deleted after ten years (2021). 

 

Participants were free to withdraw from the study at any time without giving a 

reason.  If data had already been collected when a decision was made to withdraw, 

it would have been deleted.  It was recognised that interviews should be conducted 

in a quiet, mutually convenient neutral venue (Oppenheim, 1992).  One of the small 

conference rooms available at CAA Aviation House was used.  It was stressed on 

the information sheet and at the start of the interview, that other ocular or general 

medical concerns would not be discussed and that these issues should be raised at 

either the next routine renewal aviation medical or, if significant injury or illness 

involving incapacity to function as a member of flightcrew, in writing to the medical 

department as laid out in the Joint Aviation Requirements (JAR-FCL 3, 2006).  

These were the European aviation medical standards at the time of data collection. 

 

Pilots are an informed group and, by definition, would have passed an examination 

in air law during flight training.  The CAA’s routine work is regulation and 

enforcement.  Pilots breaching medical regulations are normally managed by 

advice, as typically their transgression is not intentional.  Although considered 

unlikely, a case of willful transgression of a medical regulation by a participant could 

be prosecuted by the CAA.  However, a transgression of medical regulation would 

not be managed any differently whether the pilot was in or outwith this study. 
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For the questionnaire, research information was given at the start of the survey.  

This included some background information regarding the research, assurance that 

results were only to be used for research purposes, that participation was voluntary 

and that data would be appropriately managed (appendix F).  Participants would be 

considered to have given implied consent if they, having been presented with the 

study information, had gone on to complete and submit the questionnaire.  

 

3.5.2 Phase 2 

The main ethical consideration for in flight measurements is that of ensuring that 

flight safety is maintained.  Prior to the formal research ethics application, a risk 

assessment document was drawn up in consultation with spectrometer equipment 

manufacturer detailing the technical specifications of the equipment, its proposed 

use in the cockpit and any foreseeable areas in which an effect to aircraft systems 

could occur (appendix G).  This document provides the basis from which airlines, 

aircraft engineers and flight crew can assess its compliance to fly.  On the day of 

each data collection, the researcher would be prepared to remove equipment or not 

be permitted on board if there were any safety concerns or overriding operational 

requirements. 

 

It was important to ensure that the researcher gained airport airside security 

clearance so as not to impede potential access to aircraft.  Additionally, it was 

recognised that appropriate study approval (appendix H) and equipment information 

(appendix G) documents should be carried and presented if required, at airport 

security.  

 

3.5.3 Phase 3 

A consideration specific to phase 3 was that the pilot must give consent to loan of 

their sunglasses for measurement. The researcher should ensure that care is taken 

of the sunglasses during data collection and that they are returned in no worse 

condition and in a timely manner.  

 

3.5.4 Research ethics approval 

A research proposal covering all three phases of the research was submitted to 

London South Bank University and the Institute of Optometry Research Ethics 
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Committees.  Letters of approval were received from both Research Ethics 

Committees and are shown in appendices I and J respectively. 

 

3.6 Summary 

A series of objectives have been described which will be addressed in three phases 

in order to answer the research question.  The anticipated research outcomes from 

each part have been described and contextualised within the overall research.  

Different methods are employed for each phase. 

 

Chapter 4 will describe the components of phase 1, that of the series of exploratory 

interviews which inform the questionnaire design, the questionnaire results and the 

results of the audit of the CAA medical records.  Chapter 5 will introduce the 

spectrometer and illuminance UV recorder equipment and describe their 

specifications, limitations, calibration and software.  Chapter 6 will describe how the 

equipment was used for measurements during flight and present the results from 

this part of project phase 2.  The remaining components of phase 2, that of office 

measurements and aircraft ground transmission measurements are described in 

chapters 7 and 8 respectively.  Sunglass transmittance measurements forming 

phase 3 of the research is described in chapter 9. 
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4. Chapter 4 Solar Eye Protection Habits of 
Professional Pilots (Phase 1) 

CHAPTER OVERVIEW 

This chapter covers the aspects as part of phase 1 of the research.  Firstly, a series 

of semi-structured interviews with experienced pilots to determine the range of sun 

protection practices will be described.  These results assist in informing the 

development and deployment of an online questionnaire to a large number of 

professional pilots which forms the main part of this phase.  Finally, an audit of CAA 

medical records will be described to determine the number of current UK 

professional pilot licence holders, the number with an endorsement for optical 

correction and the reported prevalence of non-ionising radiation related ocular 

pathology.   

 

4.1 Introduction and appraisal of methods for phase 1 

As the researcher was not involved in commercial flight operations, the logistics of 

gaining access to the operational cockpit environment across differing flight 

environments would be challenging.  This meant that the ability to conduct an 

observational study of pilot practices in flight was limited.  As the aim was to 

ascertain the eye protection habits of a large number of professional pilots across 

varying flight operations, it was felt that a questionnaire would be the most 

appropriate method to use. 

 

The CAA is the independent specialist regulator to the aviation industry and the 

researcher is an employee of the CAA.  If the industry regulator is seen to be 

collecting data, participants may not wish to fully disclose practices that may be 

seen to influence medical certification or career.  Even with appropriate reassurance 

in place, significant bias may still be present and a true picture of pilot practices may 

not be determined. 

 

To minimise bias and to optimise response rate, it was decided that the 

questionnaire should be internet based and that data would be anonymous.  

Therefore, no personal details (such as name, date of birth or CAA reference 

number) would be collected which could identify the individual respondent.  It was 

recognised that care would be needed to ensure that the questionnaire was targeted 

at professional pilots and not readily available for completion by other groups. 



63 
 

 

It was also recognised that careful attention should be paid to the visual appeal of 

questionnaire and the ease of which it can be answered and returned (Denscombe, 

2007).  There is some evidence to suggest little difference between responses from 

web-based and paper format questionnaires (Denscombe, 2006) however it may 

prove more difficult to apply effective study group targeting through a web-based 

questionnaire (Denscombe, 2007). 

 

The aim of the questionnaire was to elicit candid responses from a large number of 

current professional pilots as to the solar eye protection practices and issues 

encountered with bright sunlight in flight.  The questionnaire was to be designed to 

address the following broad areas: 

a) How much are sunglasses used and what are the factors affecting whether 

sunglasses would be worn? 

b) Are there issues encountered with managing bright light in the cockpit and 

what factors affect these? 

c) What other strategies are used in flight and how effective do pilots find 

these? 

d) What are the sunglasses used by pilots and are there common factors that 

are likely to make sunglasses successful in flight? 

e) What is the prevalence of UV related ocular pathology reported and are 

there eye health concerns within the wider professional pilot population.  

 

There was no previously validated questionnaire to address these questions and the 

range of eye protection practices was not known.  Although a newly designed 

questionnaire would be required, it would need a solid knowledge base of the range 

of eye protection habits likely to be encountered across various flight operations. 

 

It was decided that in order to inform the questionnaire, a series of interviews should 

be conducted using a small number of experts.  Expert interviews were described by 

Meuser and Nagel as a specific form of semi-structured interviews where the 

interviewees are chosen due to their expertise in a certain field of activity (Flick, 

2009).  A semi-structured approach applies a mixture of structured and open-ended 

questions in order to elicit more in-depth and wider ranging responses from 

participants (Bowling, 2009).   
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One way in which expert interviews can be successfully used is in exploration and 

orientation in a new field with the results to be used to prepare the main research 

instrument in the study (Bogner et al, 2009).  These types of interview place less 

importance on a person and more importance of the collective knowledge of the 

group on a specific topic.  It is recognised that this type of method is narrow in its 

objectives and may not lend itself to a single method approach (Oppenheim 1992), 

however this fitted well with the aim of this phase which was exploratory and whose 

purpose was to inform a larger scale research study.  It is also recognised that the 

interviewer has to have some familiarity of the topic to understand the degree of 

relevance of responses and be able to ask the right questions in order to probe for 

further information.  The researcher holds a private pilot’s licence and therefore has 

some experience of the operational aviation environment. 

 

It was decided that the study group would be current professional pilots employed 

by the CAA.  CAA Flight Operations Inspectors (FOIs) are experienced commercial 

and airline pilots who visit, observe and fly with commercial operators to ensure that 

safety standards are maintained.  In addition to having extensive flying experience 

themselves and flying with other professional pilots, they are also trained to observe 

other pilots.  They would therefore be in a position to comment not only on their own 

practices, but also on the practices of others.   

 

It was felt that one-to-one interviews were likely to reveal a richer data source than a 

focus group.  Both researcher and pilot would likely be more used to communicating 

on a one-to-one basis.  Focus groups may have been more difficult to manage and 

to keep on topic where all participants are colleagues within the same department, 

discussions could easily deviate into day to day work matters.  Additionally, the 

nature of their role at the CAA means that FOIs have limited time spent at CAA 

premises affecting the feasibility of organising group discussions.  Therefore, the 

research method of focus groups was excluded. 

 

Most FOIs undergo their routine annual revalidation medicals at the CAA 

AeroMedical Centre.  The researcher conducts the eye examinations at these 

assessments and has built a rapport with many of the FOIs.  It was anticipated that 

this study group should not hold misconceptions regarding the CAA that may be 

more prevalent within the general airline pilot community. 
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The interviews would focus on the issues of sunlight on the flight deck and the eye 

protection habits of participant during flight.  Questions were included to explore 

differences that may be apparent in various aircraft types and within other pilots.  

Some questions were designed to elicit any health concerns that the participant may 

have held related to exposure received on the flight deck.   

 

It was recognised that although the researcher was a clinician experienced in 

eliciting information from patients in a one to one environment, particular skills would 

be required to ensure questions were unbiased and that the interviewee had 

sufficient opportunity to describe relevant information within the conversation.  

Therefore, training and practice interviews with non pilots were conducted prior to 

data collection (section 4.4). 

 

4.2 Sample size for phase 1 

The number of participants eligible for interview was limited by the number of FOIs 

employed by the CAA.  This was 28 (aeroplane and helicopter) at the time of data 

collection.  It was anticipated that, as most FOIs would know the researcher, 

response rate would be high.  However, it was recognised that some individuals 

were based at regional offices which would make interviews more difficult to 

arrange.  FOIs generally have between one and three aircraft type ratings on their 

licence and as a group, operated a broad range of aircraft types.  It was decided to 

invite all FOIs to participate in the interviews. 

 

In order to assess an appropriate questionnaire sample size, a current UK 

professional pilot population figure was sought.  An audit of the CAA medical 

records was carried out described in section 4.13.  No personally identifiable data 

were collected and the output simply gave the total number of current UK 

commercial licence holders at the time of audit.  Additional data was collected to 

determine the proportion of licence holders who had a spectacle endorsement on 

their medical and the proportion who had UV or blue light hazard associated ocular 

pathology.  The results of the audit would also enable comparison of the 

questionnaire cohort to the overall pilot population. 

 

For the questionnaire, efforts were be made to ensure a high response rate.  To 

ensure this, it was recognised that questions need to be relevant, well structured, 

appropriate and targeted.  It was also recognised that the response rate would be 



66 
 

strongly influenced by the relevance and the level of interest that the topic has on 

the participant (Gillham, 2000).  Additionally, the length of the questionnaire and the 

ease with which it can be completed is known to influence response rates (Gillham, 

2000).  As the intention was to target only professional pilots, it was anticipated that 

there would be good topic relevance.  Designing an online questionnaire allows the 

use of logic questions which enables further questions to be triggered only when 

particular responses to previous questions are made.  This helps to ensure topic 

relevance is maintained and that completion time is tailored for the individual 

dependant on their responses. 

 

In developing the questionnaire, it was recognised that piloting would form an 

important role to ensure that wording of the questions was clear and unambiguous, 

that there were no typographical errors and that the order of questions was intuitive 

to the respondent (Gillham, 2000).  It was also recognised that the questionnaire 

should be designed so that it should appear to a potential respondent to be 

research, rather than regulatory in origin.  Therefore, affiliation with London South 

Bank University and the Institute of Optometry was made clear on the study 

information page at the start of the questionnaire.   

 

An on-line questionnaire additionally has the advantages of lower costs to 

administer and the ability to export results directly into data analysis software 

packages such as SPSS (Wright, 2005).  The use of an online questionnaire does 

however expose the potential to be completed by individuals outside the inclusion 

criteria however the significance of this effect has been disputed (Gosling et al, 

2004).  As no identifiable information was intended to be taken, there would be no 

means of assessing that a respondent was a professional pilot.  Therefore, the 

importance was recognised of ensuring not only that a large number of the 

professional pilot population were invited to participate, but also that invitations were 

not received by anyone who was not a professional pilot.  The British Airline Pilots’ 

Association (BALPA) were approached and a research presentation was made to 

their Health and Safety Committee.  From this presentation, BALPA agreed to 

promote the questionnaire to all its professional pilot members. 

 

4.3 Interview introduction 

The aim was to gain an understanding of the habits and practices of professional 

pilots with regard to sunglass use and eye protection.  It was apparent from the 
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literature that this had not been previously investigated.  Additionally, researchers 

had attempted to establish the prevalence of UV related eye pathology in the pilot 

population without knowledge of the eye protection practices of pilots (Kagami et al, 

2009; Nicholas et al, 2001; Rafnsson et al, 2005; Rebok et al, 2007). 

 

Airline transport aircraft have protection in the form of visors in the cockpit (see 

section 1.5.7) to shield the sun from the pilot’s eyes but it is not known to what 

extent they are used or what limitations they may have.  Additionally, there may be 

other eye protection strategies that are utilised to aid visual performance, visual 

comfort or give added UV and blue light protection.  A bright light source such as the 

sun may cause an increase in scattered light within the eye which casts a veiling 

luminance on the retina, reducing contrast and affecting vision.  This is known as 

disability glare (Mainster and Turner, 2012).  The use of an eye protection strategy 

is likely to be initiated if the pilot becomes aware of disability glare.  Discomfort glare 

can result from an overly bright environment and may affect a pilot even when 

disability glare is controlled.  Therefore, eye protection strategies may be initiated 

due to visual discomfort.  It is also feasible that pilot concerns over ocular safety 

may initiate the use of eye protection strategies for solar protection. The aim of this 

phase was to establish the extent to which sunlight may be an issue to commercial 

pilots and to explore the range and frequency of eye protection used. 

 

As detailed in section 4.1, the results from the interviews would inform the design of 

the subsequent questionnaire. 

 

4.4 Interview method 

A series of semi-structured interviews (Bowling, 2009) were conducted on current 

commercial and airline pilots.  Participants were Flight Operations Inspectors (FOIs) 

employed by the UK CAA.  FOIs are professional pilots whose role is to assess and 

ensure the maintenance of flight safety standards within the industry.  They maintain 

current flying licences and fly routinely as part of their employment.  FOIs will fly with 

a range of pilots from different carriers and they have previous industry experience 

flying professionally before joining the CAA.  Invitations to participate together with 

information sheets regarding the study were sent to all 28 inspectors employed by 

the CAA.  For those individuals who did not initially respond, follow up contact was 

made at least twice by email or telephone.   
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Prior to the first interview, a series of neutrally worded questions addressing the 

topics of interest were drawn up.  The researcher carried out practice interviews with 

an optometrist, a medic and pilot and a PhD supervisor.  Feedback from these three 

colleagues enabled the researcher to modify the order and wording of questions and 

to receive feedback on interview style and maintaining neutrality. 

 

Individual interviews were arranged with each study recruit.  These were conducted 

in a private meeting room away from the work station of both participant and 

researcher.  After verbally confirming the details of the study, participants signed a 

consent form before undergoing a one to one semi-structured interview with the 

researcher.   Interview data were digitally recorded and stored in accordance with 

the UK Data Protection Act (Information Commissioner’s Office, 2010).  The length 

of interview was typically between 20 and 40 minutes.  Participants were questioned 

about their previous flying experience, their experience with sunlight in the cockpit 

and their coping mechanisms to manage this.  Participants were also questioned on 

practices that had been observed in other pilots and any eye health concerns that 

they held regarding exposure to light within the cockpit.  The participants were 

asked to bring any sunglasses used in flight to the interview, where the details of the 

make and model, tint colour and depth were recorded.  A sample tint set was 

available so that the colour and absorption values could be more accurately 

assessed. 

 

Each recording was assessed as soon as possible following the interview.  

Quantative responses were received following some of the closed questions.  These 

data which included flight experience, aircraft type flown, whether corrective 

spectacles were used and the type of sunglasses or other eye protection strategies 

used in flight, were input into a Microsoft Excel spreadsheet.  The remaining data 

were transcribed and was subsequently re-checked by the researcher for accuracy 

and correct contextual interpretation.  These transcribed data were then subjected to 

inductive coding (Bowling, 2009) and categorised where common themes and 

responses between participants were found.  This was carried out by cutting 

sentences or paragraphs from printed transcripts and separating into themes 

(Bowling, 2009) whilst maintaining participant reference number.  Once completed, 

these themes were re-examined to determine whether appropriate coding had been 

used, whether further categorisation into sub-categories were required, if similarly 

coded categories could be combined or if coding was required in more than one 

theme (Kvale, 1996).  This latter scenario did not occur during analysis and all 
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coded data was mutually exclusive.  Once revised coding had been undertaken, 

each theme was subject to further frequency analysis with most recurrent responses 

scoring highest.  Further detail of coding and categories used is given in appendix K.   

 

The data was mainly quantitative in its nature in that it consisted of statements of 

fact regarding the FOI’s flight experience, solar protection habits or involved the 

recounting of particular experiences in flight.  There was no exploration within the 

interview as to the FOI’s personal feeling regarding these topics.  Additionally, the 

participants were experienced professional pilots and the topic was aviation related.  

It is considered good airmanship to be able to communicate factual information 

concisely, so it is perhaps unsurprising that responses from these participants would 

tend to be in the same manner.  Although FOIs expressed personal views, these 

were generally in areas such as the effectiveness of standard aircraft sun protection 

systems, sunglass preferences or issues with sunglass use.  It was therefore 

considered appropriate that the data were subject to coding and frequency analysis 

before reporting.  In the development of categories for the questionnaire, low scoring 

responses regarding eye protection were still considered for inclusion as the primary 

purpose was to explore the full range of eye protection in use by pilots 

 

4.5 Interview results 

Twenty two of the 28 (79%) flight operation inspectors participated in the study.  Of 

the six who did not participate, 3 were based at regional offices around the UK and 

were unable to participate due to difficulties of geographical separation, 2 failed to 

respond despite at least 3 contacts and 1 was no longer flying and did not wish to 

participate.  Fifteen participants were fixed wing (aeroplane) pilots and seven were 

rotary wing (helicopter) pilots.  The average length of time over which a commercial 

or airline transport pilots licence was held was 27.4 years (range 12-43 years).  Nine 

pilots also had additional previous military flying experience.  Average flight time 

logged was 11,300hrs for fixed wing pilots (range 6,700 to 17,000hrs) and 6,400hrs 

for rotary wing pilots (range 3,000 to 10,000hrs). 

 

There were a total of 31 fixed wing aircraft types flown consisting of five aircraft from 

the Airbus fleet, five from the Boeing fleet plus eight other jet airline aircraft, six 

business jet aircraft types and seven turbo prop commercial aircraft types.  There 

were a total of 19 helicopter types flown and one airship type in addition to 

numerous general aviation instruction and aerobatic aircraft.  Most FOIs were 
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currently flying more than one aircraft type.  This would be less common in pilots 

employed by larger airlines with a large fleet of one particular aircraft type. 

 

4.5.1 The visual environment 

4.5.1.1 External 

Certain flight conditions were reported as being associated with the issues with high 

levels of sunlight in the cockpit.  These were dependent on where and when the 

aircraft was being operated and included bright sunny days, especially where light 

was reflected from cloud top, snow, or sea.  Flying towards a low sun (sunrise and 

sunset), particularly in early spring and autumn, was consistently reported to be a 

discomfort or an irritation.  A low sun in the cruise was reported to be easier to 

manage than a low sun on final phases of flight where the pilot is using visual cues 

outside the aircraft to make a safe approach to land.  A low sun on final approach 

was reported to cause a loss of visual references, loss of depth perception, a higher 

stress approach and a harsher flare (where the aircraft is in the last moments of a 

flight, the airspeed is reduced and correct attitude is set).  As well as direct sunlight, 

FOIs also reported difficulties with sunlight from the side of the aircraft reflecting off 

the instruments making them less easy to interpret.  It was generally acknowledged 

that this was less of an issue with more modern LCD instrument displays.  A bright 

sun through an atmospheric interference such as haze, where the glare source is 

increased in size through scatter, was also reported as a difficult flying condition. 

 

Although sunlight was recognised as a cause of visual irritation, discomfort and 

fatigue, FOIs reported coping mechanisms such as increased use of autopilot, 

instrument flying, using peripheral airfield visual cues or landing on a runway not into 

sun.  It was not felt that there was a flight safety issue although FOIs felt that it was 

less of an issue for them with increased experience.  Interview 8: “...the cues aren’t 

as obvious as if you weren’t suffering from all that glare.  I can’t see that it’s a flight 

safety issue, its more common sense and good airmanship to avoid those situations 

if you can.” 

 

4.5.1.2 Internal 

Most aircraft have some form of sun protection fitted as standard for the pilot to 

reduce the levels of bright sunlight in the cockpit.  Newer aircraft types and fits were 

reported to have a more comprehensive protection offered.  Large commercial 
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airline transport aircraft generally have the most comprehensive sun protection 

systems.  Although it was felt that improvements had been made to visors, a 

number of comments were made that manufacturers could make further 

improvements.  Interview 6:”…there is still a way to go where they could be 

improved…it doesn’t quite cover the area that you want.”  However, there was no 

consensus as to how this could be achieved.  FOIs had concerns if visor were too 

small and did not offer sufficient coverage or were too large and obscured look out. 

 

Some aircraft types were acknowledged as better at offering sunlight protection due 

to the smaller size of the windows, the thickness of window frames and the depth of 

instrument combing.  Different business jets were reported to have a wide variation 

in the level of visor protection offered, with some aircraft having no visors.  These 

aircraft may be operated at higher altitudes than airline transport aircraft resulting in 

a potential increase in pilot exposure during flight. 

 

Although instrument lighting can be adjusted for optimum viewing under light and 

dark conditions, it was reported that the range was not sufficient for very bright 

environments.  Where instrument lighting was set toward its maximum level, a 

greater discrepancy between brightness of different instruments and an increase in 

time to interpret more complex displays were reported. 

 

4.5.1.3 Additional considerations for helicopter pilots 

Study participants revealed that many helicopter types have little or no standard 

fitted visor protection.  However, operating altitudes are lower (often below cloud) 

and flight duration may be short so that no prolonged single leg flying into sun is 

likely.  Additionally, the helicopter offers more flexibility to position the aircraft away 

from sun on an approach to land. 

 

Comments were made from helicopter FOIs that bright sunlight may make visual 

height judgement more difficult transiting from hover into forward flight.  Additionally, 

where precise manoeuvring near the ground is required, the effect of moving from 

light into shade was recognised as more challenging.  Those FOIs operating 

offshore (e.g. to oil platforms) reported, in direct sunlight, that instruments became 

difficult to interpret due to reflections from the instrument surface of their high 

visibility jacket. 
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Helicopter FOIs felt that the environment in which they operated was less ideal than 

that of the airline pilot.  Interview 14 commenting about visors: “...they vibrate and 

fall out of the way so you tend to find a place where they won’t move again and just 

leave them there and use those – that tends to be the modus operandi in the North 

Sea.” 

 

Interview 16: “Helicopter pilots tend to accept their lot in many ways, the vibration, 

the noise and discomfort and all the other effects you get, being dazzled and blinded 

by sunlight is just another one of those things that you put up with!” 

 

4.5.2 Coping strategies used 

4.5.2.1 Sunglasses 

The proportion of flight time where sunglasses were used varied widely in the pilots 

interviewed.  Many FOIs reported using sunglasses for a minority of the time and 

only in those conditions where sunlight and subsequent disability or discomfort glare 

was reported as most apparent (in the cruise, flying towards low sun and landing 

and take-off towards sun).   

 

A difference was found between those FOIs who require corrective prescription 

glasses for aviation and those who do not.  All FOIs (both fixed wing and rotary) not 

requiring glasses constantly (n=11) used sunglasses at least sometimes in flight.  Of 

those who required corrective spectacles (n=11), five never used sunglasses. 

A number of reasons including hassle and distraction in swapping glasses 

(particularly in single crew operations) were given as reasons for sunglasses not 

being used. Interview 13: “I imagine that if you’re like me with varifocals, any pair of 

sunglasses with varifocals would be quite expensive – that’s one issue.  I think just 

the hassle would be the other thing.” 

 

Interview 5: “I think people like me with a prescription, wear clear specs and those 

without prescription wear RayBan, or something, so I think having prescription specs 

is a disability if you like in terms of mitigation of glare.  I could get a pair of sunspecs 

which are varifocals but again they are either on or they’re off, there’s a distraction 

element.” 

 

The onset of requirement for glasses was a further factor for discontinuing use of 

sunglasses.  Interview 5: “I wish I had a solution to my own situation of just wearing 
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clear specs all the time ‘cos there are many occasions where I wish I had some sort 

of tinted glasses to wear but I don’t have a ready solution.  I’ve either got a pair of 

prescription specs that I have got to buy which are varifocal that I put on or take off, 

and for me that’s not as workable solution as it should be.” 

 

Comfort was the most consistent factor reported in whether sunglasses were worn 

amongst the non-spectacle wearers.  Sunglasses were reported as uncomfortable 

over a period of time due to pressure of the sides of the frames on the head, 

discomfort behind the ear, poor compatibility with the headset or the onset of 

headaches.  However, when questioned, most FOIs had not had their sunglass 

fitting checked or adjusted.  Thin, lightweight, comfortable frames were reported as 

the main requirements for a pair of sunglasses. 

 

Participants reported that the effect of a sunglass filter made the instruments harder 

to interpret.  Some FOIs reported that subsequent sunglasses purchased had a 

lighter tint for this reason.  It was also reported by two interviewees, that they felt 

their depth perception was affected with sunglasses and that a degree of separation 

was experienced to the outside world.  These FOIs would tend to use sunglasses 

less and remove them in critical phases of flight such as approach and landing. 

Other reasons given for not using sunglasses included that they were forgotten, that 

the individual was not flying frequently and that glare was more subjectively 

apparent during other tasks (such as sailing, skiing or driving).  Additionally, FOIs 

who had previously worked overseas in sunny climates, reported using sunglasses 

more at that time and less now that they were based in the UK. 

 

Sunglasses used by the study participants were assessed and varied between 50-

85% absorption (estimated against tint samples of known absorption) and were 

generally fixed green, brown or grey colour.  There were no graduated tints.  Two 

FOIs had polarised lenses and one had photochromatic lenses, neither of which are 

recommended for pilots by the CAA (Civil Aviation Authority, 2008).  These three 

FOIs all required spectacle correction.  Of the FOIs not requiring prescription 

spectacles, the brand of sunglasses that was used most commonly was RayBans 

(6/10).  Most FOIs had no preference for a specific tint colour; of those that did 

specify a preference (3/22), no consistent tint colour was reported, indicating that it 

may be personal preference.   
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4.5.2.2 Use of standard aircraft protection system 

A wide range of sun protection was offered in the form of visors and sun blinds in 

the various aircraft types flown by the study group.  Generally it was felt that newer 

aircraft designs and fits offered a more comprehensive and flexible sun protection 

system.  The sun screens were often larger and covered more of the window area.  

Interview 6: “The technology for blocking it (sunlight) out in modern aircraft is very 

good; older aircraft it’s not as good partly because they are old and worn and partly 

because they have not been thought through as much”. 

 

Additionally, modern instruments such as those using LCD displays were 

consistently reported to be more visible in bright light conditions.  Interview 22: 

“There used to be a lot of glare off the old fashioned EFIS screens, so you couldn’t 

see them…on the (Boeing) 777, it’s like a laptop display almost, so effectively, even 

with bright sunlight you can still see quite clearly what’s on the screen”. 

 

FOIs described an annoyance if the aircraft visors were not properly maintained and 

would tend to use sunglasses more on these occasions.  Visors were often seen as 

the primary eye protection aid; sunglasses were then used in situations where the 

pilot felt the visors were not able to provide sufficient light attenuation.  There were 

more positive remarks made concerning the Airbus sun visor system compared to 

that of the Boeing fleet. 

 

4.5.2.3 Adaptation to aircraft protection system 

Some practices to protect the pilot from sunlight were described which involved a 

form of adaptation to the existing fitted aircraft visor system.  These would take the 

form of newspapers, charts, tray liners or semi-opaque plastic sheets either stuck 

against the windshield or attached to the lowered visor (with spring clips or elastic 

bands) to increase the area of windshield blocked to the sun.  This practice was 

reported only to carried be out in cruise with traffic collision avoidance system 

(TCAS) active and generally during long haul flights when pilots may be more 

fatigued and in circumstances of flying towards a low sun.  It was also reported as a 

method used to reduce temperature in the cockpit.  It was felt to be an older practice 

and was declared only by airline transport pilots. 
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4.5.2.4 Other practices 

A number of other practices were described to shield the eyes from bright sunlight.  

These included the use of baseball caps.  This was a preferred protection method 

for helicopter FOIs where there may be little or no protection offered in the aircraft.  

Additionally, the peak of the baseball cap could offer a complete blocking of view of 

direct sun and reduce any distraction from light flicker of sunlight passing through 

the helicopter rotor blades.  Some airline FOIs also reported baseball caps useful 

during climb and descent where charts and newspapers to block windows could not 

be used. 

 

Another practice declared during cruise was to adjust the seat so that the sun was 

less in the pilots’ eyes.  This may entail moving the seat to place the sun behind part 

of the aircraft structure or visor.  Some FOIs felt that this was an unsafe practice as 

the pilot would lose full range of control movements and alter the visual aspect over 

the cowling.  Further practices reported included using hand or fingers to obscure 

direct sunlight or eyelid squinting or avoid looking into the sun. 

 

Some police helicopter FOIs used helmets that incorporate an integral visor which 

could be employed when required. 

 

4.5.2.5 General 

Aircraft visors were often seen as the primary eye protection strategy.  Interview 1: 

“I’m not a huge sunglasses fan. Good sun visors with good mobility on them – those 

are very important and decent blinds around the side of the aircraft to cut ambient 

light levels if required”.  It was felt that visors were more effective than sunglasses in 

direct bright light, but that the glare source may not be covered by a visor.  It was 

also felt that visors reduced lookout ability. 

 

It was commented that sunglasses may help detecting ground features and other 

aircraft but detract from seeing instruments.  It was felt that there is no ideal solution 

that works for all situations.  FOIs felt that protection from sunlight involved 

compromise and pilots would manage sunlight as they would other aspects of flight 

management.  Interview 3: “everything has to be done at an appropriate time.  I 

suppose 75-80% of the time, the actual designed sun visors are sufficient and other 

times you’ve got to be a little bit more ingenious…or put your sunglasses on, which 

is what I tend to do”. 
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4.5.3 Observed practices 

As Flight Operations Inspectors, the pilots interviewed in this study flew with various 

airlines and pilots as part of their role.  Both extremes of sunglass use (never used 

to full time wear) were observed in other pilots during day flights.  One pilot was 

observed with different sunglasses for low altitude and cruise.  Clip on, flip up 

sunglass shades were observed as well as a pair of sunglasses worn over a pair of 

prescription clear glasses. 

 

The use of newspapers or charts to block out sunlight during (long haul) cruise was 

seen, but less so with time. This may be due to an improvement in aircraft visors or 

because the presence of a CAA inspector on board discouraged it.  It was 

recognised by 4 participants as not best practice although it was not considered an 

impact to flight safety in that controlled environment.   

 

4.5.4 Eye health 

When questioned, 17 of the 22 interviewed did not express any anxiety or concern 

over the possibility of sunlight causing eye health problems.  Three responded 

affirmatively and the remaining two did not give a definitive answer.  FOIs flying 

infrequently or those flying low level (helicopters) did not have eye health concerns. 

 

Of the three FOIs who did have health concerns, two said that they were developing 

a cataract and that they were subsequently more concerned of their eye health 

because of this.  Additionally, two FOIs declared an assumption that the aircraft 

windshield would offer the required level of eye protection. 

 

Some FOIs reported that they had other, non eye-related health concerns through 

flying such as sunlight exposure to skin, vibration and noise induced hearing loss.  

Interview 7: “I’ve always throughout my career had attention on my hearing, always 

have earplugs in and ear defenders on flight ramp area, but no one has ever, ever 

said anything about sunglasses.  I was issued sunglasses in the military, but we just 

thought that was cool because you just walked around with these military shades on 

– never really picked up that they were there for a purpose which is to protect 

eyesight in the long term apart from the short term alleviation of being able to see 

when you are flying”.   
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4.6 Interview discussion 

FOIs describe both disability and discomfort glare during flight.  The use of eye 

protection strategies (e.g. sunglasses) is initiated by subjective symptoms of glare.  

Overly bright glare conditions act as a disruptive factor to a pilot’s operational 

workload although it was not considered a flight safety hazard. 

 

Modern aircraft are described as being better equipped in terms of visors and 

instrumentation for bright light conditions.  More flexible use of visors and sun blinds 

offer a larger area of sun protection including sunlight from the side of the aircraft.  

The screen of an LCD display reflects a lower proportion of incident light compared 

to a glass or plastic screen in front of an analogue display.  Therefore, the advent of 

LCD instrument displays reduces the level of sunlight reflection from instrumentation 

making these more visible and quicker to interpret by the pilot (Figure 4-a). 

 

 

Figure 4-a Typical primary and secondary LCD flight displays. Note window reflection 
in lower part of left hand display due to position from photo was taken. This would 

likely be reduced from pilot seated position. 
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There are some aircraft where sun glare protection is minimal or non-existent.  

Often, these aircraft operate for short duration and at low level where UV and blue 

light hazard levels are likely to be low.  However, one type of flight operation where 

exposure may be high is for the business jet pilot flying at high altitudes in an aircraft 

with little or no visor protection.   

 

Sunglasses appear to be worn only a minority of time.  When sunglasses are used, 

it is primarily for visual comfort (to reduce discomfort glare) and on occasions to aid 

visualisation of the task (to reduce disability glare).  Sunglasses are not primarily 

worn by the FOI for solar radiation protection or eye health considerations.  

Additionally, the sunglasses used by the FOI to reduce disability or discomfort glare 

may not offer optimum solar protection. 

 

Aircraft visors are often considered the first choice aid to manage glare within the 

cockpit.  Although visors will shield the eyes from a direct glare source, there is not 

total windshield coverage and there could still be high levels of UV and blue light 

present within the cockpit. 

 

Sunglasses are likely to be the optimum method to control the amount of UV and 

blue light hazard radiation entering the eye.   One reason given for not using 

sunglasses during flight was due to the perceived reduction of visibility of aircraft 

instruments when viewed through a tinted sunglass lens.  Light reaching a pilot’s 

eye from below (such as reflected light from cloud top or snow) is likely to be largely 

blocked, in the case of an airline transport pilot, by the aircraft structure and 

instrument cowling.  Therefore, the use of a graduated tint should aid 

instrumentation visibility.  However, no participants were found to be using this type 

of tint. 

 

Those interviewed in this study are experienced pilots.  This may not be 

representative of the entire professional pilot population and younger pilots may 

express different views or have other concerns.  The view expressed from those 

interviewed was that with experience the increase in workload associated with 

challenging conditions was easier to manage.  This may mitigate against the 

apparent reduction of sunglass use in the older pilot as corrective glasses are 

required and the tendency for the older eye to be more likely affected by glare 

(section 2.4). 
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It appears that the requirement for wearing corrective glasses is a major factor as to 

whether a sunglass tint is used by pilots.  Those FOIs who have worn spectacles 

throughout their flying career often feel to be disadvantaged in using sunglasses.  A 

number of FOIs interviewed had ceased using sunglasses since the advent of their 

need for corrective spectacles. This is particularly surprising since glare problems 

from sunlight are likely to increase with age. The interviews show that sunglasses 

assist at alleviating glare and that the reduced use of sunglasses (or tinted 

prescription glasses where a pilot requires prescription spectacles) is associated 

with increased problems from glare, and potentially an increased risk of ocular 

pathology associated with light exposure.  

 

4.7 Questionnaire introduction 

The results of the series of interviews enabled a detailed insight into the issues of 

sunlight and the range of eye protection strategies used or observed by experienced 

pilots operating a wide range of aircraft types including large and small commercial 

jet aircraft, turboprops, business jets and helicopters.  These exploratory semi-

structured interviews allowed a range of solar protection strategies, some previously 

unknown, to be catalogued.  These data informed the development of the 

questionnaire for a larger number of participants to complete. 

 

4.8 Questionnaire method 

The questionnaire was designed to ensure data were anonymous.  Data collected 

included the pilot participant’s flying experience: age, type of flight currently 

undertaken, number of flying hours completed in the last year, previous types of 

flight undertaken and the number of years that the professional licence had been 

held.  This latter question was posed at the beginning (single choice from six 

ranges) and, with different wording, near the end of the questionnaire (open text 

box) in order to gain a measure of intra-observer reliability. 

 

The interviews revealed that the use of corrective glasses influenced the use of 

sunglasses. Therefore, participants to the questionnaire were also asked whether 

they were required to use spectacles for certificatory purposes and whether contact 

lenses were used. 
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The questionnaire contained a number of logic questions where the participants 

were asked further targeted questions depending on previous responses.  For 

example, where the participant declared never using sunglasses, a further question 

was posed exploring their reasons with free text box for comments.  For those that 

used sunglasses for any part of the flight, a further series of questions was triggered 

exploring the stages of flight or prevailing conditions for which they may be used, the 

style, age, tint and make of sunglasses and whether more than one pair of 

sunglasses were used in flight.  Similar logic rules were used for ascertaining in 

those pilots who required prescription correction, whether clip-on sunglasses or 

contact lenses were used in flight and whether those contact lenses were known to 

have a UV block. 

 

The pilots were asked to rate their sunglasses in a series of categories including 

comfort and performance. Pilots were also asked to rate the importance of various 

factors including UV protection and brand in sunglass selection.  All participants 

completed a series of questions on the use of other eye protection strategies such 

as the fitted visors and blinds within the cockpit.  Interviews revealed a range of 

strategies used and it was noted that some of these were used rarely.  Based on 

this, a Likert-type score was devised which was weighted towards more infrequent 

use in order to elicit optimum responses from participants of all protection strategies 

used.  There were eight categories used for estimation of percentage of time during 

flight that particular strategy used: 0%, <5%, 5-10%, 10-30%, 30-50%, 50-70%, 70-

90%, >90%. 

 

Pilots were asked to rate the instance of their subjective symptoms of discomfort 

glare and disability glare. Finally, all participants were asked about any known UV 

related eye pathology (such as cataract) and their awareness of the role of diet in 

the maintenance of eye health. 

 

The questionnaire was piloted to a group of 18 CAA staff who were professional 

pilots employed as test pilots, flight crew standards inspectors or flight examiners.  

Additionally, one respondent was a professional pilot at the British Airline Pilots 

Association (BALPA). This group were given the link to the on-line questionnaire 

and, following explanation of the project aims, were asked to give feedback (both 

positive and negative), and to highlight any areas that were felt to have been 

omitted, spelling errors and any questions that were not clear or that they would 

prefer not to answer. The group on whom the questionnaire was piloted were 
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informed that their responses would not be included in the final data analysis and 

they were encouraged to not necessarily document their own experience but to try 

different answers to elicit the full range of available questions. 

 

Feedback was received from 14 pilots. Following collation of these comments, some 

changes were made.  These included more detailed questions of previous 

experience including military flying and changing ‘commercial pilot’ to ‘professional 

pilot’ to encourage questionnaire completion by both commercial and airline 

transport pilots.  Additional categories for using prescription sunglasses, rimless 

frames and using sunglasses during aircraft walk around were added to the relevant 

questions and a question targeting pilot rating of sunglasses was split into separate 

questions centred around performance and comfort.  Comments were received that 

the questionnaire took less time to complete than originally stated in the introduction 

(10-15 minutes) and this was subsequently amended together with the correction of 

typographical errors. 

 

Following these changes, it was felt that a second pilot would be beneficial.  A 

further group of 21 professional pilots at the CAA (mainly participants in the original 

interviews) were invited to comment in the same way on the revised questionnaire.  

Feedback was received from 12 pilots. Minor suggestions were received, some of 

which were incorporated into the final version of the questionnaire. Most feedback 

received was very positive. 

 

BALPA is an organisation representing the interests of professional pilots. Around 

8,800 professional (mainly airline) pilots in the UK are members of BALPA (personal 

communication R. Hunter 07/02/12).  As it was felt important that pilots should feel 

free to express any eye protection practices used and that no identifiable information 

would be requested, instead of using the CAA medical database to approach 

potential participants, the questionnaire was presented as a research study through 

London South Bank University and the Institute of Optometry.  BALPA were 

approached and agreed to promote the questionnaire to all of their members using 

an e-mail invite from the chair of the BALPA Health and Safety group with a link to 

the survey.  The first invite was sent on the December 2012 with a follow-up 

reminder sent in February 2013.  The questionnaire is presented in appendix L. 

 

Data analysis was carried out using IBM SPSS v.19 and Microsoft Excel 2007.  Data 

were initially subject to descriptive and frequency analysis.  Where the mean age of 
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respondents in two groups or categories is compared, the independent T-Test is 

used as age data is considered to be parametric.  Similarly, where there the mean of 

more than two categories are compared, one-way ANOVA analysis is conducted.  

Pearson’s chi-square test is conducting for analysis comparing sets of categorical 

data.  Where comparison of two independent groups of non-parametric or ordinal 

data is conducted, the Mann Whitney U test has been used are where there are 

more than two independent groups compared, the Kruskal-Wallis test has been 

used.  

 

The Spearman rank-order correlation test has been used to assess the association 

between two sets of ordinal data.  Analysis of covariance (ANCOVA) has also been 

conducted in order to assess the difference in means between two groups whilst 

controlling for the effect of age (confounding variable).  Responses in free text boxes 

have been subject to content analysis and categorisation into new variables which 

were in turn subject to descriptive and frequency analysis.  The level of statistical 

significance used is p<0.05. 

 

4.9 Questionnaire results 

4.9.1 Participant demographic 

A total of 2,967 questionnaires were submitted which constituted a response rate of 

33.7% (total BALPA membership 8,800).  Fifty pilots partially completed the 

questionnaire but omitted a required field.  These incomplete records were not 

included in the analysis.  This represents a 98.3% completion rate and the results of 

2,917 questionnaires were analysed.  Figure 4-b shows a histogram of the age of 

the study participants.  The mean age was 42.6 years (SD 9.7 years) in the age 

range 20-66 years.  The age distribution is approximately normally distributed 

(skewness 0.02).  The two participants age 20 had less than 1,000 flying hours and 

would have been flying on a frozen ATPL, which would be validated to a full ATPL 

once 1,500 flying hours were achieved and the pilot was a minimum age of 21 

(CAA, 2013).  The four participants over 65 were not involved in airline transport 

flight operations. 

 

The mean length of time respondents had been professional pilots was 16.9 years 

(range 1 to >40 years) with 91.6% having a total flight time logged over 2,500 hours 

(Figure 4-c). 
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Figure 4-b Age distribution of participants. The curve shows a normal distribution 

 

Figure 4-c Flight experience of participants. 
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The majority of respondents (92.5%) operated on either airline transport short haul 

(n=1711) or long haul (n=986).  A further 54 (1.9%) respondents operated 

helicopters off shore and 44 (1.9%) flew aeroplane cargo flights.  Other categories 

included business jet, charter work, instructor and police/air ambulance helicopter 

each of which constituted less than 1% of the respondents. 

 

Participants were questioned regarding their previous flying experience.   

Responses to more than one category were permitted.  1041 (35.7%) pilots 

declared no other previous type of professional flying undertaken.  738 (25.3%) 

pilots had previous short haul airline transport experience (mainly from the long haul 

airline transport pilot group) and 372 (12.8%) pilots had previous long haul airline 

transport experience (mainly from the short haul airline transport pilot group).   694 

(23.8%) pilots had previous experience as flying instructors (646 aeroplane, 42 

helicopter, 6 both) and 546 (18.7%) pilots had previous military experience (378 

aeroplane, 116 helicopter, 52 both).   Other categories declared included aeroplane 

charter (320, 11%), aeroplane aerial work (including aerial photography, banner 

towing, crop spraying) (237, 8.1%), aeroplane cargo (229, 7.9%), aeroplane 

business jet (123, 4.2%), helicopter off-shore (49, 1.7%), helicopter charter (42, 

1.4%), helicopter aerial work (34, 1.2%) and helicopter police/air ambulance (29, 

1.0%). 

 

Participants were asked about their total flying hours accrued over the previous year 

(Figure 4-d).  The mean was 647 hours and 79.7% of pilots had logged more than 

500 hours.  Two respondents declared accruing 1,000 hours yet the limit for 

professional pilots is 900 hours per annum (Civil Aviation Authority, 2003).  Within 

short haul pilot group, the mean number of hours flown in the previous 12 months 

was 640 hours (SD 151 hours) and in the long haul pilot group, the mean was 707 

hours (SD 150 hours). 
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Figure 4-d Number of hours flown over the previous 12 months. 

 

4.9.2 Use of corrective spectacles 

A total of 1332 (45.7%) pilots had a requirement for corrective spectacles to be worn 

on their medical certificate (VDL).  Within this group, 489 (36.7%) had always had 

this endorsement on their medical certificate; 397 (29.8%) had the endorsement 

placed on the medical certificate in the previous 5 years, 235 (17.6%) had the 

spectacle endorsement for between 5-10 years and 211 (15.8%) had the 

endorsement for over 10 years.  Pilots with lower flying hours were significantly 

more likely to have always had a VDL present on their medical certificate as 

determined by one-way ANOVA (F=141.7, df 3, p<0.001).  This is likely to relate to 

changes to medical standards and is discussed in section 4.11.1.   

 

To assess any differences between various types of professional flying, the most 

prevalent three categories were analysed: aeroplane airline transport short haul 

(SH), aeroplane airline transport long haul (LH) and helicopter off-shore (HOS).  The 

fourth most prevalent category, aeroplane cargo, was not included as this type of 
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flying would generally be carried out on similar aircraft type as SH or LH operations 

and in similar conditions with the exception that cargo pilots would most likely be 

involved with a greater percentage of night flying. 

 

Assessing the prevalence of a spectacle requirement within the three main flying 

categories, Pearson chi-square analysis showed a significant difference with SH 

significantly less likely to require glasses than LH and HOS (X2=9.2, df 2, p=0.007) 

as seen in Table 4-a.  

  

Type of flying 

Requirement for optical correction 

Yes  n (%) No  n (%) Total 

Airline long haul 486 (49.3) 500 (50.7) 986 (100.0) 

Airline short haul 737 (43.1) 974 (56.9) 1711 (100.0) 

Helicopter off-shore 26 (48.1) 28 (51.8) 54 (100.0) 

Total 1249 (45.4) 1502 (54.6) 2751 

Table 4-a Prevalence of a spectacle requirement in different flying categories. 

 

However, one-way ANOVA analysis with multiple comparison tests showed that the 

mean age of SH pilots was significantly lower than both LH and HOS groups 

(F=88.3, df 2, p<0.001). There was no significant difference in the mean age of LH 

and HOS groups.  It is probable that the difference in spectacle requirement 

between the flying categories is largely affected by the difference in age between 

the groups.  Figure 4-e shows the distribution of spectacle and non-spectacle 

wearing pilots with age. Spectacle wearers were significantly older than non-

spectacle wearers (independent T-Test = 17.1, df 2892, p<0.001). 

 

Of the spectacle wearers, 24 (0.8%) used clip-on shades over their prescription 

glasses; 355 (26.6%) wore contact lenses during flight and of this group, 110 

(30.9%) wore contact lenses with a UV block, 101 (28.4%) had no UV block and 144 

(40.6%) did not know if their contact lenses included a UV block. 
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Figure 4-e Age distribution of spectacle and non-spectacle wearers. Distribution 
curves show a relative negative skewness towards higher age in spectacle wearers. 

 

4.9.3 Sunlight on the flight deck 

Pilots describe conditions where they need to look outside through the cockpit 

windshield and where the azimuth of the sun is such that it is near their line of sight 

as being difficult to manage.  This was independently reported in free text boxes by 

participants during separate questions regarding the prevalence of discomfort and 

disability glare symptoms.  Glare symptoms were reported either during the critical 

stages of flight including take-off, approach and landing (n=10 for discomfort glare 

and n=27 for disability glare) or when flying in the direction of the sun at sunrise or 

sunset (n=36 for discomfort glare and n=15 for disability glare).   

70: ‘Did have to do a go around recently because I was blinded by sun appearing 

from behind cloud and I could not get my sunglasses on in time. Was as if I had a 

laser shone in my eyes!’ 

190: ‘Landing directly into the sun is the worst case scenario, especially in haze and 

on a visual approach as we are sometimes require (sic.) to do’. 
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These comments concur with the results from the interviews with FOIs in section 

4.5.1 where the similar challenging sunlight conditions were described. 

 

Twenty six (0.9%) pilots independently reported eyestrain and headache (symptoms 

known as asthenopia) in bright light conditions, 14 (0.5%) reported sensitivity to light 

and three (0.1%) reported symptoms of ‘eyes watering’.  A further eight pilots (0.3%) 

stated that bright sun caused sneezing. 

 

During instances of disability glare, pilots independently reported in free text boxes 

that aircraft instruments were not sufficiently visible (n=40, 1.4%), that the use of 

sunglasses dimmed the view of the aircraft instruments making them hard to 

interpret (n=27, 0.9%), that more modern LCD instrument displays were easier to 

interpret than CRT displays in these conditions (n=9, 0.3%) or that contamination 

(dust, finger marks) became more apparent making displays hard to interpret (n=9, 

0.3%).  Pilots also independently reported strategies, including the use of 

sunglasses to reduce discomfort glare (n=53, 1.8%) and disability glare (n=61, 

2.1%).   

 

Two comments were also received from pilots who appreciated a sunny 

environment: 

204: ‘I fly to the rigs in the North Sea. We actively seek the sun!’ 

2320: ‘I live in Scotland - it's good to see the sun sometimes!’ 

 

4.9.4 Use of sunglasses 

When questioned about the overall percentage of time sunglasses were used during 

flight, no clear consensus was achieved with similar numbers of respondents in 

each category (Figure 4-f). 



89 
 

 

Figure 4-f Distribution of amount of sunglass use during daytime flight for spectacle 
and non-spectacle wearers 

 

A total of 727 (24.6%) of participants never use sunglasses or use less than 10% of 

the time during flight.  Spectacle wearers were found to use sunglasses significantly 

less compared to non-spectacle wearers (Mann-Whitney U, p<0.001).  Sunglasses 

were used significantly more by different flying categories: SH>LH>HOS (Kruskal-

Wallis, p<0.001) and SH>LH (Mann-Whitney U, p<0.001).  HOS pilots were least 

likely to wear sunglasses. 

 

Ex-military pilots use sunglasses significantly less than those pilots without a military 

flying history (Mann-Whitney U, p<0.001), however they were more likely to be 

spectacle wearers (Mann-Whitney U, p<0.001) and to be older (independent T-Test 

with variances not equal, t=26.1, df 1155, p<0.001).  Although it is likely that this 

difference in mean age and spectacle use between the two groups will affect 

sunglass use, a free text box comment from one ex-military pilot may reveal one 

reason for a lower sunglass use within the ex-military pilot group: 

725: ‘As a young military helicopter pilot I never gave sunlight much thought, in fact 

it may even have been macho not to use the tinted visor on the helmet or to use 
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sunglasses. I have therefore used sunglasses very little during my life - even outwith 

the aviation environment...’ 

 

Of the 413 (14.2%) of pilots who never use sunglasses during flight, significantly 

more required corrective spectacles - VDL (269) compared to those who did not 

(148) (Pearson chi-square, X2 = 69.6, df 1, p<0.001).  The reason for not using 

sunglasses was explored within this group of pilots (Table 4-b). 

   

 

Table 4-b Reasons given as to why sunglasses are not used. Groups split into 
spectacle wearers and non-spectacle wearers. Each response is also given as a 

percentage of the total in that group. Participants may have given multiple responses. 

 

Non-spectacle wearers are more likely to forget to take their sunglasses onto the 

flight deck or find their sunglasses uncomfortable to wear than spectacle wearers.  It 

can be seen (Table 4-b) that eight respondents who do not require spectacles claim 

that a reason for not using sunglasses in flight is due to wearing untinted 

prescription spectacles.  This small group is likely to consist of pilots with low optical 

prescriptions who are able to meet the vision standards without their spectacles but 

who use them in flight for optimum visual acuity or visual comfort. 

 

Number
% within 

group
Number

% within 

group

Aircraft has adequate 

protection offered with 

visors

102 37.9 57 38.5

I forget to carry them 

with me
17 6.3 20 13.5

I wear clear prescription 

glasses instead
115 42.8 8 5.4

Sunglasses too 

expensive
18 6.7 12 8.1

Sunglasses 

uncomfortable
36 13.4 53 35.8

Sunlight doesn’t bother 

me
60 22.3 48 32.4

Too much hassle to put 

on during flight
44 16.4 41 27.7

Instruments too dark 

through sunglasses
37 13.8 21 14.2

Sunglasses not used 

for other reasons
26 9.7 6 4.1

Spectacles required 

(n=269)

No spectacles required 

(n=148)
Reason given



91 
 

Further independent comments were received from both sunglass wearers and non-

sunglass wearers regarding barriers to successful sunglass use: 

2239: ‘It is always difficult to find glasses which give adequate protection and yet still 

allow you to clearly see the instruments at the same time. The right style of frame is 

also vital to avoid discomfort sobs (sic.) the temples and ears while wearing a 

headset. These of course cannot be tested while in the shop pre purchase. Difficult, 

and costly if you get it wrong, which i have many times!’ 

2386: ‘Glasses often have to be worn for hours at a time with headsets, so can get 

uncomfortable. Glasses for me have to protect from the cockpit environment as well 

as sunlight. Zonal driers and very powerful air conditioning across the windshield dry 

out eyes’.  

2640: ‘Just the combination of Headsets and sunglasses make for a difficult 

environment, either your ears or your eyes are going to lose out!’ 

2777: ‘I used to wear wrap around lenses but found the appearence (sic.) to 

""robotic"" and for CRM (Crew Resource Management) purposes changed styles’. 

2836: ‘The biggest barrier to me using sunglasses in the flight deck is because I 

wear glasses.  As you enter/exit cloud and light levels rise/drop the time taken to 

change from glasses to sunglasses whilst hands-off/heads-down is very distracting 

and as such I usually end up squinting or using the aircraft screen’.  

 

The majority (1706, 58.9%) of pilots used sunglasses between 10-90% of the time.  

All sunglass users were questioned as to what phase of flight and the conditions 

under which sunglasses were worn (Figure 4-g).  Altitude cruise, which is usually the 

majority of the flight time, was the stage of flight where sunglasses were most likely 

to be used (mode: ‘usually’, n=1070, 43.1%), however the use of sunglasses was 

driven more by perceived bright light conditions rather than a particular phase of 

flight (when flying towards the sun, mode: ‘always’, n=1326, 53.4% , when it feels 

too bright, mode: ‘always’, n=1381, 55.7%). 
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Figure 4-g Variation in sunglass use with different stages of flight and  prevailing 
sunlight conditions. 

 

Other conditions given where sunglasses were used (n=51) included where light is 

reflected from cloud tops (n=19), to help pilot improve visual perception (n=9), where 

aircraft visors not sufficient to reduce light levels (n=3) and when trying to spot other 

traffic or landmarks (n=2). 

 

A total of 110 (4.4%) respondents used a second pair of sunglasses.  These were 

used less in all categories (lower Likert scores) however showed a similar pattern in 

that they were used most during cruise and in bright light conditions.  Pearson chi-

square analysis revealed that spectacle wearers were more likely to use a 2nd pair of 

sunglasses (X2=12.9, df 1, p<0.001).  This could be due to using prescription and 

non-prescription sunglasses when using contact lenses.  There was no significant 

difference in the use of 2nd sunglasses between contact lens wearers and non 

spectacle wearers (Pearson chi-square) with both groups most likely to use 1 pair of 

plano (non-prescription) sunglasses.  Table 4-c shows that LH pilots were more 

likely to use 2 pairs than SH or HOS pilots (X2=27.0, df 2, p<0.001).  Kruskal-Wallis 

analysis revealed no significant difference between those using 1 or 2 pairs of 

sunglasses and the use of any other eye protection strategy (such as aircraft visor). 
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Type of flying 

Two pairs of sunglasses used 

Yes  n (%) No  n (%) Total 

Airline long haul 59 (7.2) 764 (92.8) 823 (100.0) 

Airline short haul 40 (2.7) 1460 (97.3) 1500 (100.0) 

Helicopter off-shore 1 (2.3) 42 (97.7) 43 (100.0) 

Total 100 (4.2) 2266 (95.8) 2366 

Table 4-c Prevalence of use of second sunglasses in different flying categories. 

 

When questioned as to the difference between first and second pair of sunglasses, 

113 responses were gained (participants were offered multiple responses); 45 

(39.8%) stated that one pair of sunglasses were prescription, 33 (29.2%) stated a 

difference in tint depth, 18 (15.9%) a difference in frame style, 7 (6.2%) a difference 

in tint colour, 5 (4.4%) had polarised lenses for 1 pair and 3 (2.7%) used other 

sunglasses to aid comfort with their headset.  The remaining 2 responses gave 

other explanations. 

 

Respondents were also questioned if their sunglass use had altered over the past 

year.  This was to gain insight as to external factors which may influence the use of 

sunglasses.  A one year period was chosen as it was anticipated that it would be 

easier for the respondents to recall any changes over the recent past.  The reasons 

given are presented in the Table 4-d. 

 

The most common cause of reduction in sunglass use was a change to prescription.  

Through coding of a free text comments box, this group was mainly emmetropes 

who had become presbyopic and required near correction (presbyopia is a normal 

ageing process where the eye progressively develops a reduced ability for near 

focus.  It typically starts to affect individuals around the age of 45 and people with 

previously good eyesight start to need reading glasses). 

853: ‘... Reading glasses prevent use’. 

 

The most common cause for an increase in use was through an increased 

awareness of the potential impact that exposure may have to vision: 

1176: ‘A Captain from a previous airline was diagnosed with cancer in the left eye 

and recently passed away (as a result of the cancer spreading). The cancer 

originated in his left eye and I remember when I worked with him, he almost never 

wore sunglasses during any phase of flight.  He was 58 when he was first 

diagnosed’. 
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Reasons for change in sunglass 
use 

Declared use 

Total Increase Decrease Same 

  Sunglass tint 3 2 3 8 

Sunglass comfort 7 9 0 16 

Change of operating 

environment 

20 18 2 40 

Change of prescription 10 26 10 46 

Increase awareness of 

potential impact to vision 

23 1 4 28 

Eye contact with other pilot 1 0 1 2 

Lost / damaged sunglasses 1 4 1 6 

Use other strategies instead 0 3 1 4 

Visual fatigue 6 3 3 12 

Other 0 2 1 3 

Change to light sensitivity 6 3 1 10 

Total 77 71 27 175 

Table 4-d Reasons given as to a change in sunglass use. Participants who declared a 
change in use of sunglasses over the previous year were asked to state the previous 
amount of use and, in a free text box, describe the reason (if any) for the change of 

use. 

 

Both increases and reductions in visual fatigue and light sensitivity were reported as 

reasons for change in sunglass use, although more pilots reported an increase in 

use (n=12) compared to a decrease (n=6).  Overall, 44.4% reported an increase in 

use, 37.6% a decrease and 17.9% selected the same time category. 

723: ‘... with age my sensitivity to sunlight has increased - I notice this when driving 

as well and normally need sunglasses on even cloudy days’. 

853: ‘Tolerance to bright light increased with age’ 

 

Other changes to vision with age were also reported: 

486: ‘As I have got older I find it more difficult to transition from looking out with 

sunglasses on to looking in at the instruments.  This has led to me wearing my 

sunglasses less so I have a better view of the instruments, even if this means 

squinting more’. 

 

Participants were asked a series of questions regarding the primary sunglasses 

used during flight (Figure 4-h).  56.6% reported their sunglasses to be between one 
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to four years old.  Those with a VDL had significantly newer sunglasses (Mann-

Whitney U, p=0.002). 

 

 

Figure 4-h Distribution of sunglass age in spectacle and non-spectacle wearers. 

 

Of those respondents using sunglasses, 1903 (76.1%) had a fixed non-graduated 

tint, 278 (11.1%) had a graduated tint, 162 (6.5%) had polarised lenses and 73 

(2.9%) had photochromatic lenses.  A further 84 (3.4%) did not know what type of 

tint their sunglasses had.  Pearson chi-square analysis revealed that LH pilots were 

significantly more likely to have a fixed tint compared to SH pilots (X2=18.8, df 4, 

p=0.001). 

 

Pilots most commonly described their sunglasses as having a grey (957, 38.3%) or 

brown (921, 36.8%) tint.  292 (11.7%) described a green tint, 40 (1.4%) yellow, 35 

(1.2%) black and 46 (1.6%) blue.  Other colour tints described (each less than 0.3%) 

included red, silver, gold, pink, purple, amber and orange however, it is recognised 

that perceived colour of tint is not a reliable measure of spectral filtering properties 

of a sunglass lens.  This is discussed further in section 4.11.2. 
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The distribution of frame style within the three main flying groups is shown in Table 

4-e.  When the typical prescription spectacle frame styles (oval/round, rectangular 

and rimless) were grouped together, Pearson chi-square analysis showed that HOS 

pilots were significantly more likely to wear an aviator style sunglass frame (X2=31.9, 

df 4, p<0.001).  Overall, the most prevalent type of frame style was wrap-around 

(939, 37.6%), aviator (840, 33.6%) and rectangular (18.5%).  155 (6.2%) 

respondents had rimless sunglasses and 104 (4.2%) had oval or round frames. 

 

Type of flying 

Frame style n (%) 

Aviator Oval/round Rectangular Rimless Wrap-around Total 

Airline long haul 220 (26.8) 35 (4.3) 165 (20.1) 54 (6.6) 348 (42.3) 822 (100.0) 

Airline short haul 551 (36.7) 55 (3.7) 266 (17.7) 89 (5.9) 539 (35.9) 1500 (100.0) 

Helicopter off-shore 23 (53.5) 3 (7.0) 3 (7.0) 4 (9.3) 10 (23.3) 43 (100.0) 

Table 4-e Distribution of frame style within three main flying categories. 

All sunglasses users were asked how long ago the fit of their sunglasses had been 

assessed or adjusted.  1861 (63.8%) had never had them fitted.  106 (3.7%) had the 

fit checked within the previous six months.   Spectacle wearers were significantly 

more likely to have had their sunglass fit checked (Pearson chi-square, X2= 528.0, 

df 1, p<0.001). 

 

Respondents were asked to rate the overall performance of their sunglasses (Figure 

4-i) and 132 (5.2%) rated their sunglasses ‘very poor’ or ‘poor’ while 1759 (70.4%) 

rated their sunglasses ‘good’ or ‘excellent’. 

 

Figure 4-i Pilot rating of overall comfort and performance of sunglasses used in flight. 
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The overall sunglass rating was significantly higher amongst non-spectacle wearers 

(Mann-Whitney U, p=0.046).  There was no significant relationship between overall 

sunglass rating and flying experience (Kruskal-Wallis) but a significant difference 

was seen with age with younger pilots rating overall performance higher than older 

pilots (one way ANOVA, F=4.6 df 4, p=0.001). There was no significant relationship 

between the overall sunglass rating and sunglass age, type or colour of tint or period 

since last fitted (Kruskal-Wallis).  Additionally, there was no significant relationship 

between overall sunglass rating, sunglass age, colour of tint or when last fitted 

between LH-SH-HOS pilot groups (Kruskal-Wallis). 

 

A total of 91 different sunglass makes were reported in addition to prescription 

sunglasses, non-brand sunglasses and store own brand sunglasses.  Aside from the 

three major brands, other sunglasses reported were re-categorised into either 

‘aviation specific’ where the manufacturer intended the sunglasses to be used 

specifically for aviation, ‘marked for solar protection’,’ marketed for sports use’ 

(usually cycling or skiing) or ‘fashion marketed’ sunglasses  including designer 

labelled sunglasses.  A summary is given in Table 4-f. 

 

Sunglass category Frequency Percentage 

prescription 402 16.8 

Ray Ban 768 32.1 

Oakley 458 19.1 

Serengeti 205 8.6 

aviation specific 41 1.7 

marketed for solar protection 116 4.8 

marketed for sports use 52 2.2 

fashion marketed 207 8.6 

store own or non-brand 141 5.9 

other 4 .2 

Total 2394 100.0 

Table 4-f Summary of the distribution of sunglass make with re-categorisation of 
those sunglasses not within the most prevalent 3 brands into generic groups due to 

the wide variety of sunglass types declared. 

 

59.8% of respondents used RayBan, Oakley or Serengeti sunglasses.  Silhouette 

was the fourth most prevalent brand worn by 1.8% of respondents.  There were a 

number of manufacturers who produced sunglasses specifically for pilots however 

only 1.7% of respondents used these.  RayBan sunglasses were used more 
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commonly within the HOS pilot group (42.5%) compared to SH (34.9%) and LH 

(26.5%) pilot groups. 

 

Only 13.8% of the respondents used prescription sunglasses and 45.7% of pilots 

require refractive correction.  If all contact lens wearers (who could be using non-

prescription sunglasses) were excluded, there remain 33.5% of respondents using 

corrective spectacles.  Therefore, a maximum of 41% of pilots with VDL use 

sunglasses. 

 

Respondents were asked to rate the importance of a series of factors when 

selecting sunglasses (Figure 4-j).  The mode score for comfort of frame, UV 

protection and comfort of tint was ‘very important’ (72.6%, 65.9% and 54.6% 

respectively).  Sunglass brand was considered least important (mode: ‘not 

important’, 35.7%) and was significantly less important for spectacle wearers 

(Pearson chi-square, X2=38.9, df 3, p<0.001). 

 

 

Figure 4-j Subjective importance ratings given by the pilot to various considerations 
for sunglass selection. 

 

Frame style, UV protection and frame comfort were also significantly less important 

factors for spectacle wearers (X2=18.0, df 3, p<0.001; X2=11.4, df 3, p=0.010 and 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Fr
e

q
u

e
n

cy

Not important

Slightly important

Quite important

Very important



99 
 

X2=8.0, df 3, p=0.046 respectively).  There was no significant difference in the rating 

of tint colour, comfort of tint or protection from oblique or peripheral light between 

spectacle and non-spectacle wearers (Pearson chi-square).  There was no 

significant difference for any ratings between LH-SH-HOS pilots (Pearson chi-

square). 

 

4.9.5 CAA guidance 

Respondents were questioned as to whether they had reviewed CAA published 

guidance on sunglasses before purchasing.  2232 (89.3%) had not reviewed the 

CAA guidance material.  Of those who had reviewed guidance and had commented, 

1 gave a positive comment, 1 gave a negative comment and 1 referred to the US 

Federal Aviation Administration (FAA) guidance material. 

1606: ‘I read the CAA guidelines and had a custom fit pair of Oakley's made with the 

shading and transmission rates in accordance with these guidelines.  They are 

superb’. 

2198: ‘You asked if I looked at the caa guidelines, but not what I thought of them. 

Poor, vague, not much use. Tried asking an optician to explain them but couldn't’. 

1217: ‘The caa should have a similar website to the FAA.  The FAA make fabulous 

recommendations as to the tint shades that are available and what this pros and 

cons are of these’. 

 

Those requiring spectacles were significantly more likely to review guidance 

(Pearson chi-square, X2=65.8 df 1, p<0.001).  Additionally, the mean age of pilots 

reviewing CAA guidance was significantly lower (one-way ANOVA, F=25.3, df 1, 

p<0.001). 

 

4.9.6 Glare symptoms 

Respondents were asked to rate the prevalence of symptoms of discomfort and 

disability glare during flight (Figure 4-k). 
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Figure 4-k Distribution of reported discomfort and disability glare during flight 

 

Discomfort glare (visual discomfort caused by direct or reflected sunlight) was 

reported ‘sometimes’ or ‘generally’ by 74.9% of respondents.  When it occurs, pilots 

report symptoms of headaches and asthenopia: 

1270: ‘Can't fly in day time without eye protection- causes eye strain / headaches’. 

1058: ‘After a long period my eyes feel tired and can develop only what I could 

describe a twitch. This stops once rested or the sun sets’. 

1108: ‘I get sore eyes from too much sun and very occasionally get conjunctivitis 

with too much exposure’. 

2904: ‘When strong low sunlight is from side horizon. Up-sun eye is in direct bright 

light, down-sun eye is in deep shadow’. 

 

Disability glare (preventing pilot from visualising aircraft instruments) was reported 

‘rarely’ or ‘sometimes’ by 83% of respondents.  Disability glare was mainly reported 

during take-off, approach and landing: 

1556: ‘Generally only on take-off when the high pitch angle of the aircraft can result 

in the sun being just above the coaming (sic.) in direct line of sight, even when 

looking in at the instruments’. 

1759: ‘This can be a problem during the critical stages of flight - for example of take-

off/climb out when there is not time/the option to find glasses when they are not 

already in a handy position - ie, the priority is the safety of the aircraft’. 

2685: ‘When turning into the sun, often the instruments are totally unreadable for a 

few seconds until your eyes adjust’. 
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A number of pilots also gave details of their actions when presented by disability 

glare: 

336: ‘...occasionally primary displays during T/O and landing require one hand used 

as a shade to see, instead of the hand being on the controls!’ 

545: ‘Always wear a baseball cap for take off and landing’. 

2477: ‘Wearing sunglasses proud of my face, while appearing a little odd, enables 

sight of the instruments while the glare for outside is obscured by the lenses’. 

2698: ‘Sometimes it is only effective to hold your hand in front of your face’. 

 

There was no significant difference in the reporting of discomfort or disability glare 

between LH-SH-HOS pilots (Pearson chi-square).  There was a significant positive 

correlation between reported discomfort glare and disability glare (Spearman’s rho 

0.431, p<0.001).  There was no significant relationship between levels of discomfort 

or disability glare and age (one-way ANOVA) or total number of flying hours 

(Kruskal-Wallis).  However, there was a significant increase in sunglass use with 

increasing reported levels of discomfort glare (p<0.001 Kruskal-Wallis) and disability 

glare (p<0.001 Kruskal-Wallis). 

 

4.9.7 Other eye protection practices employed 

Respondents were questioned regarding other eye protection practices employed 

during flight (Figure 4-l).  Using the standard fitted aircraft visors was, by far, the 

most common strategy employed.  The other strategies decreased in popularity 

score from use of newspaper or chart against windshield or visor followed by 

adjusting seat position, using hand to block direct sunlight, using tray-liners against 

windshield.  The use of a peak (baseball) cap was least popular. 
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Figure 4-l Prevalence of use of other sun blocking strategies during flight. 

 

There was no significant difference between spectacle and non-spectacle wearers in 

the use of visors, hand, newspaper, plastic sheet or other strategies (Mann Whitney 

U) however a baseball cap was significantly more likely to be used by spectacle 

wearers (Mann Whitney U, p=0.015). Additionally, seat adjustment was significantly 

more likely in spectacle wearers (Mann Whitney U, p=0.026). 

 

Use of visor, hand or other strategies showed no significant difference between LH 

and SH pilots (Mann Whitney U).  The use of a baseball cap, seat adjustment, 

newspapers and plastic sheet were all significantly higher in LH than SH pilots 

(Mann Whitney U, p<0.001 in each category). 

 

Comparing LH, SH and HOS pilots, a significant difference was found in all 

strategies except ‘other’.  The use of aircraft visors (Kruskal-Wallis, p<0.001), hand 

to block sun (Kruskal-Wallis, p=0.007), seat adjustment (Kruskal-Wallis, p<0.001), 

newspapers (Kruskal-Wallis, p<0.001) and plastic sheet (Kruskal-Wallis, p<0.001) 
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were all significantly lower in HOS pilots.  The use of a baseball cap was 

significantly higher (Kruskal-Wallis, p<0.001) amongst HOS pilots.  There was no 

significant difference in the use of visors between ex-miltary and non ex-military 

pilots (pearson chi-square); however there was a significantly lower overall use of 

eye protection strategies other than sunglasses in ex-military pilots having allowed 

for age (ANCOVA, F=12.1, df 1, 2127, p=0.001). 

 

A further 146 pilots declared other strategies used.  These included the use of 

suction or stick on car side window blinds (n=39), aircraft checklists against 

windshield or attached to visor (n=34) and other items including paper, cardboard or 

envelopes against windshield or attached to visor.  Fifteen pilots were flying in 

operations where a flying helmet with integrated visor was used.  The following 

shows examples of the ingenuity of pilots to adapt the standard aircraft systems to 

give more effective sunlight protection: 

480: ‘slip an A5 sized duty free bag over the visor, I split in down one side to the mid 

point and then it slips beautifully over the standard Boeing clip on visor’. 

676: ‘One or more sheets of paper can be stuck to the windshield by rubbing against 

the back of the paper until it stays in place. In my opinion the sun visors in the 

aircraft are almost totally useless. (777) the paper on the windshield does a great 

job in blocking direct sunlight’. 

734: ‘clipboard clipped to sun visor, plastic checklist jammed into window frame, 

plastic checklist attached with rubber bands to visor’. 

1039: ‘Cusions (sic.) from the aircraft jumpseat’. 

1041: ‘Flight envelope from visor and trapped by standby compass housing Airbus’. 

1125: ‘The soft HUD visor cover’. 

1207: ‘I look more inside and use more autopilot (longer in time) to landing’ 

1275: ‘I carry 2 self expanding mesh sun shades (of the type used in cars) with 

centre suckers, usually doubled up, either stuck onto the windshield directly or onto 

the sun visor or between side sun visors to reduce light leakage in the gaps not 

covered by sun screens’. 

1823: ‘I use a lightweight A3 size aluminised envelope slotted over the sunvisor to 

block the sun’. 

1840: ‘foldable car type mesh stick-on shade (with Bart Simpson pic...)’ 

1944: ‘Napkin plus sun visor’ 

2230: ‘I use the anti static properties of the printer paper to block out direct sun. It 

sticks neatly to the window and can be moved around’. 
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2397: ‘have a roll of car window tint film that sticks with static electricity to the 

window’. 

 

There was a significant difference between LH, SH and HOS pilots in the number of 

strategies used with LH pilots being the highest users and HOS being the lowest 

users (Kruskal-Wallis, p<0.001). 

 

4.9.8 Ocular health 

Respondents were asked a series of eye health questions.  41 (1.4%) pilots had 

been told that they were developing or had been diagnosed with cataracts and 18 

(0.6%) had undergone cataract surgery.  43 (1.5%) had been told that they were 

developing or had been diagnosed with macular degeneration.  There was no 

significant correlation between any health question and the percentage of time that 

sunglasses were used during flight (Kruskal-Wallis).  There was no significant 

difference in prevalence of UV related ocular pathology between ex-military and non 

ex-military pilots (Pearson chi-square). 

 

There was no reported pathology from HOS pilots.  Of the SH pilots, 0.8% reported 

as being diagnosed with cataract, 0.5% had undergone cataract surgery and 1.3% 

had been told that they were developing or had been diagnosed with macular 

degeneration.  Within the LH pilot group, 2.1% reported as being diagnosed with 

cataract, 0.8% had undergone cataract surgery and 1.6% had been told that they 

were developing or had been diagnosed with macular degeneration.  Although 

prevalence was higher in the LH group, Pearson chi-square analysis revealed that 

flying category did not have a statistically significant effect on cataract and 

intraocular lens implants declared, macular degeneration declared or overall 

pathology declared. 

 

Independent T-Test analysis revealed that those declaring ocular pathology were 

significantly older for cataract (t=7.8, df 2892, p<0.001), cataract surgery (t=3.2, df 

2892, p=0.001) and macular degeneration (t=4.0, df 2892, p<0.001).  However, 

ANCOVA analysis showed no significant relationship between flight time logged and 

cataract (F=0.01, df 1, 2891, p=0.93), flight time logged and macular degeneration 

(F=0.05, df 1, 2891, p=0.82) or flight time logged and intraocular lens implant 

(F=0.33, df 1, 2891, p=0.57) once allowing for age. 
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A total of 890 (30.5%) respondents were aware of the role of diet in the maintenance 

of eye health.  When questioned, 1763 (60.4%) pilots did not take regular vitamins 

or supplements, 1092 (37.4%) took regular vitamins or supplements for general 

health and not specifically for eye health reasons.  54 (1.9%) took regular vitamins 

or supplements for both general health and eye health concerns and 8 (0.3%) took 

regular vitamins or supplements specifically and solely due to eye health concerns. 

 

The group of pilots taking supplements for general health purposes and eye health 

concerns had a significantly higher level of reported discomfort (Kruskal-Wallis, 

p<0.001) and disability (Kruskal-Wallis, p=0.001) glare.  This group was also 

significantly younger (mean 1.5yrs lower) than the group taking no supplements 

(one-way ANOVA, F=6.6, df 3, p<0.001).  Pilots taking regular vitamins or 

supplements specifically and solely due to eye health concerns had significantly 

lower reported disability glare (Kruskal-Wallis, p=0.001).  Although this small group 

was also younger (mean 3.2yrs lower) than the group taking no supplements, the 

difference in mean age was not statistically significant (one-way ANOVA). 

 

4.9.9 Further comments 

Respondents were able to add free text comments to elaborate or comment on a 

number of their responses.  Additionally, a general comments box for any other 

remarks was placed at the end of the questionnaire.  A total of 731 comment boxes 

were assessed, coded and analysed.  A summary is shown in Table 4-g. 

 

The most prevalent theme from the free text comments box was that it was felt there 

was inadequate solar protection, particularly visors, fitted to aircraft.  A total of 163 

respondents commented, a sample of which are given below:   

275: ‘The general standard of sunshield provision on the Boeing 757/767 is a joke.  

The visors are often loose and cannot be positioned correctly... clearly designed by 

the most junior guy in Boeings design department...as an afterthought’. 

533: ‘On my aircraft, the 747-400, the sun visor protections are woefully inadequate 

for the front windows. I spend hundreds of hours flying whilst looking at a low sun 

each year. I finish these flights with sore and tired eyes which concerns me as I then 

have to dive (sic.) a car home’. 

539: ‘I find the aircraft sun visors to be poor and usually use the aircraft checklists to 

block out the sun, despite being against company policy’. 

728: ‘. ..I have never yet flown a type of aircraft with adequate sun visors...’ 
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901: ‘Aircraft sun visors are generally poor quality and difficult to adjust to exactly 

the right position as sometimes two are required in the same place to adequately 

darken the sun’. 

919: ‘It is scarcely believe able (sic.) to me just how poor the sunshades are in both 

Airbus and Boeing aeroplanes (I have thousands of hours on both).  No matter 

where you put whatever shade is provided, the sun always seems to peep round the 

side or through some chink in the screen.  You can exclude light from a hotel 

bedroom but not, it seems from an aeroplane cockpit’. 

1196: ‘Aircraft protection is totally inadequate and ineffective. We shouldn't be using 

sunglasses or visors when the aircraft should have fitted blackout blinds. I am 

concerned about this’. 

1379: ‘Built in sun visors very poor design and tend to move from adjusted position; 

sometimes broken or missing, but generally ineffective’. 

2737: ‘PLEASE get aircraft manufacturers to build suitable roller-blind type eye 

shields near the windows’. 

 

 

Table 4-g Summary of coding completed on free text boxes covering other comments 
made by respondents. 
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Significantly more negative comments were received regarding Boeing visors (65 

negative, 5 positive) compared to Airbus (16 negative, 10 positive) (Pearson chi-

square, X2=14.1, df 1, p<0.001).  Although more negative comments were received 

regarding the brightness of Airbus instrument displays (19 negative, 1 positive for 

Airbus, 3 negative, no positive for Boeing), Pearson chi-square analysis showed no 

significant difference between comments on Airbus and Boeing instrument displays.  

 

A total of 54 comments were received regarding the perceived importance of using 

sunglasses during flight or details of successful sunglasses used: 

157: ‘It is a must. You only have one pair of eyes and they are essential for the job 

so look after them!’ 

508: ‘It is vitally important to protect the eyes at high altitude where there are high 

UV levels.  It is worth investing in an expensive pair of sunglasses as you cannot 

replace your eyes!’ 

1198: ‘Couldn't live without my sunglasses - levels of glare do tend to be very high in 

flight deck, even when cloudy (I fly Boeing 737)’ 

1122: ‘My sunglasses are very important to me and if I forget to take them with me 

(usually because it's been sunny at home and they are still in the car) I find it to be a 

more difficult day at work as I am regularly irritated by the sunlight in my face’. 

 

In contrast, there were 162 comments highlighting the barriers to successful 

sunglass use including comfort, cost and issues with using corrective spectacles: 

2118: ‘For helicopter work, especially offshore, the best all round protection is 

afforded by wearing a helmet with attached sun visor.  Generally they do not distort 

light at their edges and do not interfere with your periphery vision.  Impact protection 

(birds, FOD [foreign object debris]) is a very important aspect of eye health that the 

industry mostly ignores.  When I am supervising a rotors turning refuel on an 

offshore installation, with a 50kt wind blowing, with heavy rain and hail, your eyes 

are very vulnerable.  Yet, we are NOT provided with ANY eye protection 

whatsoever.  We are explicitly forbidden from wearing helmets’.  

2738: ‘I bought aviators because, well, they're aviators and supposedly designed for 

flying. In reality the let in sun around the edges and probably the best type of 

sunglasses for protection are wrap around. However, as I spent a lot of money on 

getting aviator with prescription lenses (I also need corrective lenses while flying), I 

am unlikely to change until my prescription changes’. 
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The most commonly reported barrier to sunglass use was that it made the 

instruments too dark to visualise clearly (n=73): 

417: ‘I would run out and buy new sunglasses tomorrow if I could find a tint and 

gradient that works with Airbus instruments, unfortunately it doesn't seem to be 

available’.  

979: ‘One of the main reasons for not wearing sunglasses is the problem of not 

being able to adequately read EFIS displays with sunglasses on. Even with the 

screen brightness on MAX they are still too dim, so I just accept some discomfort 

caused by bright sunlight’. 

2477: ‘In the cockpit I will wear my RayBan wrap-arounds proud of my face (held by 

the ear cups of my own Bose headset) to obscure sunlight while allowing my eyes 

unhindered view, below the coaming, of the instruments’. 

2554: ‘Balancing being able to comfortably look out in sunlight and look in at the 

instruments in a dark cockpit is nigh on impossible to achieve’. 

 

A small group of respondents (n=9) reported an assumption was that the aircraft 

windshield provided adequate protection from any adverse health effects: 

381: ‘I assume the vast majority of UV does not pass the windscreen and it is not a 

health problem otherwise professional literature would encourage/oblige me to wear 

personal sunglasses for protection rather than just for convenience and comfort.  If 

this is incorrect should they not be part of my safety equipment issue or at least be 

included in industrial health obligations?’ 

907: ‘As I can sit for a whole day in the sunshine in the cockpit and I do not get any 

tanning effect at all, I believe that the thick glass windows, like car windows, is 

opaque to ultraviolet rays’. 

1236: ‘I have recently been diagnosed with a Rodent Ulcer below my left eye which 

has just been surgically removed. At present I am off with stitching and grafting of 

skin to cover this procedure. I always wear sun protection (Sun Cream & Glasses) 

except during flight as I thought there was adequate protection from ultra vilot (sic.) 

light. I am of dark skin and half Mediterranean background origin’. 

1840: ‘Hard to imagine how an inch and a half of glass and acrylic isn't going to stop 

harmful UV and a millimetre of ray-bans is...’ 

 

Conversely, six respondents expressed concern of the potential radiation dose that 

they may be subject to during flight.  Concerns over both skin and eye exposure 

were raised: 
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1727: ‘Wear low factor sunblock on my face and try and wear prescription 

sunglasses when flying in daylight conditions, due to advice from my consultant 

dermatologist!’ 

381: ‘I used to wear sunglasses much more often.  For some reason the brightness 

bothers me less even though when I stop to think about it I am concerned about UV 

effects on my eyes’.  

 

Additionally, 18 pilots expressed surprise and concern that other fellow pilots wore 

sunglasses infrequently: 

196: ‘I can't fly without them, it's far too bright in the cruise. I'm amazed how many 

pilots don't use them and are constantly struggling to see. I've even taken control of 

the aircraft for landing into sun, when it became apparent that the first officer was 

struggling to see! He had no sunglasses with him’. 

609: ‘I am always amazed when people don't use sunglasses. They are VITAL’. 

728: ‘Never ceases to amaze me how many of my colleagues don't use adequate 

eye protection from sunlight. Many just squint or rely on the always-poor aircraft sun 

visors...’ 

  

Respondents showed engagement with the questionnaire as the second most 

prevalent theme within the free text boxes was for more guidance and advice to be 

published for pilots.  A total of 110 such requests were received: 

806: ‘Exposure to UV light at work would be a concern if I thought I was, for 

example, at risk of developing skin cancer from UV passing through the windows’ 

907: ‘...If there is a risk to eye health from sunlight in the flight deck, I would 

appreciate knowing more about it’. 

2420: ‘I am totally ignorant! News to me! I tried sunglasses but they made 

instruments (LCD) hard to read. Why? Polarised glasses? If I knew which sort to buy 

that worked I'd buy them! Ignorance again. Now you've got me concerned ??????’ 

 

4.10 Questionnaire reliability 

A measure of response survey reliability was made by repeating a question about 

the number of flying hours logged over the past year.  One question was sited at the 

beginning of the questionnaire and was a free text box.  The second question was 

near the end of the questionnaire and respondents were asked to provide their past 

year’s total flight time logged in one of five categories.  Cross tab analysis was 

conducted.  7 responses were ignored as the responder most likely missed or added 
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a zero in error (for example stating 75 hours in the free text box and selecting the 

>700 hour category).  97.2% (n=2829) respondents gave equivalent responses to 

the two questions.  2.7% (n=78) were incorrect by one category band and 0.1% 

(n=3) were incorrect by two category bands.  No error was greater than two 

category bands. 

 

In analysing the data, it is recognised that some variables such as the presence of a 

spectacle requirement on a medical certificate, the use of sunglasses and the type 

of flying undertaken have been used on a number of occasions to test the statistical 

significance of their effect on other variables.  It is also recognised that multiple 

testing of the same variable at p<0.05 will increase the probability of a false positive 

result if the results are considered simultaneously.  Whilst care has been taken not 

to infer conclusions from a series of statistical tests, partly due to the large number 

of participants, a higher level of confidence (such as p<0.001) is afforded in a large 

number of the statistical tests conducted.  Additionally, it should also be 

acknowledged that the questions to be addressed at analysis were planned at the 

time of the design of the questionnaire and additional analysis has been conducted 

only where further exploration of findings was warranted.   

 

4.11 Questionnaire discussion 

4.11.1 Participant demographics 

It can be seen that the age range of the participants follows a normal distribution 

curve (Figure 4-b).  Analysis of the age of respondents from the questionnaire 

compared to the total current UK professional licence holders from the audit data 

(described in section 4.13) is shown in Table 4-h. 

 

  Questionnaire Audit 

N= 2917 22033 

Mean age 42.57 40.12 

Median age 43 40 

Skewness 0.018 0.017 

Kurtosis -0.082 -0.078 

Table 4-h Age demographic summary of questionnaire and audit populations. 
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While the skewness and kurtosis of the distribution remain similar, there was a 

significant difference in mean age between the two groups (independent t-test 

t=10.88, df 1, p<0.001).  It should however be noted that the audit was carried out in 

April 2011 and the questionnaire was completed between December 2012 to March 

2013.  This may account, in part, for a younger mean age within the audit.  Other 

reasons for this age disparity are discussed in section 4.15. 

 

There are some variations from the normal curve from year to year (for example 

comparing pilots of age 38 to those age 39).  Recruitment within the airline industry 

is subject to variation over time.  Air travel is affected by the world economy and 

events such as the 9/11 terrorist attacks and airlines will recruit and employ pilots 

according to demand however overall, air travel is increasingly popular.  This offers 

an explanation as to the drop in numbers of older pilots.  However, there are also 

some pilots who may be found medically unfit before reaching the upper 65 year 

age limit for airline flying and some pilots may choose to leave airline flying before 

the age of 65.  However, it is most likely that the lower numbers of older pilots reflect 

the fact that the industry was considerably smaller at the stage when they embarked 

on their training.  The vast majority of professional pilots will have completed their 

training by the age of 30.  If in the future, the size of the aviation industry remains 

static, the age demographic would be expected to change to become more even 

across the age range with the exception of each extremes of age.  Participants 

questioned showed a good level of professional flying experience with 91.6% having 

accrued over 2,500 flying hours over a range of flight operations. 

 

There is an expected rise in the requirement for the use of spectacles with age.  The 

onset of presbyopia (Charman, 1989) and shift towards hypermetropia (Bennett, 

2007) can cause a reduction in the level of unaided vision.  There is also a slightly 

higher proportion of spectacle wearers within a younger age group (from around age 

26-34).  This effect may be in part due to a gradual relaxation to the myopia 

refraction limits (section 1.6) for initial medical certification resulting in more 

spectacle wearing applicants being eligible for certification.  It also may be due to an 

increase in prevalence of myopia in the general population (Gilmartin, 2004; Vitale 

et al, 2009). 

 

The overall prevalence of pilots using contact lenses during flight was 12.17%.  This 

compares with 3.1% found amongst US civilian pilots from 1997 (Nakagawara et al, 

2002).  This study also found a significant increase in contact lens use among pilots 
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from the 1960s to 1997.  Due to the continued expansion of the contact lens 

industry, improvements in lens technology and range of lenses available, it would be 

expected that current prevalence of contact lens use in US pilots would now be 

significantly higher.  It is estimated that in the general UK population age 15-65 

years, the prevalence of contact lens use in those requiring optical correction is 

18.1% (Personal communication D.Ruston 14/04/14) compared with 26.6% found in 

the study.  This higher prevalence in contact lens use in the study group is 

surprising as it would be expected that prolonged contact lens use in the low 

humidity cabin environment would cause discomfort in some wearers.  The higher 

contact lens use in the study group may be due to pilots being of a higher socio-

economic group than the overall UK population and having more disposable income 

but may also be influenced by a pilot preference to be spectacle free when 

undertaking the aviation visual task.  There is likely to be a number of factors 

influencing this decision, however the ease of using one pair of non prescription 

sunglasses when needed is likely to be a consideration.  It can be seen that contact 

lens wearers use sunglasses more than spectacle wearers (Mann Whitney U, 

p<0.001). 

 

4.11.2 Sunglasses 

There is a remarkably uniform distribution of responses concerning the extent of 

sunglass use within professional pilots.  It may seem initially surprising that nearly 

25% of those questioned never used sunglasses or used them for less than 10% of 

the total flight time.  It is clear that those pilots requiring optical correction are far 

less likely to use prescription sunglasses.  This is due to a number of confounding 

factors including having to change glasses during flight and the cost of glasses.  

Normal age related ocular changes including lens and other media changes, 

increase in scatter and fluorescence of lens and cornea, reduced dark adaptation 

and glare recovery are all likely to increase glare sensitivity with age yet the older 

spectacle wearing pilot is less likely to use sunglasses.  The most common reason 

for reduction in sunglass use with time is due to the onset of requiring corrective 

spectacles.   It is interesting to see that younger pilots rate their sunglass 

performance higher.  This could be due to the normal ageing ocular changes in 

older pilots impacting on visual performance in ways that are not fully ameliorated by 

sunglasses. 
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It is seen that the use of aviator style sunglasses is significantly higher in helicopter 

pilots while pilots operating airline jet aircraft are more likely to be using wrap around 

style sunglasses.  These are likely to offer superior protection from peripheral 

radiation and the PLF effect (section 2.4).  The long haul pilot in particular may be 

subject to long periods of flight with the sun in a similar relative position within their 

field of view.  This also offers an explanation for the long haul pilot being more likely 

to have 2 pairs of sunglasses and the primary set to be a fixed tint.  The helicopter 

environment during flight is noisier than a typical airline jet aircraft and therefore, 

helicopter pilots generally have to use heavier headsets with close cup fitting over 

the ears to minimize exposure to aircraft noise.  The sides of a spectacle frame have 

the potential to push the headset cups away from the ears and decrease the 

effectiveness of the headset.  An aviator frame is more likely to have a more 

compatible thin side for use by the helicopter pilot. 

 

The results show that a major factor in the comfort of sunglasses, and as a 

consequence, the amount that they are used is the compatibility with the headsets.  

All pilots need to use headsets, not only to reduce ambient noise if required, but also 

to communicate with air traffic control and the other pilot(s).  Not only were 

symptoms of discomfort reported around the ears independently by 39 participants, 

three pilots declared comfort as the reason for carrying a second pair of sunglasses 

during flight and sunglass discomfort was reported by 89 non-sunglass wearing 

participants as their reason for not using sunglasses.  This was the fourth most 

prevalent reason and the proportion was much higher among those not requiring 

optical correction.  This finding concurs with the results of the interviews in section 

4.5.2.  It is likely that those pilots who require a prescription are more adapted to 

wearing frames on a full time basis.  They are also more likely to have had their 

glasses professionally adjusted for optimum fit (although 63.8% of sunglass users 

questioned had never had a fitting)  than those pilots who have purchased non-

prescription sunglasses from a retail outlet. 

 

The Luxottica group manufactures a number of sunglass brands including RayBan 

and Oakley and represent the highest sales value percentage for sunglasses sold at 

UK retail outlets (67.6% compared to the second highest, Maui Jim at 8.4%) (Gfk, 

2013).  This was matched with the highest prevalence amongst sunglasses users in 

the questionnaire, with 54.1% using a Luxottica group sunglass product.  Serengeti 

brand sunglasses were the next most popular in the questionnaire which did not 

feature in the top four highest sales value percentage (Gfk, 2013).  It is therefore 
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likely that pilot sunglass selection is not driven purely by product availability, but also 

other factors such as colleague or aviation medical recommendation and pilot 

targeted advertising. 

 

Spectacle wearers may have consulted CAA guidance material regarding the use of 

contact lenses or criteria for spectacle frame choice.  It may be therefore 

unsurprising that they are more likely than their non-spectacle wearing counterparts, 

to have consulted CAA guidance with regard to sunglasses.  A higher proportion of 

younger pilots stating that they consulted guidance material could be due to having 

had more recent contact with the CAA Medical Department (at their initial Class 1 

medical) as guidance material published on the CAA website has been published 

only within the past 10 years.  Additionally, younger pilots are more likely to have 

required spectacles since their first medical certificate issue and thus consulted CAA 

guidance for this reason.  Overall, the use of guidance material remains low at 

10.7%.  Before promoting any CAA guidance to pilots, it should reflect best practice 

and should be evidence-based. 

 

The majority (86.8%) of the colour of sunglass tints described were grey, brown or 

green.  These are unlikely to cause significant changes to perception of colour 

however it is recognised that perceived tint colour may not correlate well to the 

sunglass lens transmittance properties.  For example, those describing a silver tint 

may have had a neutral grey tint and a mirrored reflective coating on the front 

surface of the lens.  Additionally, some tints described as green or purple may have 

multi anti-reflection coating on the lens and those describing their sunglasses as 

blue or black may have a dark (higher absorption) neutral grey tint. 

 

A number of pilots reported difficulty with the aircraft instruments appearing too dark 

when wearing sunglasses (73 reported independently and 58 non sunglass wearing 

pilots gave this as their reason for not using sunglasses).  The obvious solution to 

counter this would be for the pilot to use a graduated tint which is darker at the top 

and lighter at the bottom of the lens.  However, only 11.1% of sunglass wearing 

pilots had this type of tint with the majority having a fixed, equal density tint (71.6%).  

This disparity is surprising and could be due to a number of causes.  Graduated tints 

in non-prescription sunglasses may be less prevalent or be under-reported by 

participants if the degree of graduation is subtle.  It may also be that graduated tints 

are not used as they are perceived as offering a lower level of solar protection 

compared to an equal density tint. Another reason may be that graduated tints are 
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less commonly available in the showroom frames that are typically found in sunglass 

outlets or magazines. 

 

Overall, the majority of pilots questioned (70.4%) rated their sunglass as ‘good’ or 

‘excellent’, although this did not include the pilots who never used sunglasses and 

who would have more likely had a poor previous experience.  This positive rating is 

in spite of the low proportion (1.7%) using aviation specific sunglasses.  This may be 

due to a low awareness that these sunglasses are available, the perception of a 

greater expense to purchase, scepticism about the claimed benefits, or that pilots 

perceived sunglass comfort is good with their current sunglasses.  In addition to 

being more likely to have had their sunglasses fitted, corrective spectacle wearers 

also have significantly newer sunglasses than non-spectacle wearers which may 

explain the marginal but statistically significantly higher rating given by spectacle 

wearers. 

 

 Frame and tint comfort and UV protection were rated the most important factors in 

sunglass selection.  The brand or label of sunglasses was considered least 

important and significantly more so amongst spectacle wearers who are likely to 

have reduced choice of sunglasses if requiring prescription.  This reduced choice in 

spectacle wearers’ sunglasses would also offer an explanation for the lower 

importance ratings for frame style, frame comfort and UV protection described by 

this group. 

 

Eight pilots independently reported that bright light environment caused them to 

sneeze.  This is known as the photic sneeze reflex and is uncontrollable sneezing in 

response to a number of stimuli including bright lights and has been reported as 

affecting 18-35% of the population (Breitenbach et al, 1993).  It is speculated that it 

is triggered by a change in overall light intensity and consideration should be given 

to the potential for pilot temporary incapacitation, particularly in the critical stages of 

flight.  The reporting rate in this study is low, however it may have been higher had a 

question been specifically designed to establish prevalence within the pilot 

population.  If this phenomenon is as common as reported, questioning and 

guidance on solar protection and sneeze avoidance could be given to susceptible 

pilots at their medical revalidation examination. 
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4.11.3 The flight deck environment 

It is clear that bright sunlight conditions can be problematic in the flight deck.  Bright 

light is the major cue for pilots to use sunglasses.  Wide body commercial jet aircraft 

generally have front windshield and side windshield sun protection systems as 

described in section 1.5.7.  Front visors can cover only a proportion of the total 

windscreen area but can on some aircraft, be positioned to be closer to the eye 

position by securing the visor at a point on the rail nearer the side window, thus 

increasing the area of visual field covered by the visor (Figure 4-m). 

 

 

Figure 4-m Use of visors on a Boeing 757. 

 

The results show that, although used commonly, these standard visors and blinds 

do not offer adequate comfort protection to the pilot throughout normal operations.  

A large number of negative comments were received regarding the visors and many 

pilots resort to using other means to manage the sunlight levels on occasions.  In 

these situations, sunglasses may not attenuate the light levels sufficiently. 

The range of other practices declared shows how pilots often use whatever is to 

hand within the cockpit to block glare from direct sunlight.  A number of pilots have 

anticipated the potential in-flight issues of sunlight and ensure that they carry some 
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form of glare protection in their flight bag, such as a stick on car window blind 

marketed for glare protection for children.  It is interesting to note that there is no 

significant difference in the use of strategies between spectacle wears and non-

spectacle wearers with the exception of using sunglasses (lower among spectacle 

wearers) and using a baseball cap (higher among spectacle wearers).  It would 

seem that with the additional barriers to sunglass use by spectacle wearers result in 

the use of a peak cap being a more practical option for this group.  It is also of 

interest that ex-military pilots are lower users of eye protection strategies excluding 

sunglasses.  This may be due to differences in initial pilot training and the availability 

of sun protection systems in military aircraft but also apparent is a lower use of non-

standard sun protection practices by ex-military pilots. 

 

The highest users of sunlight protection strategies are the long haul airline transport 

group.  This is likely to be due to a greater proportion of the flight time spent at 

cruise, where the aircraft is likely to be operating in controlled airways, on auto-pilot 

and on a similar heading for potentially many hours at a time and where the 

requirement for spotting other traffic is reduced.  The lowest users of the three most 

prevalent flying categories were the helicopter off-shore pilots.  This would be 

expected for these operations which are lower altitude, short duration with more 

frequent changes of heading and a greater safety requirement for look out and 

spotting other traffic.  It is also logical that the use of a peaked baseball cap is higher 

in this group as the windshield blocking strategies used by airline jet pilots are not 

appropriate. 

 

The results show that although there was a wide variation between pilots in the use 

of sunglasses, there was no significant difference between the three most prevalent 

flying categories.  There are a number of possible explanations for this.  It is 

possible that sunlight conditions are such that similar illuminance levels are present 

for the low altitude helicopter flying and high altitude airline flying.  It can be seen 

from the results that pilot sunglass use is strongly driven by prevailing conditions 

rather than by a particular stage of flight.  There is likely to be a wide population 

variation in personal threshold of tolerance to bright light conditions due to a number 

of physiological and ocular factors including degree of ocular pigmentation, facial 

anatomy (e.g., prominent eyebrows, deep-set eyes), age, pupil size and presence of 

ocular media opacities.  The wide spread of sunglass use across the main flying 

groups use supports this. 
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It might be expected that high altitude flight operations would result in higher levels 

of irradiance than lower altitude flights such as helicopter flights.  However, the level 

of standard solar protection within helicopters is generally less than wide body jet 

aircraft and may consist of front visors only, a fixed tinted strip at the top of the 

windshield or no solar protection offered.  Additionally, there would be greater flight 

safety implications for making adaptations during flight to block sunlight to the 

helicopter pilots’ eyes.  This lower level of aircraft solar protection may result in a 

lower personal threshold for the pilot to use sunglasses.  If sunlight conditions are 

less extreme for helicopter pilots, their sunglass use may be equivalent to that of 

pilots operating at high altitude.  Small private and business jet aircraft are a 

category of aircraft which have, in some cases, a similar level of standard sunlight 

protection to helicopters but which usually operate at higher altitude.  Although, 

there were low numbers of business jet pilot participants (n=21), the group did use 

sunglasses significantly more than rest of the population surveyed (Mann-Whitney 

U, p=0.002).  No difference was seen in the use of other eye protection strategies by 

business jet pilots compared to other pilots. 

 

4.11.4 Eye health 

There was no radiation exposure related ocular pathology reported by HOS pilots, 

however the group size was small compared to LH and SH pilots and it should not 

be concluded that SH and LH pilots are at an increased risk.  The results show an 

expected correlation with age but not with flying experience once age is accounted 

for.  The results show that 2% of the pilots questioned had cataracts or had 

undergone cataract surgery compared to 0.25% from the CAA medical record audit 

(n=22,033).  Similarly, 1.5% of the pilots questioned had been diagnosed with 

macular degeneration compared to 0.05% from the CAA medical record audit.  The 

relative under-reporting in the CAA medical records system may reflect a more open 

response from an anonymous questionnaire compared to a face to face medical 

examination and may elicit a positive response for early changes which may not be 

reported at a medical.  It is also feasible that cases of cataracts and macular 

degeneration may be recorded on the pilot’s medical record but not have been input 

under a specific read code which was used to conduct the audit. 

 

A small proportion of the study population questioned took dietary supplements 

solely due or due in part to eye health concerns.  It has been reported that the use 

of dietary supplementation of carotenoids meso-zeaxanthin, lutein and zeaxanthin 
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can increase the macula pigment optical density (Connolly et al, 2010; Connolly et 

al, 2011).  A high macula pigment optical density has, in turn, been reported to 

improve visual performance including resistance to glare symptoms (Nolan et al, 

2011).  In this study, it has not possible to assess the effect, if any, in reduction of 

glare symptoms as the groups are not age-matched and it is possible that people 

who are more prone to glare may be more likely to take dietary supplements. 

 

There have been a number of studies reporting a poor understanding within the 

general public of the hazards of UV exposure to ocular health (Citek et al, 2011).  

This, together with the assumption made by some pilots that the aircraft windshield 

offers adequate protection (in turn, possibly due to the lack of skin effects noticed by 

the pilot) may offer some explanation as to the large number of pilots using 

sunglasses very little or not at all.  Additionally, the most common reason for a pilot 

to increase their sunglass use is through awareness of potential impact to eye 

health; however this would be done without evidence-based data of an increased 

risk of ocular damage within the pilot population. 

 

4.12 Audit introduction 

The CAA Medical Department holds an electronic database of all class 1 

(professional) and class 2 (recreational) medical certificate holders. An applicant 

may gain a medical certificate by attending the AeroMedical Centre or a local 

Aviation Medical Examiner, as appropriate. However, there are many medical 

certificate holders who do not have a valid licence.  Here, the individual has not 

completed their flight training course and passed the appropriate examinations and 

skills test in order to be issued their licence.  Equally, a pilot may hold a current 

licence (which may be valid for a number of years) but not hold a valid medical 

certificate. This may be because they have recently retired from professional flying 

or have the medical condition which, at the time of the audit, precluded medical 

certification. 

 

The pilot’s medical record shows whether the individual is required to wear 

spectacles (or contact lenses) during flight and to carry an additional similarly 

correcting pair of glasses.  This is known as a VDL limitation (wear corrective lenses 

and carry a spare set of spectacles).  A presbyopic pilot with good distance vision 

will be required to have available a pair of reading glasses. This is known as a VNL 

limitation. 
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The CAA medical record database also has a Read code system.  This is to allow 

specific medical conditions or findings to be documented on the pilot’s medical 

record.  A database search of the specific code would reveal all pilots with that 

condition. 

 

4.13 Audit method 

During April 2011, a search was conducted of the CAA medical records to identify all 

current class 1 medical certificate holders who also held a current commercial 

licence. Within this group further searches were conducted to establish the total 

number of VDL and VNL limitations present.  Read codes were identified which 

corresponded to known UV related pathology.  These were cataract, history of 

cataract extraction, keratopathy, pterygium, melanoma and macular degeneration. 

Where pathology had been recorded, the individual record was checked to assess 

whether another cause had been identified (for example a cataract caused by 

traumatic injury to the eye).  As a number of Read codes are available for conditions 

such as cataracts, cases were cross-referenced so that no one individual was 

counted twice for the same pathology. 

 

4.14 Audit results 

As of the time of the audit, there were 22,033 current UK class 1 licence holders on 

the UK CAA database.  4,267 (19.37%) had a VDL limitation and 1131 (5.13%) had 

a VNL limitation on their medical certificate. 

 

54 pilots (0.25%) had a history of cataract recorded (2 pilots with traumatic cataracts 

were excluded), 5 (0.02%) had macular degeneration, 11 (0.05%) had pterygium 

and 12 (0.05%) had melanoma (1 of which was ocular). No keratopathies were 

recorded. 

 

4.15 Audit discussion 

There is a difference in the presence of a VDL requirement between the audit 

population (19.4%) and the questionnaire respondents (45.7%).  It is uncertain why 

such a discrepancy exists however it may be due in part, to the difference in mean 

age between the groups and the increasing prevalence of a spectacle requirement 

with age.  It is also possible that some participants with good distance vision and a 
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VNL requirement for reading glasses responded positively to the survey question 

regarding the presence of a VDL limitation on the medical certificate.  However, 

according to audit results, this group constitutes a relatively small proportion (5.1%) 

of the pilot population. 

 

The number of licence holders found in the audit does not relate to the number of 

pilots employed by UK airlines (10,159 in 2013) (Civil Aviation Authority, 2013).  

Several factors are likely to account for this discrepancy.  These include a 

population of UK commercial licence holders seeking employment by UK airlines, 

UK commercial licence holders working for non-UK airlines and pilots who have 

carried out other types of commercial flying including instructing, business jet and 

helicopter pilots. 

 

It is therefore not known if the spectacle and pathology prevalence stated above is 

representative of the UK professional airline pilot population.  It is likely that those 

seeking employment may be of a younger mean age than those currently employed.  

Additionally, those excluded from the audit due to not having a valid medical 

certificate (due to retirement or medical unfitness) are likely to be of an older age.  

These factors combined may produce a younger mean age within the audit group 

however there are also some pilots (retired from airline work) who continue to 

maintain a commercial licence. 

 

4.16 Summary 

The results from phase 1 reveal that bright sunlight conditions occur in flight which 

can be distracting, uncomfortable and less commonly debilitating for the pilot.  Pilots 

are critical of standard aircraft protection systems and commonly employ other 

strategies to manage bright light.  Although one strategy available to the pilot is to 

wear sunglasses, there is a surprisingly wide variation in use between pilots.  The 

most common reason for not using sunglasses is due to the requirement to wear 

corrective spectacles.  A wide variety of sunglasses are used by pilots although 

aviator styles are used more commonly be helicopter pilots and wrap-around styles 

are used more frequently by long haul pilots.  There is a low take up of sunglasses 

specifically marketed for pilots. 

 

Although there was a low prevalence of non-ionising radiation related ocular 

pathology reported in both study group and in audit results, professional pilots 
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appear to show an interest in this topic with a strong questionnaire response rate 

together with requests for more information and guidance. 
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5. Chapter 5 Spectrometer description, calibration 
and data handling 

CHAPTER OVERVIEW 

This chapter appraises methods for measuring spectral irradiance.  This is followed 

by introduction and description of the equipment used for irradiance and 

transmission measurements for this research.  The equipment reliability, calibration 

and limitations will be discussed together with detail of its positioning and the 

development of a measurement protocol for in flight data collection.  The software 

used for the capture and spectral management of data will be described.  Details of 

the nature and extent of the collaboration with Public Health England for this phase 

of the project will be given. 

 

5.1 Introduction and appraisal of methods for phase 2 

In order to assess pilot ocular exposure, field measurements are the most relevant 

means of data collection.  Solar simulating lamps may not be truly representative of 

the solar spectrum (Parisi et al, 2004) and will not replicate actual irradiance levels.  

 

Exposure radiation data can be collected using various methods.  Film badge 

personal dosimeters have been described using various materials most commonly 

polysulphone (Davis et al, 1976, Diffey and Roscoe 1990), but also allyl diglycol 

carbonate (CR39) (Wong et al, 1992), nalidixic acid (Tate et al, 1980), 8-

methoxypsoralen (Diffey & Davis, 1978), bacteriophage T7 (Ronto et al, 1992) and 

bacteriophage T1 (Furusawa et al, 1990).  These dosimeters respond to UV and 

provide a measure of cumulative dose over a period of time. 

 

Polysulphone has a high response in UVB which drops rapidly for wavelengths 

greater than 300nm and does not respond to wavelengths greater than 330-340nm 

and therefore cannot be employed for the measurement of UV exposures in an 

environment where wavelengths shorter than 330-340nm are not present (Parisi et 

al, 2004).  Polysulphone response is independent of temperature during its 

exposure (Giess, 2003), however will saturate with higher UV exposures.  These 

dosimeters give only an accumulative measure of UV dose with no spectral 

information of the irradiance and no measure of visible or blue light hazard.  While 

being useful in the estimate of skin exposure where multiple films can be deployed 

on various anatomical locations, their use for ocular exposure is limited. 
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Other dosimeters such as personal electronic dosimeters (Tracerco, Thermo 

Scientific), quartz fibre (Ludlum Measurements Inc) and thermo-luminescent (Mirion 

Technologies) dosimeters are not sensitive to the non-ionising UV and visible part of 

the electromagnetic spectrum. 

 

Radiometers measure the total amount of non-ionising electromagnetic energy 

within a set wavelength range, for example UV or IR.  Spectrometers generally use 

the addition of an optical grating or prism in order to split the incoming energy by 

wavelength which is detected by multiple sensors.  Some spectrometers use a 

scanning principle taking successive measurements across the spectrum as the 

wavelength of the beam is altered (ISO 12311, 2013).  Therefore, a spectrometer 

will allow measurement of the wavelength range of interest with spectral information 

of the intensity of radiation at differing wavelengths.  Indeed, spectrometers are 

often used to calibrate film personal dosimeters (Parisi et al, 2004). 

 

Traditionally spectrometers have been bulky and less suited for deployment within 

the relatively confined space of an airline flight deck.  Additionally, scanning 

instruments are less suited for measurements in fast changing irradiance conditions 

as may occur during flight.  However, smaller high resolution spectrometers are 

more recently commercially available which make in flight irradiance measurement a 

feasible proposition.  

 

Ocean Optics is one manufacturer of small form factor spectrometers.  These are 

compact and portable and although not specifically designed for use in a cockpit 

environment, have been used in a number of applications including measurement of 

LED output (Ryu et al, 2006), colour measurement of live bird plumage (Quesada 

and Senar, 2006), remote measurements of volcano surveillance (Galle et al, 2003) 

and gathering spectral data on Mt Everest and Mars (SpaceRef, 2012).  There are a 

number of spectrometers available sensitive over different ranges of the non-

ionising electromagnetic spectrum.  The spectrometer can be further customized by 

the manufacturer with the insertion of different optical gratings and bench options in 

order to target the wavelength range of interest. 

 

The spectrometer requires input optics, such as a cosine corrected diffuser, in order 

to capture spectra from a wide field of view (Ocean Optics, no date a) and transmit 

radiation for irradiance measurements.  Where a beam of incident radiation strikes 
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the diffuser at an angle away from normal, a larger area of the sensor is affected 

than if incident radiation were perpendicular to the diffuser.  As the radiant flux is 

constant but detected over a larger area, a false low signal will result.  The level of 

signal decrease is proportional to the cosine of the angle from normal.  

Measurements through cosine corrected diffusers account for this and are therefore 

unaffected by the angle of incident radiation. 

 

However, cosine responders have been reported to differ by more than 10% from 

the ideal cosine response and cause errors in the measurement of overall spectral 

irradiance (Seckmeyer and Bernhard, 1993).  Diffuse radiation is less affected by 

cosine errors than direct radiation (Bais et al 1997) and it is reported that, for 

practical purposes, cosine error may not be important although can cause 

uncertainty of data (European Commission, 1995).  The degree of uncertainty can 

be quantified by assessing the individual diffuser head’s cosine response function. 

 

Appropriate steps must be taken in order to ensure the accuracy of the 

spectroradiometer.  Causes of inaccuracy of spectroradiometer measurements 

include wavelength accuracy, photometric accuracy, stray light, resolution, stability, 

instrument noise and changes in temperature. 

 

Wong et al (1995) recommend that a spectroradiometer should have a resolution 

1nm or better and a sensitivity of 0.1 uW/cm2 at 300nm for solar UV measurements.  

It has been recommended that for accurate UV measurement, a spectroradiometer 

should have a wavelength precision of +/-0.2nm and not more than +/-0.1nm from 

one part of spectrum to another (European Commission, 1995).  The degree of error 

through inaccurate wavelength verification is strongly dependent on wavelength 

(Bais et al, 1997).  Small wavelength errors introduce significant errors in irradiance 

in UVB range (Seckmeyer and Bernhard, 1999).  Stray light can be reduced using a 

double monochromator spectrometer which uses two diffraction gratings.  However, 

these units tend to be larger in size.  Most spectroradiometers are sensitive to 

temperature (European Commission, 1995). 

 

McKenzie et al (1993) recognised that careful procedures must be followed to 

ensure quality of data and recommended wavelength and irradiance calibration for 

each measurement session.  A well maintained high quality spectroradiometer is not 

expected to vary more than 2% between spectral irradiance calibrations (Bais et al 



126 
 

1997).  The calibration procedure and the quantification of accuracy of the 

spectrometer and associated optics is detailed in section 5.6. 

 

5.2 Description of equipment 

Spectral irradiance measurements were carried out using an Ocean Optics HR4000 

miniature CCD array spectrometer.  The HR4000 is a high-resolution model with 

3,648 detector elements.  An HC1 composite grating was installed which operates 

from 200 to 1050nm (Ocean Optics, no date d).  To enhance UV sensitivity, the 

HR4000 has a UV CCD array upgrade installed.  Electromagnetic radiation was 

collected through a CC-3-UV cosine corrected diffuser which collects radiation 

through 180 degrees (Ocean Optics, no date a), and is transmitted via a metal 

sleeved QP600-2-UV/BX 2 metre optic fibre cable. 

 

The Spectrometer was connected via USB cable to an ASUS R2E palmtop 

computer (Windows Vista operating system) on which was installed two software 

packages to facilitate spectral data collection and storage.  These were Ocean 

Optics Monitor, Automated Spectrometer Acquisition System (ASAS) V4.13 and 

Ocean Optics SpectraSuite software.  ASAS was used for data collection during 

flight and for office measurements.  The SpectraSuite software was used for 

transmittance measurement of sunglasses, aircraft windshields and translucent 

aircraft visors. 

 

For in-flight and office measurements, an Ocean Optics INLINE-TTL-S optical 

shutter (Figure 5-a) was connected directly to the HR4000 by an RS232 cable.  The 

shutter was controlled by ASAS through the single USB cable connecting the 

palmtop to the HR4000.  Power to the shutter was supplied by a YSN-12680 12V 

DC battery. 

 

In order to ensure sufficient battery power throughout the flight, the palmtop was 

connected to an XCell pro external battery which allowed around 8 hours of 

continuous operation of the palmtop and HR4000 (Figure 5-a).  For long flights, a 

second XCell pro battery was available. 
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Figure 5-a Components of automated measurement equipment: (a) – HR4000 
spectrometer, (b) – optical fibre, (c) – in-line TTL shutter with control box and power 
supply, (d) – shutter battery, (e) - CC-3-UV diffuser, (f) – palmtop computer, (g) – 
battery. 

 

Two miniatureTR-74Ui illuminance UV Recorders (T&D Corp, Japan) shown in 

Figure 5-b were used to record illuminance.  One unit was at a fixed position next to 

the input optics of the HR4000 and was programmed using illuminance UV 

Recorder software V1.06 to capture illuminance data time-synchronised with 

spectral measurements.  The second unit was used by the researcher to take a 

series of manual readings during flight (described in section 5.9). 

 

 

Figure 5-b T and D TR-74UVi illuminance UV recorder. 

(b) 

(a) 

(c) (c) 

(f) 

(g) 

(e) 

(d) 
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5.3 HR4000 technical specifications 

The HR4000 is a sealed unit.  The casing measures 15cm x 10.5cm x 4.5cm.  The 

weight of the HR4000 is 570g. The optical bench has no moving parts and all the 

components are fixed in place at the time of manufacture.  The path of radiation 

within the unit is shown in Figure 5-c.  Table 5-a lists internal components of the 

spectrometer. 

 

 

Figure 5-c Diagrammatic representation of the path of radiation within the HR4000 
unit. 1 = SMA connector, 2 = Slit, 3 = Filter, 4 = Collimating mirror, 5 = Grating, 6 = 

Focusing mirror, 7 = Detector collection lens, 8 = CCD connector. Taken from Ocean 
Optics. 

 

The HR4000 spectrometer has a 25-micron slit width which enables, accounting for 

the detector elements and grating type (HC1 200-1100nm), a resolution of 1.09nm 

full width half maximum (FWHM) across the spectra (Ocean Optics, no date e).  A 

higher resolution is obtained at peak response (Figure 5-d).  The wavelength step is 

the spectral range of the grating of the spectrometer divided by the number of 

detector elements.  The average wavelength step across the spectrum is 0.247nm.  

The spectrometer can operate at up to 263 scans per second across the entire 

electromagnetic spectral range to which it is tuned (Ocean Optics, 2007). 
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Item  Name  Description  

1  
SMA 
Connector  

Secures the input fiber to the spectrometer. Light from the input 
fiber enters the optical bench through this connector.  

2  Slit  

A dark piece of material containing a rectangular aperture, which is 
mounted directly behind the SMA Connector. The size of the 
aperture regulates the amount of light that enters the optical bench 
and controls spectral resolution.  

Only Ocean Optics technicians can change the Slit.  

3  Filter  

Restricts optical radiation to pre-determined wavelength regions. 
Light passes through the Filter before entering the optical bench. 
Both bandpass and longpass filters are available to restrict 
radiation to certain wavelength regions.  

Only Ocean Optics technicians can change the Filter.  

4  
Collimating 
Mirror  

Focuses light entering the optical bench towards the Grating of the 
spectrometer.  

Light enters the spectrometer, passes through the SMA Connector, 
Slit, and Filter, and then reflects off the Collimating Mirror onto the 
Grating.  

5  Grating  

Diffracts light from the Collimating Mirror and directs the diffracted 
light onto the Focusing Mirror. Gratings are available in different 
groove densities, allowing you to specify wavelength coverage and 
resolution in the spectrometer.  

Only Ocean Optics technicians can change the Grating.  

6  
Focusing 
Mirror  

Receives light reflected from the Grating and focuses the light onto 
the CCD Detector or L2 Detector Collection Lens (depending on 
the spectrometer configuration).  

7  
L2 Detector 
Collection 
Lens  

An optional component that attaches to the CCD Detector. It 
focuses light from a tall slit onto the shorter CCD Detector 
elements.  

Only Ocean Optics technicians can add or remove the L2 
Detection Collection Lens. 

8  
CCD Detector 
(UV or VIS)  

Collects the light received from the Focusing Mirror or L2 Detector 
Collection Lens and converts the optical signal to a digital signal.  

Each pixel on the CCD Detector responds to the wavelength of 
light that strikes it, creating a digital response. The spectrometer 
then transmits the digital signal to the OOIBase32 application.  

Table 5-a Details of the function of each component. Taken from Ocean Optics. 

 

 



130 
 

 

Figure 5-d Full width half maximum (FWHM). A peak sensitivity is present at each 
detector element.  A range is present at a value of half of the peak sensitivity.  This 

range is used to define spectrometer resolution. 

 

The integration time is the period over which the sensor accumulates photons of 

incoming radiation.  This is adjusted so that longer integration times are used in 

lower light levels and shorter integration times are required in bright environments.  

This enables meaningful data over a wide range of light levels.  The number of 

scans accumulated by the detector prior to a spectrum being produced can be 

adjusted.  An increase will improve the signal to noise ratio.  The maximum 

integration time available is 10 seconds. 

 

“Well depth” is specific to the CCD array spectrometer; the HR4000 used in this 

study has a well depth of 16,383 counts.  A measurement containing more than 

16,383 counts at any measured wavelength is therefore saturated and the unit is 

unable to capture the full signal strength.  Additionally, where the signal is saturated, 

there is likely to be a charge leakage from the saturated pixel onto adjacent pixels 

causing a larger signal to these neighbouring pixels. 

 

Using the SpectraSuite software, the ‘boxcar width’ can be changed.  Here, each 

detector element is averaged with a specified number of adjacent elements.  This 

can improve the signal to noise ratio and will smooth the spectral curve.  However, 

there is a loss in spectral resolution if set too high (Ocean Optics, 2007). 

 

5.4 Limitations of spectrometers 

A number of factors may affect the performance of a spectrometer (ISO 12311, 

2013; Lam, no date).  The photometric accuracy relates to the accuracy of 

irradiance values (y axis).  The wavelength accuracy is a measure of the wavelength 

reading of the spectrometer compared to known wavelength (x axis).  Inaccuracies 
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will affect the sensitivity of readings especially where peak or particular wavelengths 

of interest are studied.  Wavelength accuracy may be affected through knocks or 

large thermal cycling to the unit.  Photometric and wavelength accuracy are ensured 

through calibration against known light sources (described in section 5.6). 

 

Spectrometer accuracy can be affected by stray light.  Light of wavelengths outside 

the selected bandwidth wavelength are detected.  It is caused by light scattering, 

higher order diffraction or instrument design (Lam, no date).  Stray light can occur 

either around the wavelength of interest (near field) or where a visible photon is 

detected by a more sensitive UV detector (far field).  Its effect can be tested at 

certain wavelengths with various cut off filters that have sharp cut off transmittance 

profiles (Agilent Technologies, 1997).  However, the stray light can only be 

assessed at the wavelengths corresponding to the filters used.  HR4000 data quotes 

stray light values of <0.05% at 600nm and <0.10% at 435nm. (Ocean Optics, 

2008a).  Stray light may be reduced where the spectrometer is calibrated using a 

similar reference standard to that against which measurements are taken.  

 

Accuracy of a spectrometer is also affected by its resolution, stability (ensured with 

regular calibration checks), noise and baseline flatness.  Noise can be caused by 

photons from a light source at low absorbance or from electronic components at 

high absorbance.  Baseline flatness is the spectrometer’s ability to compensate for 

variations in intensity of the source and variations in response sensitivity of the 

detector over the spectrum (Lam, no date).  Noise and baseline flatness errors are 

reduced by taking a dark measurement immediately after a spectral reading.  These 

data can then be subtracted from the spectral data. 

 

5.5 Collaborative work with Public Health England (PHE) 

The Centre for Radiation, Chemical and Environmental Hazards at PHE (formally 

the Health Protection Agency) was approached and a meeting set up to discuss the 

research project proposal.  PHE have extensive experience in the collection of 

spectral data (Khazova and O’Hagan, 2008; Baczynska and Khazova, 2014; Price 

et al 2014) and have appropriate expertise to advise on valid measurement protocol 

and had on site facilities to calibrate equipment. 

 

Following this meeting, PHE agreed to assist for the spectrometer parts of the 

project.  A contract was drawn up and agreed by the legal departments of the CAA 
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and PHE.  The contract was for a two year period and the scope of the collaborative 

work comprised of: 

1. Providing advice on spectral and broadband measurements protocol in 

cockpits.  

2. Providing in-fibre shutter for Ocean Optics HR 4000 spectrometer for the 

duration of the project.  

3. Providing calibration of CAA Ocean Optics HR 4000 spectrometer.  

4. Providing automation and data processing software for Ocean Optics HR 

4000 spectrometer.  

5. Training CAA’s researcher to operate automation and data processing 

software  

6. Providing support with transmittance measurements of sunglasses. 

 

Training on using the automation software and optical shutter was carried out at 

PHE on 13 March 2012.  A further series of progress meetings were arranged 

throughout data collection and data analysis phases to discuss the various 

collaborative elements described above. 

 

5.6 Reliability of spectrometer 

The HR4000 was periodically calibrated using a 1kW Tungsten Halogen calibration 

lamp (BN 9101-548) and, for in flight measurements using the solar spectrum and a 

scanning double-grating monochromator D3 180 (S/N 0116B-09-00) as a reference 

instrument.  Wavelength accuracy was periodically assessed using a low pressure 

Hg penray lamp with known mercury position lines and additionally before and after 

each deployment using the mercury peaks from a standard fluorescent tube light.   

 

The HR4000 showed increasing degrees of uncertainty of spectral measurements 

below 350nm without multi-region measurements.  The instrument remained 

sensitive to 800nm.  The effect of low signal strength was assessed and the 

HR4000 was accurate provided that the signal was at least 2 standard deviations 

above the mean background noise level.  Angular response of the CC-3-UV diffuser 

showed a match to the ideal cosine response within 5% for incident angles +30° to -

30° and was consistent with wavelength.  Between 30° to 50°, the CC-3-UV was 

found to underestimate between 5-10%.  For the assessment of ocular hazard, 

ICNIRP (2010) guidance was adopted which states that the detector field of view 

can be reduced and limited to +40° to -40°. 
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The sensitivity change of the HR4000 with temperature between 22°C and 35°C 

was within 2-3%, with respect to the sensitivity at 22°C.  The capture of a dark signal 

after every spectral measurement countered the issue of increased background 

noise with increasing temperature. 

 

The HR4000 was found to have good stability throughout all photometric and 

wavelength calibration checks carried out.  There was no deviation seen beyond the 

range of instrument uncertainty.  Throughout all flights, the HR4000 unit was placed 

in a shaded location in the cockpit, away from any heat generation from the palmtop 

or batteries.  This maximised the board temperature stability and additionally 

controlled it to within the 22°C - 35°C optimum operating range.  

 

The calibration procedure, assessment of accurate range and variation with 

temperature is described in further detail in appendix M. 

 

5.7 Automated Spectrometer Acquisition System (ASAS) 

ASAS has been designed for operation with Ocean Optics CCD array spectrometers 

when measurements are required to be repeated at specific time intervals under 

variable illumination conditions.  The schedule (start, end and interval times) 

between measurements can be set within ASAS software so that measurements 

can be run autonomously.  Captured data may be analysed within ASAS and the 

results are displayed in tabular and graphical formats. 

 

ASAS program automatically determines the acquisition time of the current light 

conditions for the specified spectral range to reach a user-defined target count level.  

Between scheduled measurements, the equipment continuously takes acquisitions 

and estimates the integration time for next scheduled data collection.  Within each 

scheduled acquisition, up to three spectral regions can be chosen to optimise signal-

to-noise within a narrower spectral range than the full spectral capability of the 

instrument.  The maximum count level measured by HR4000 in 200nm - 1100nm for 

solar spectrum is at approximately 530nm; the signal measured at 400nm is 20-30% 

of the maximum value and at 350nm, the signal is less than 10% of maximum value, 

whereas background is nearly constant across whole spectral range. If the full 

spectral range is measured in a single acquisition, data below 400 nm may suffer 

from low signal-to-noise.  
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Splitting the full instrumental spectral range into segments enables optimisation of 

the signal in each spectral region separately while allowing saturation outside the 

region of interest.  Selected individual spectral regions can be then electronically 

“stitched” together using a further software package, the Spectral Stitching Program 

(SPP) to obtain the complete spectrum.  Setting the spectral ranges of the three 

regions to partly overlap provides control measure. 

 

For in-flight measurements, the following spectral regions were chosen: 280nm – 

400nm, 380nm – 500nm and 280nm – 1100nm (the complete spectral region of the 

HR4000 spectrometer).  Where saturation occurs outside the restricted spectral 

range, charge from saturated pixels may leak into adjacent pixels.  This effect is 

especially critical in measurements of the short wavelength UV range where 

variations in signal level are high.  To avoid saturation in the target spectral region 

and signal non-linearity near saturation level, the measurement spectral range was 

set wider than the spectral range of interest.  Therefore, 280 – 450 nm acquisition 

boundaries were set for the 280 – 400 nm spectral region and the target count level 

was set at 15,000, which was approximately 90% of the maximum 16,383 counts.  

 

The time interval between scheduled measurements can be set from a few seconds 

to 99 hours. The time interval must be greater than the actual time required to 

capture, read out and save light and background data. If a lower time interval is set, 

ASAS automatically calculates the minimum time interval based on the set 

maximum integration time and relays a warning to the user.  The minimum time 

interval for three spectral regions acquisition based on the maximum integration time 

(10 sec) is three minutes. For in-flight measurements, a time interval of ten minutes 

was set. 

 

Due to potential issues of rapidly changing light conditions during flight, the three 

spectral regions measurements were arranged consecutively and the order was 

selected to minimise the time between the start of the first spectral measurement 

and the final dark measurement.  This could be achieved if the dark signal of the 

longest integration time was carried out last in a series.  It was anticipated that the 

integration time required for the UV region would be an order of magnitude longer 

than that for the full range. Therefore, region R1 covered the full spectral region of 

280nm – 1100nm, region R2 covered the spectral region of 380nm – 500nm and 

region R3 covered the spectral region of 280nm – 400nm.  



135 
 

 

The wavelength step for the HR4000 is 0.247nm.  Raw data were collected from 

195.8112nm to 1117.629nm.  This constituted 3648 rows of data for each 

measurement.  Data were saved as raw spectral data and, if selected, as spectral 

irradiance and effective spectral irradiance weighted with a specific action spectrum, 

providing that the instrument was calibrated for spectral irradiance and that 

background measurements were available. A calibration file could be uploaded to 

the ASAS software folder.  Built-in spectral weighting could be chosen from 

ultraviolet hazard spectral weighting function S(λ) (ICNIRP, 2004), erythema 

spectral weighting function (CIE, 1998), blue light hazard spectral weighting function 

B(λ) (ICNIRP, 2013) and retinal thermal hazard spectral weighting function R(λ) 

(ICNIRP, 2013).  For each measurement, the data file saved the raw signals for light 

and dark signals, the calibration, un-weighted and if spectral weighting was chosen, 

the effective irradiance.  Results are displayed graphically and saved within the data 

file.  

          

5.8 Spectral stitching 

The data from the three spectral regions at each data collection point were 

assessed to determine whether stitching were required.  Appendix N describes the 

methods, criteria and procedure used where spectral stitching was required. 

  

5.9 Use of illuminance UV recorders 

Due to the use of three region measurement, each with dark measurements and the 

software capability to automate data collection, it was decided to site the 

spectrometer at a fixed point in the cockpit.  In order to evaluate ocular exposure, 

data would need to be collected at an equivalent point in space to the pilot’s eye.  

Additionally, data capture would need to be fast and unobtrusive so as not to distract 

the pilot during flight.  This would have to be conducted by the researcher from the 

jump seat (a third seat on the flight deck behind and usually between the two pilot 

seats).  It was felt although the spectrometer cosine detector and fibre optic cable 

were small, each data measurement would be time consuming and subject to 

variability with inadvertent movement of the probe during or between region 

measurements. 

 

Two identical T&D miniatureTR-74Ui illuminance UV recorders were therefore 

additionally used for in-flight measurements.  One was positioned in a fixed location 
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together with the spectrometer and the researcher used the second meter to quickly 

capture a series of manual readings during flight.  Ocular spectral irradiance levels 

could then be calculated by comparison of time matched data from the 2 illuminance 

UV meters and applying the degree of signal change between fixed and manual 

meters to the spectrometer data. 

 

Manual readings were recorded every 10 minutes during spectrometer data 

collection except when measurement may have caused distraction to the pilots.  

Here, a measurement would be taken as close to the 10 minute interval as 

practically possible.  Three readings were taken on each occasion.  The first was 

with the sensor at the pilot eye level facing forward over the instrument cowling to 

simulate the pilot looking straight ahead through the front windshield.  The second 

reading was from the same position in space at pilot eye level with the sensor 

angled downwards towards the primary flight instrument displays.  The third reading 

taken was a maximum obtainable from the jump seat and was usually in the 

direction of the solar disc and potentially measured through either front or side 

windshields. 

 

5.10 Calibration of illuminance UV recorders 

Both illuminance meters were assessed using the same certified calibration lamp as 

used for the spectrometer irradiance calibration.  Measurements were taken at the 

same distance from source as were taken for the HR4000.  The 2 units agreed to 

within 0.2% and both were within 1% of the HR4000.  The angular response of the 

TR-74Ui units were similar and were found to be 6% at ±30° and 8% at ±40° from 

the ideal cosine response. 

 

5.11 Spectrometer location in relation to pilot eye position 

It is estimated that the position of the input optics of the spectrometer relative to the 

pilot eye position would be within 70cm for the pilot operating from that side of the 

aircraft.  The shape of the spectra between these two locations could potentially be 

affected by a number of factors: 

1) Reflective surfaces could potentially selectively increase particular 

regions of the spectra.  The cockpit ergonomics are such that this is 

minimised by manufacturers by using dark matt surfaces. 

2) Direct sunlight through the side window.  If the transmission properties of 

the side window were different to those of the front windshield, it is 
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possible that the spectra reaching the eye could be composed of 

different components.  However, the effect on ocular dose of a direct light 

source near 90 degrees to fixation is likely to be minimal. 

3) Front visors.  These also have the potential to influence the spectra 

reaching the ocular surface which may comprise a mixture of filtered 

spectra through front windshield and visor and front windshield alone.  

The spectral properties of measured visors are discussed in section 8.4.  

Figure 5-e shows a series of spectral readings taken just behind the right windshield 

(RH) and at the pilot’s left and right eye position positioned in the right seat looking 

ahead and towards instruments from the right seat of an aircraft at Exeter airport. 

 

 

Figure 5-e Comparison of spectral curve at the right hand (RH) windshield and at the 
pilot's right and left eye level facing ahead and down towards instruments. 

 

The ratio of the signal at the windshield to the signal in eyes ahead position from the 

right hand seat of aircraft 13 is shown in Figure 5-f.  It can be seen that a relatively 

constant ratio is present across the spectrum.  The data captured assumes that the 

source is constant and was not affected by changes in cloud cover.  There was a 16 

minute interval between measurement at the windshield and the first measurement 

at eye position.  More variation is seen in the UVA range due to a lower signal to 

noise ratio compared to the visible spectrum. 
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Figure 5-f Ratio of signal strength between spectrum at windshield and at pilot eye 
level.  A flat line indicates a constant ratio. 

 

5.12 Approval of spectrometer for flight 

In order to obtain data during flight, a series of procedures were undertaken in order 

to firstly ensure that the equipment would not interfere with any aircraft systems and 

secondly to maximize the likelihood of gaining airline approval to carry the 

equipment and researcher on the flight deck. 

 

A letter was drawn up which briefly explained the research, the equipment, any 

potential costs to the airline and contained a request for airline co-operation.  This 

was signed by the CAA Chief Medical Officer and Head of Flight Operations 

(appendix H).  A risk assessment document (appendix G) was also drawn up which 

described the equipment, its intended use and a series of technical specifications.  

The accuracy of spectrometer product data within this document was confirmed with 

manufacturers.  The document also contained an analysis of how the equipment 

could be affected in the normal flight deck environment at altitude, any foreseen way 

in which the equipment could affect aircraft systems and how the equipment may be 

affected by an emergency event such as de-pressurisation or fumes in the cockpit. 
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To facilitate free movement of the researcher through airport security and to the 

aircraft, airside security passes were requested through the CAA and were gained 

following visits to airport security for both London Gatwick and London Heathrow 

airports. 

 

Before approaching airlines, it was felt that an analysis should be carried out to 

identify where the equipment would be optimally placed and secured.  In order to do 

this, a company with a Boeing B737 simulator in West Sussex were contacted and 

agreed to allow access during a short available slot while the simulator was not in 

use.  For this assessment, as well as a professional pilot representative from the 

company operating the simulator, a colleague from PHE was also in attendance and 

advice was sought to determine the most practical position of the spectrometer 

probe balancing the requirements of ensuring successful data collection during flight 

whilst not interfering with safe flight operations.   

 

It was determined that the optimum probe position should be placed facing forward 

toward the front windshield.  To ensure a strong signal, the probe would be placed 

close to the windshield, as signal strength would decrease further back inside the 

cockpit away from the windows.  The probe would be secured against the frame 

between front and side windows and be placed in a lower position in order be away 

from the pilot sight line.  A secure place for the spectrometer, shutter, batteries and 

palmtop was decided as on the floor, behind and to the side of the pilot’s seat.  The 

fibre optic and illuminance meter cable would be secured together along the side 

window sill.  The exact position could be altered dependent on variations in aircraft 

type.  It was recognised that the B737 had a small cockpit area compared to other 

jet airline aircraft types.  Some aircraft types had sliding side windows which are 

used as an emergency exit for the flight crew.  Therefore it was also recognised that 

the securing of the probe should not hinder the ability of the pilot to open this 

window in an emergency.  Due to the small size and low weight of the spectrometer 

and illuminance UV recorder probes, the two were secured together by enlarging the 

hole at the top of the illuminance UV recorder probe such that the spectrometer 

probe tightly fitted preventing any movement or potential separation during flight.  

The side of the probe could then be secured to (and removed from) the aircraft 

frame using Velcro. 

 

The equipment could be positioned on left or right sides.  The standard fibre optic 

cable was 2 metres in length.   It was felt that whilst this was sufficient for the B737, 
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it may not be long enough for other aircraft.  For this reason a second fibre optic 

cable of 3m length was carried.  The cable for the illuminance UV recorder required 

an extension length in order to be able to place the data unit with the spectrometer 

equipment. 

 

During 2012-2013, a number of airlines were approached, generally via the airline’s 

Head of Flight Operations.  The research letter and risk assessment document were 

included for information.  Further meetings in person were arranged, where 

requested by the airline so that the study proposal could be discussed further. 

Monarch Airlines agreed to carry the equipment and researcher onboard once a 

company avionics engineer had given approval and once the securing of the 

equipment had been complete to the satisfaction of the captain of the flight.  Due to 

limited time available in busy scheduling, the avionics engineer was arranged to 

attend the aircraft just prior to the crew arriving for the first flight.  It was agreed that 

if the engineer was not satisfied, neither the equipment nor researcher would remain 

onboard during the flight. 

 

Airport security was notified prior to the researcher taking the equipment airside.  

Following this, arrangements were made to always ensure that the researcher 

carried airside security ID, passport, boarding pass, CAA research approval letter 

and risk assessment documents to pass through airport security. 

 

5.13 Sample size 

There were several potential barriers described in section 5.12 to be overcome in 

order to capture in flight data.  This had the potential to limit the number of data 

recording flights.  However, in order to capture as varied data as possible, the aim 

was to collect data on board flights of varying routes, different aircraft types and 

during different times of year.  It was recognised that each flight would generate 

large amounts of data which would in turn affect the complexity of data analysis.  

 

Therefore it was expected that five to ten appropriately selected flights could 

generate data likely to capture typical irradiances expected during flight. 
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5.14 Summary 

Chapter 5 offers description of the equipment used for data collection which is 

detailed in subsequent chapters.  The next chapter describes the measurements 

captured during flight.  Chapter 7 details measurements taken at a series of office 

workstations in order to offer a comparison of occupational ocular radiant exposure. 

This equipment was also utilised for aircraft windshield and visor ground 

transmittance measurements (chapter 8) and sunglass filter transmittance 

measurements (chapter 9).  Where differences in measurement methods occur, 

these are described in the relevant chapter.  However, the calibration procedure, 

software and equipment limitations described in this chapter apply for all subsequent 

chapters.  
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6. Chapter 6 Measurements during flight (Phase 2) 

CHAPTER OVERVIEW 

This chapter presents data obtained with the HR4000 spectrometer and associated 

equipment sited in aircraft cockpits during six airline flights (11 sectors) and four 

helicopter flights (8 sectors).  Ocular exposure of the unprotected eye to UV and the 

light hazard has been calculated for all flights and is compared to ICNIRP guideline 

limits.  The variation during flight of UVA, blue light and illuminance levels will be 

demonstrated and presented together with data of erythemal weighted irradiance 

and UVA and blue light hazard ratios.  Azimuth flight plots will be introduced to 

assist the understanding of differences in irradiance levels measured during each 

flight and for comparison of flights. 

 

6.1 Method 

A series of data collection sessions during flights were successfully arranged with 

Monarch Airlines.  It was planned to capture data on various routes and at different 

times of the year.  However flight availability was limited due to a number of factors 

including ensuring that flights were undertaken from London Gatwick airport during 

daylight hours, that there was prior agreement from the captain of the flight, that 

sufficient notice was available to arrange ticketing for the researcher and that there 

were no other flight operational constraints such as flights where the jump seat 

would be occupied by a third pilot.  

 

In flight data were collected on the following dates and take off to landing times.  

Times shown are Coordinated Universal Time (UTC) or UTC+1 for British Summer 

Time (BST): 

16 May 2012: London Gatwick to Faro, Portugal (0628-0851 UTC+1) on board an 

Airbus A320 

16 May 2012: Faro, Portugal to London Gatwick (1026-1253 UTC+1) on board an 

Airbus A320 

22 May 2012: London Gatwick to Barcelona, Spain (0651-0824 UTC+1) on board an 

Airbus A320 

22 May 2012: Barcelona, Spain to London Gatwick (1013-1206 UTC+1) on board an 

Airbus A320 

26 May 2012: London Gatwick to Barcelona, Spain (0656-0834 UTC+1) on board an 

Airbus A320 



143 
 

26 May 2012: Barcelona, Spain to London Gatwick (1004-1150 UTC+1) on board an 

Airbus A320 

21 November 2012: London Gatwick to Tobago (0930-1912 UTC) on board an 

Airbus A330 

1 March 2013: London Gatwick to Alicante, Spain (0803-1010 UTC) on board an 

Airbus A321 

1 March 2013: Alicante, Spain to London Gatwick (1143-1354 UTC) on board an 

Airbus A321 

21 August 2013: London Gatwick to Rhodes, Greece (0924-1304 UTC+1) on board 

a Boeing 757 

21 August 2013: Rhodes, Greece to London Gatwick (1420-1812 UTC+1) on board 

a Boeing 757 

 

Airport International 

Code 

Latitude Longitude 

London Gatwick LGW 51.150837 -0.177416 

Faro, Portugal FAO 37.017596 -7.968545 

Barcelona, Spain BCN 41.30303 2.07593 

Tobago TAB 11.152541 -60.839684 

Alicante, Spain ALC 38.287098 -0.557381 

Rhodes, Greece RHO 36.405278 28.086111 

Table 6-a Summary of airport location and international code. 

Throughout each flight, manual readings were taken with the second illuminance UV 

recorder and were recorded on a specifically designed template (appendix O).  

Readings were taken as described in sections 5.7 and 5.9.  A reading was 

documented once the illuminance UV recorder reading had stabilised.  In order to 

ensure accurate time logging, the researcher’s wristwatch and time set on the 

palmtop were matched.  In addition to the time stamped illuminance readings, 

further details were collected of push-back, taxy, take off and landing times.  The 

researcher also recorded altitude data from view of aircraft instruments from the 

jump seat.  Observations were also made of the use by either pilot of sunglasses or 

any aircraft visors.  Both initiation and termination times of eye protection strategies 

were recorded.  Finally, observations were made from the jump seat of weather 

conditions such as cloud cover. 
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Data were also collected on a series of helicopter flights from Dyce airport, 

Aberdeen to North Sea oil platforms with Bristow helicopters.  During the two day 

visit to Aberdeen, additional flight operational constraints were found.  The number 

of passengers scheduled to be flown on a particular flight meant that the maximum 

take-off weight of the aircraft could be exceeded by carrying an additional passenger 

(the researcher) on board.  

 

Additionally, in order to secure the spectrometer and illuminance meter probes 

against aircraft structure whilst being near the front windshield and out of the pilot’s 

line of sight, the optimum location found was in a lower and more forward position 

than for aeroplane flights.  The fibre optic and illuminance meter cables were 

secured above the side windows.  This was particularly important in helicopter types 

with side doors for the pilot to enter and exit the aircraft.  Due to this longer fibre 

optic cable route, it was necessary to use the 3m fibre optic cable for some flights.  

A secure location was found for the spectrometer away from other equipment to 

ensure optimum temperature control during data collection. 

 

In flight data were collected on the following dates including takeoff and landing 

times (UTC+1): 

9 April 2013: Dyce airport to Claymore A (1049-1140) on board an Aerospatiale 

AS332 Super Puma 

9 April 2013: Claymore A to Dyce airport (1159-1244) on board an Aerospatiale 

AS332 Super Puma 

9 April 2013: Dyce airport to Triton (1445-1545) on board an Aerospatiale AS332 

Super Puma 

9 April 2013: Triton to Dyce airport (1600-1651) on board an Aerospatiale AS332 

Super Puma 

10 April 2013: Dyce airport to Judy (1134-1254) on board a Sikorsky s-92A 

10 April 2013: Judy to Dyce airport (1309-1409) on board a Sikorsky s-92A 

10 April 2013: Dyce airport to Judy (1511-1630) on board a Sikorsky s-92A 

10 April 2013: Judy to Dyce airport (1647-1754) aboard a Sikorsky s-92A 
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Airport / oil 

platform 

International Code Latitude Longitude 

Aberdeen, 

Scotland 

ABZ 57.200253 -2.204186 

Claymore A  58.4 approx -0.3 approx 

Triton  57.1 approx 0.9 approx 

Judy  56.7 approx 2.3 approx 

Table 6-b Summary of Aberdeen airport and approximate oil platform locations 

Due to the aircraft take-off weight constraints described above, the researcher was 

unable to be onboard to take manual readings for the first flight on 9 April and the 

second flight on 10 April.  Here, the spectrometer and illuminance meter data logger 

were positioned, secured and programmed before flight for automated data 

collection.  The equipment was then retrieved when safe to do so once the aircraft 

had returned to Dyce airport. 

 

 The researcher was present on flight 8 (the second flight on 9 April) which was on 

the same aircraft type as flight 7 (the first flight on 9 April) and was also present on 

flight 9 (the first flight on 10 April) which was the same aircraft as flight 10 (the 

second flight of that day).  Therefore, in order to estimate pilot exposure during the 

flights where no manual data were captured, data were used from the other flight 

conducted on the same day on board the same respective aircraft type.  The 

average ratio of signal measured between the two illuminance UV recorders for both 

‘eyes ahead’ and ‘eyes toward instruments’ measurements were applied to the 

flights where no manual readings were taken.  Additionally, Bristow helicopters were 

able to provide time stamped records of these two flights including take off and 

landing times and altitude data. 

 

Data from the illuminance UV recorders were converted to tab delimited format.  

Both these and spectrometer data were analysed using Microsoft Excel 2007.  For 

each spectral reading, the counts per second (cps) values were calculated by 

subtracting the dark counts from the counts and dividing the value by the integration 

time for each wavelength step.  A calibration factor was applied, where indicated.  

Regions 1, 2 and 3 were assessed to determine whether spectral stitching was 

required (section 5.8).  Blue light and erythemal action spectra were applied in 

separate calculations.  Summary data was created for each 10 minute spectrometer 

reading which included UVA irradiance, blue light weighted irradiance, illuminance, 
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blue light and erythemal weighted readings and hazard ratios.  A full summary 

document was created for each flight incorporating data from both illuminance UV 

recorders and flight information.  Blue light weighted radiance and UVA dose 

throughout flight were calculated.  

 

The ratio between the two illuminance UV recorders at each timed measurement 

was calculated.  For calculation of ocular exposure, each pair of ratios (for both eyes 

ahead and down) was applied to time matched spectrometer data.  For cases where 

illuminance UV recorder and spectrometer data were not time matched, 

spectrometer data were calculated using the closest two readings and assumed a 

constant change over the 10 minute interval.  For example, where an illuminance 

UV recorder reading was 2 minutes difference from the first spectrometer reading 

and 8 minutes to the next, the estimated spectrometer reading would be 20% of the 

difference between spectrometer readings from the first reading.  Ocular dose in 

both eyes ahead and eyes down position were calculated and a further dose 

calculation was made including time during turn around at destination.  A calculation 

of radiant exposure was made based on the turnaround time and a mean of the last 

reading from the outbound sector and first for the inbound sector which were both at 

the stand at the destination airport. 

 

Using time and altitude data, ground and cruise altitude data were identified and 

compared for calculation of the mean increase in irradiance and illuminance at 

altitude.  For these calculations, readings taken during climb and descent were not 

used. 

 

Blue light retinal exposure was calculated by averaging radiance over a solid angle. 

The effective radiance may be lower than actual radiance; however for the purposes 

of pilot exposure calculations, it was assumed that there is a uniform sky which was 

considered as a large source.  The azimuth flight plots (section 6.2.4) indicate a 

minimal proportion of flight time where the solar disc was directly visible through the 

front windshield.  Additionally, visors would be more likely to be used in these 

circumstances (section 4.11) which will attenuate the irradiance over that particular 

area of field. 

 

ICNIRP exposure limits are expressed as spectrally weighted radiance dose and 

suggest a conservative averaging angle of 0.11 radian (6.3°) for exposures of over 

10,000 seconds (around 2hrs 47min).  A larger solid angle could be used following 
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appropriate task analysis.  For the purposes of calculating pilot exposure, data from 

the Airbus binocular visibility charts (section 1.5.6) were used.  To calculate the 

angle subtended at the eye, the front windshield only was used as viewing through 

the other windows is likely to involve head and eye movements.  Additionally the 

pilot’s attention would be generally directed ahead and through the front windshields 

when not towards the instruments.  For the Airbus A320, an approximated area of 

60° horizontally and 50° vertically was used.   Similarly, for the Airbus A330, an 

approximated area of 65° horizontally and 45° vertically was used.   In the cases of 

a non-circular source, ICNIRP (2013) recommend that the angle subtended by the 

source at the eye is taken as the mean of the shortest and longest dimension.  This 

is 55° (0.96 rad) in both cases. 

 

The solid angle was calculated as (π x 0.962)/4.  The equivalent spectrally weighted 

irradiance (W/m2) was divided by this value to derive the radiance (W/m2.sr) at the 

retina. 

 

An instantaneous sampling solid angle of around 0.2 rad (11 deg) has been 

suggested (ICNIRP, 2013).  This is the angle beyond which the injury threshold of 

radiant exposure does not change with increasing size, assuming a uniform source.  

As radiance is defined as the radiance flux per unit area and unit of solid angle, a 

larger solid angle such as the open view received by the pilot would not significantly 

affect radiance values and, assuming the sky is a uniform source, the radiance 

measured with open field as has been done in this study has been considered the 

same as if measured with a restricted field. 

 

6.2 Results 

6.2.1 Flight summary 

Data were captured throughout a total of 11 sectors (5 return flights and 1 outbound 

sector).  A summary is shown below of aircraft type, flight duration and cruising 

altitude for aeroplane (Table 6-c) and helicopter (Table 6-d) flights. 
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Flight Date Destination Aircraft 
type 

Max altitude 
(Flight 
Level) 

Duration 
excl. taxy 
(min) 

Duration 
incl. taxy 
(min) 

Total duration 
incl. 
turnaround 
(min) 

1a 16/05/2012 Faro A320 370 143  385 

1b 16/05/2012 LGW A320 360 147  

2a 22/05/2012 Barcelona A320 390 93  315 

2b 22/05/2012 LGW A320 380 113  

3a 26/05/2012 Barcelona A320 330 98  294 

3b 26/05/2012 LGW A320 380 106  

4 21/11/2012 Tobago A330 400 555 588  

5a 01/03/2013 Alicante A321 350 127 151 376 

5b 01/03/2013 LGW A321 340 131 150 

6a 21/08/2013 Rhodes B757 370 220 235 544 

6b 21/08/2013 LGW B757 380 232 247 

Table 6-c Summary of aeroplane flights undertaken. 

 

Flight Date Destination 
(oil 
platform) 

Aircraft 
type 

Max altitude 
(ft) 

Duration 
excl. taxy 
(min) 

Total duration 
incl. taxy/ 
turnaround (min) 

7a 09/04/2013 Claymore A AS332 3,000 50 115 

7b 09/04/2013 ABZ AS332 1,100 45 

8a 09/04/2013 Triton AS332 3,000 60 135 

8b 09/04/2013 ABZ AS332 2,000 51 

9a 10/04/2013 Judy S-92a 3,000 80 174 

9b 10/04/2013 ABZ S-92a 2,000 60 

10a 10/04/2013 Judy S-92a 3,000 79 163 

10b 10/04/2013 ABZ S-92a 2,000 67 

Table 6-d Summary of helicopter flights undertaken 

 

6.2.2 Aeroplane spectrometer data 

The results in this section relate to the data captured by the spectrometer.  The 

irradiance results are significantly higher than the data presented for ocular 

exposure due to the forward location of the probe, its independence of aircraft 

structure and independence of pilot use of aircraft visors or blinds.  A summary of 

spectrometer data collections for each flight are shown in Table 6-e. 
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Flight No of 
complete 
spectra 

No of 
saturated 
spectra 

No of spectra 
with non-
operational 
shutter  

No of 
spectra 
requiring 
stitching 

1 (a+b) 37 0 1 0 

2 (a+b) 30 6 0 0 

3 (a+b) 28 2 0 0 

4 67 1 30 0 

5 (a+b) 33 0 0 0 

6 (a+b) 55 0 18 0 

Table 6-e Summary of the spectrometer data measurements for aeroplane flights 
together with the number of saturated readings (discarded), number of reading where 

the shutter was not functional and the number of spectra requiring stitching. 

 

Each complete spectrum consisted of six measurements: a spectral and dark 

measurement for each of the three regions.  A number of spectral readings were 

ignored due to saturation of the signal for part of the spectra.   This occurred 

occasionally on early flights and modifications were made to the settings of regions 

2 and 3 in ASAS (section 5.7) which prevented further reoccurrence.  The changes 

to settings involved a reduction of maximum target count and widening the band 

width range to prevent pixel leakage. 

 

A number of spectra were affected by a fault with the optical shutter (see section 

6.2.21.2).  For each of these data sets, an appropriate dark reading was selected 

from a series measured using the HR4000 in the PHE lab settings at various 

temperatures and integration times.  

 

Stitching was rarely required as there was generally a strong signal with all regions 

showing good correlation.  Additionally, analysis of region 3 data consistently 

showed equivalent UV data to region 1 alone.  Therefore, unless stitching was 

required, region 1 data were used.   

 

6.2.3 Aeroplane UVA, blue light and illuminance data 

No significant signal above background noise was found in the UVB range on any 

flight.  Total UVA for each spectra was calculated as the sum of unweighted 

irradiances of each wavelength from 315-400nm measured in W/m2.  Blue hazard 

was calculated for each spectra using the blue light hazard weighting function from 

300-700nm.  Illuminance was recorded at each spectrometer data collection and by 

both illuminance UV recorders. 
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6.2.3.1 Flight 1 - Faro 

A summary of UVA and blue light levels during flight are shown in Figure 6-a.  The 

areas of the graph shaded in green represent the periods of time where the aircraft 

was at ground level while the blue shaded areas represent those periods of time 

during which the aircraft had reached cruise level flight at altitude.  The unshaded 

areas between represent the time during which the aircraft was climbing or 

descending.  In order to ensure sufficient spectrometer battery power, the 

equipment was shut down while the aircraft was parked at the stand at the 

destination airport and switched on just prior to push back.  This gap in data 

collection is represented in Figure 6-a by double lines across the UVA and blue light 

irradiance data. 

 

 

Figure 6-a Flight 1 summary of UVA and blue light. 

There was no significant cloud at departure.  Conditions were clear with surface in 

sight.  Scattered thin layer cloud was noted below from 07:40 with surface remaining 

visible.  High level thin cloud was noted from 08:10 until start of descent.  During 

descent, the aircraft was briefly flying through light cloud at 08:30 with surface 

remaining visible. 

 

On the return sector, there was no significant cloud at departure.  From 10:45, there 

was light cloud seen below obscuring view of the surface.  The cloud below thinned 
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and surface was visible from 10:50.  There was high altitude thin cloud cover above 

the aircraft.  An increase was seen between spectrometer readings at 11:10 and 

11:20; however no obvious changes of flight conditions were noted.  Subtle heading 

changes are required during cruise flight as the aircraft navigates through a series of 

airways (see section 1.5.2).  A slight heading change is likely to have occurred 

around this point in time which may have affected the relative position of the sun to 

the aircraft and spectrometer.  By 11:30, there was no cloud observed until during 

descent where the aircraft passed through a layer of cloud at 12:44. 

 

Illuminance measured by the spectrometer and illuminance UV recorder are shown 

in Figure 6-b and Figure 6-c respectively. 

 

 

Figure 6-b Illuminance measured by spectrometer during flight 1. 
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Figure 6-c Illuminance measured by illuminance UV recorder during flight 1. 

 

A series of short spikes in illuminance can be seen from the illuminance data and 

occurred during approach, take off or taxy as the aircraft was manoeuvring.  This 

may have lasted for only one minute, such as the first spike whilst taxiing at London 

Gatwick airport.  This temporary increase occurred at 06:25 and fell between the 10 

minute intervals for spectrometer readings.  The cause of these large increases are 

likely to be due to direct sunlight radiation being collected by the probes and do not 

occur during the stable phases of flight during cruise (or when parked at the stand). 

 

To ensure sufficient power to the palmtop for the return flight, the palmtop was 

switched off during turnaround, however the illuminance meter continued to collect 

illuminance data while the aircraft was parked at the stand. 

 

UVA readings peaked at 3.85 W/m2 at 12:40.  Blue light peaked at 12.4 W/m2 at 

11:40.  The total UVA radiant exposure measured by the spectrometer (excluding 

turnaround time) was 4.39 x104 J/m2.  The total blue light radiant exposure 

measured during the same period was 1.43x105 J/m2.  Comparing the illuminance 

data collected by both illuminance UV recorder and spectrometer resulted in a 

correction factor of 1.37.  This would increase UVA to 6.01 x104 J/m2 and blue light 

to 1.96 x105 J/m2. 
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6.2.3.2 Flight 2 – Barcelona 

A summary of UVA and blue light levels during flight are shown in Figure 6-d. 

 

 

Figure 6-d Flight 2 summary of UVA and blue light. 

 

Weather conditions at departure were dry with overcast low cloud.  The aircraft was 

above cloud 1 minute after take-off.  Surface remained visible throughout the 

remainder of the outbound flight although increasing cloud was noted during 

descent and approach to Barcelona. 

 

On the return flight, there was thin broken cloud noted at the departure airport.  A 

short delay was experienced during taxy due to a bird strike encountered by the 

previous departing aircraft.  Thin cloud layers were climbed through to give broken 

cloud below the aircraft until 10:50 after which no cloud was noted for the remainder 

of the flight. 

 

Illuminance measured by the spectrometer and illuminance UV recorder are shown 

in Figure 6-e and Figure 6-f respectively. 
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Figure 6-e Illuminance measured by spectrometer during flight 2. 

 

Figure 6-f Illuminance measured by illuminance UV recorder during flight 2. 

 

The spectrometer was switched off during turn around therefore less ground data is 

available in Figure 6-e.  Additionally, the following six spectral reading were 

excluded due to signal saturation:  
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0810 – during descent to Barcelona 

1000-1030 - during taxy, take off and climb to altitude from Barcelona 

1210 – after landing at London Gatwick  

 

These coincide with sharp increases in illuminance seen Figure 6-f and may account 

for the saturated readings.  As the spectrometer samples and estimates integration 

time between readings (section 5.7), a longer than necessary integration time may 

have been used during actual data capture where irradiance levels have sharply 

increased and were higher than anticipated. 

 

Illuminance levels showed greatest stability during cruise and showed greatest 

variation during take-off, approach and manoeuvring during taxy.  The largest 

increase in illuminance level was recorded was during taxy at Barcelona airport. 

UVA readings peaked at 4.21 W/m2 at 11:50.  Blue light peaked at 9.14 W/m2 at 

10:40.  The total UVA radiant exposure measured by the spectrometer (excluding 

saturated data and turnaround time) was 3.34 x104 J/m2.  The total blue light radiant 

exposure measured during the same period was 1.01x105 J/m2.  Comparing the 

illuminance data collected by both illuminance UV recorder and spectrometer 

resulted in a correction factor of 1.30.  This would increase UVA to 4.34 x104 J/m2 

and blue light to 1.32 x105 J/m2. 

 

6.2.3.3 Flight 3 - Barcelona 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-g.  In order to present meaningful graphical data for all flights, the y axis 

scales for irradiance and illuminance between flights may change.  

 

No significant cloud was noted from departure at London Gatwick until 08:15 during 

descent where a layer of cloud was passed through by 08:20.  On departure, light 

scattered cloud was noted at the aerodrome.  The aircraft was above cloud level 

four minutes after take-off.  No significant cloud was seen below from 10:14 to 

10:27.  A cloud layer below obscured view of surface from 10:27 to 10:55 after 

which there was no cloud noted during the remainder of the flight.  The sharp 

increase around 10:00 coincides with taxiing for takeoff at Barcelona airport. 

No pre-programmed data from illuminance UV recorder were available during this 

flight.  Data were read manually from both units at the same time as programmed 

spectrometer readings. 
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Figure 6-g Flight 3 summary of UVA and blue light together with data recorded 
manually from the illuminance UV recorder. 

 

Two spectral readings were excluded due to data saturation.  These were 1150-

1200 corresponding to immediately after landing at London Gatwick.  UVA readings 

peaked at 1.14 W/m2 at 1000.  Blue light peaked at 28.9 W/m2 at 1000.  The total 

UVA radiant exposure measured by the spectrometer (excluding saturated data and 

turnaround time) was 4.24 x103 J/m2.  The total blue light radiant exposure 

measured during the same period was 1.12x105 J/m2.  

 

Good correlation was seen between blue light data and overall lux in both 

spectrometer and illuminance meter. 

6.2.3.4 Flight 4 – Tobago 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-h. 
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Figure 6-h Flight 4 summary of UVA and blue light. 

 

The weather at London Gatwick was overcast with light rain on departure.  At 10 

minutes after take-off, separate cloud layers were above and below the aircraft.  At 

10:10, there was cloud layer noted below only and by 11:00, no significant cloud 

was noted with surface being visible.  A cloud layer obscuring the surface was noted 

from 16:10 to 16:45.  The aircraft passed through a light layer of cloud (duration of 

one minute) at 18:59 during descent. 

 

The aircraft passed across the jet stream borders at approximately 11:40 and 15:00. 

Data from the illuminance UV recorder is shown in Figure 6-i.  Data shows good 

correlation with the spectrometer although there was a sudden drop in recorded 

illuminance at 11:41 lasting 10 seconds and a further drop at 13:45 lasting 1 minute.  

Although no observed changes in conditions occurred at these times, it is possible 

that radiation gathered by the probe may have been briefly interrupted by objects 

such as a hand or checklists passing in front of the probe.  However, the cause is 

not known.   
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Figure 6-i Illuminance measured by illuminance UV recorder during flight 4. 

 

UVA readings peaked at 2.82 W/m2 at 16:40.  Blue light peaked at 100.5 W/m2 at 

18:40 with illuminance measured at 113,700 lux.  The total UVA radiant exposure 

measured by the spectrometer was 4.57 x104 J/m2.  The total blue light radiant 

exposure measured during the same period was 2.13x106 J/m2.  Comparing the 

illuminance data collected by both illuminance UV recorder and spectrometer 

resulted in a correction factor of 1.06.  This would increase UVA to 4.85 x104 J/m2 

and blue light to 2.25 x106 J/m2. 

 

6.2.3.5 Flight 5 – Alicante 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-j and a summary of the illuminance UV recorder data is shown in Figure 

6-k. 

 

At the departure airport, there was overcast cloud with light rain.  Take off was 

immediately into cloud, breaking clear of cloud at 5,000 feet at 08:06.  A cloud layer 

remained below the aircraft throughout the flight with the exception of a short period 

from 08:52 to 08:56 where the surface could be seen.  Descent through cloud took 

place between 09:50 and 10:02.  Broken cloud was noted at Alicante airport on 

departure.   The aircraft was above cloud three minutes after take-off.  A cloud layer 
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remained below though the majority of the flight.  Broken cloud cover below with 

surface visible was noted from 12:30 to 12:45 and 13:00 to 13:10.  Descent through 

cloud occurred from 13:47 to 13:51.   

 

 

Figure 6-j Flight 5 summary of UVA, blue light and spectrometer  illuminance. 

 

 

Figure 6-k Illuminance measured by illuminance UV recorder during flight 5. 
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Large changes in illuminance levels were seen climb and descent through cloud and 

during taxy where the aircraft was manoeuvring. 

 

UVA readings peaked at 18.6 W/m2 at 09:50.  Blue light peaked at 85.4 W/m2 also 

at 09:50 during descent with a cloud layer below.  The total UVA radiant exposure 

measured by the spectrometer was 1.37 x105 J/m2.  The total blue light radiant 

exposure measured during the same period was 5.52x105 J/m2.  Comparing the 

illuminance data collected by both illuminance UV recorder and spectrometer 

resulted in a correction factor of 0.95.  This would give revised values of 1.30 x105 

J/m2 for UVA and 5.24 x105 J/m2 for blue light. 

6.2.3.6 Flight 6 – Rhodes 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-l. 

 

 

Figure 6-l Flight 6 summary of UVA, blue light and spectrometer illuminance 

 

There was no significant cloud cover at the departure airport.  From 09:38 

throughout the outbound sector, a thin light cloud cover or haze was noted well 

below cruise altitude.  Conditions were also clear at Rhodes during turn around and 

for departure.  From five minutes after take-off, haze was again noted intermittently.  
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By 15:10, a thick cloud layer was noted below the aircraft.  Between 17:29 and 

17:36, there was reduced visibility ahead.  Descent through cloud occurred between 

17:37 and 17:45 after which surface was visible and aircraft was clear of cloud for 

the remainder of the flight. 

 

A summary of the illuminance UV recorder data is shown in Figure 6-m.  Large 

fluctuations in illuminance during turn around at Rhodes correspond to the 

equipment being moved in order to carry out a series of ground windshield 

transmittance measurements (chapter 8). 

 

 

Figure 6-m Illuminance measured by illuminance UV recorder during flight 6. 

 

UVA readings peaked at 20.9 W/m2 at 14:35.  Blue light peaked at 80.5 W/m2 also 

at 14:35 having just reached cruise altitude on the inbound sector.  The total UVA 

radiant exposure measured by the spectrometer was 2.25 x105 J/m2.  The total blue 

light radiant exposure measured during the same period was 8.81 x105 J/m2.  

Comparing the illuminance data collected by both illuminance UV recorder and 

spectrometer (which excludes the ground data at turnaround) resulted in a 

correction factor of 1.21.  This would give revised values of 2.72 x105 J/m2 for UVA 

and 1.07 x106 J/m2 for blue light. 
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6.2.4 Aeroplane azimuth flight plots 

An azimuth-elevation plot as described in section 1.4.4.4 has been modified to show 

the approximate position of the sun in relation to the pilot for each flight sector.  The 

relative solar positions at start and end of flight are plotted.  These data were 

calculated using an on-line sun position calculator (Honsberg and Bowden, no date 

b) which takes into account the Universal Co-ordinated Time (UTC) and the 

longitude and latitude of reference position.  As no GPS data were available, the 

airport co-ordinates are used.  The start and end positions are joined and an arrow 

indicates the direction of change of relative position of the sun during flight. 

 

Using the binocular visibility plots from Airbus manuals (Airbus, 2012; Airbus, 2014), 

an approximation of the area in which sunlight could be directly viewed by the pilot 

through the aircraft windows is plotted.  This has been calculated as the vertical 

angle from the horizontal ‘eyes ahead’ plane.  This plane is taken as a reference 

point and coincides with the outermost circle on the azimuth-elevation plot 

representing the horizon (0°).  The solid line represents the boundaries of direct 

sunlight view from the captain’s seat whilst the broken line represents the 

boundaries of direct sunlight view from the first officer’s seat.  Whilst the areas are 

the same size, it can be seen that direct sunlight may be directly visible to only one 

of the pilots. 

 

The straight line bearing between departure and destination airports was calculated 

using an on-line calculator (SunEarthTools, no date) using the longitude and latitude 

co-ordinates of each airport. 

 

The plots represent an approximation of the relative solar position during flight and 

are used to offer supporting explanation for the differences in irradiation measured 

during flight.  The accuracy of the azimuth flight plots may be affected by a number 

of factors including: 

1) A constant heading is used which represents a direct track between airports.  

In reality, a number of heading changes are usually made during flight as the 

aircraft traverses along airways using a series of ground navigation aids (see 

section 1.5.2).  Additionally, depending on wind direction and speed, the 

aircraft may adopt a particular heading in order to maintain a desired track.  

The direction in which the aircraft points affects the azimuth flight plots.  The 

track angle used has been rounded to the nearest 5°. 

2) As there is no time stamped in-flight GPS data available, only start (take off) 

and finish (landing) times are available as reference points for relative solar 
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position.  Therefore, a relative solar position at a particular point during flight 

can only be estimated from likely solar path and the proportion of total flight 

time elapsed. 

3) The binocular visibility data from the Airbus A320 series has been used as 

this aircraft was flown most frequently in this study (for flights 1,2,3 and 5).  

Additionally, the A320 graphs also include angular data from the opposite 

window which are not available in the Airbus A330 data.  Although the extent 

of angle subtended at the eye for the front windshield are similar between 

A320 and A330 series, the areas plotted may not be accurate for other 

aircraft types. 

4) The area of binocular visibility plotted represents the maximum extent and 

includes eye and head movement.  As a pilot’s attention is generally directed 

ahead, a view of the solar disc through a rear side window will have less 

effect on ocular irradiance than if present through the front windshield.  

Indeed, a relative solar position ahead of the aircraft but above the field of 

view limited by the top of the front windshield is likely to affect ocular 

exposure more than a relative solar position giving a direct view of the sun 

from a side window. 

5) The area of visibility does not take into account windshield frame structure 

(which could cause a block of the solar disc area) or the use of visors (which 

would attenuate irradiance from the solar disc area). 

 

Figure 6-n and Figure 6-o show the azimuth flight plots for flight 1 outbound and 

inbound respectively. 

 

Figure 6-n Azimuth plot for flight 1 outbound. 
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Figure 6-o Azimuth plot for flight 1 inbound. 

 

The spectrometer probe during this flight was placed near the front windshield on 

the captain’s side (left) of the cockpit.  Comparing outbound and inbound sectors, 

irradiance levels measured were not seen to be markedly different.  Both cruise 

sectors correspond with a relative solar position outside direct line of sight. 

 

The same azimuth flight plot is presented for flights 2 and 3 as the destination was 

the same and flight date and timings were similar (6 days apart and departure and 

arrival times within 30 minutes).  Figure 6-p and Figure 6-q show the azimuth flight 

plots valid for these outbound and inbound flights respectively. 
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Figure 6-p Azimuth flight plot for flights 2 and 3 outbound 

 

 

Figure 6-q Azimuth flight plots for flights 2 and 3 inbound 
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The spectrometer probe was again placed on the captain’s side for both flights.  

Direct sunlight may have been visible to the captain beyond 90° to the left on the 

outbound flight.  As discussed, this is unlikely to have caused a significant increase 

in ocular exposure but may offer an explanation for the gradual increase in 

irradiance seen over the outbound cruise (Figure 6-d and Figure 6-g). 

 

The azimuth flight plot for flight 4 is shown in Figure 6-r.  The probe was placed on 

the first officer’s (right) side during flight. 

 

 

Figure 6-r Azimuth flight plot for flight 4 

 

The solar disc can be seen to be potentially within the captain’s direct view (allowing 

for head turning) during flight.  It also becomes progressively nearer the direction of 

travel of the aircraft.  This would offer an explanation as to the overall gradual 

increase in irradiance seen during this flight (Figure 6-h, p.157). 

 

The azimuth flight plots for flight 5 are shown in Figure 6-s (outbound) and Figure 6-t 

(inbound). 
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Figure 6-s Azimuth flight plot for flight 5 outbound. 

 

 

 

Figure 6-t Azimuth flight plot for flight 5 inbound. 
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The spectrometer probe was positioned at the left hand front windshield.  It can be 

seen that the solar disc is likely to be visible (allowing head and eye rotation) at the 

captain’s eye position throughout the outbound flight whereas on the inbound flight, 

the relative solar position is well away from the line of sight and direction of travel of 

the aircraft.  Correspondingly, irradiance levels seen are significantly higher during 

the outbound sector (Figure 6-j). 

 

Azimuth flight plots for flight 6 are shown in Figure 6-u (outbound) and Figure 6-v 

(inbound) respectively. 

 

 

Figure 6-u Azimuth flight plot for flight 6 outbound. 

 

The spectrometer probe was positioned at the left hand window for the duration of 

the flight.  Irradiance levels were significant higher during the oubound flight where 

the relative solar position was close to the direction of travel.  During the outbound 

sector, irradiance levels decreased which corresponds to the elevation angle 

increased above the direct windshield view.  Although decreasing, it remained 

higher at the spectrometer which was positioned closer to the windshield and would 
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have a larger vertical field of view compared to the pilot’s eyes.  Additionally, this is 

seen by a significantly lower ratio of measurements between manual and fixed 

illuminance UV recorders during the outbound cruise.  The mean ratio for ‘eyes 

ahead’ to fixed position over this sector was 0.09.  A similar mean ratio for flights 1,2 

and 3 was between 0.46 to 0.61.  A lower and relatively constant level of irradiance 

was measured during the inbound sector.  This corresponded with an off axis 

relative solar position of around 45° and a smaller relative positional change 

throughout the inbound flight.  

 

 

Figure 6-v Azimuth flight plot for flight 6 inbound. 

 

6.2.5 Aeroplane flight measurements summary 

For all aeroplane flights, the mean UVA signal was 2.4 times higher at cruise altitude 

compared to the signal at ground level.  The mean blue light hazard signal was 4.1 

times higher at altitude and average illuminance levels were 3.8 times higher at 

altitude compared to ground level.  These values were calculated by using the mean 

altitude signal for all aeroplane flights compared to the mean ground signal for all 

aeroplane flights.  The ground to altitude increase varied for each individual flight 
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(from between 1.2 and 29.5 for blue light weighted radiance).  The highest increase 

signal measured during flight 4 (Tobago) which was due partly to the bright 

conditions and relative solar position during flight, but also to the low ground signal 

at departure due to weather conditions and time of year.  Each flight had fewer 

ground measurements captured than at altitude and a larger variation was seen in 

these ground measurements.  This was partly due to the difference in weather 

conditions, latitude and time of day between departure and destination airports, and 

also due to the often large changes to illuminance as the aircraft manoeuvres from 

the stand to the runway threshold.  These variations in illuminance measured during 

taxy can be seen from the illuminance UV recorder graphs in section 6.2.3.  Similar 

calculations were conducted for helicopter flights described in chapter 6.2.13. 

 

UVA readings were significantly lower on flights 3 (Barcelona) and 4 (Tobago).  Data 

were generally consistent during stable cruise with the greatest variations seen 

during the following phases of flight: 

1) Descent and approach to land.  The aircraft is reducing in altitude and will 

commonly pass through lower altitude cloud during descent.  The aircraft will 

adopt a more nose down attitude.  Multiple changes of heading and airspeed 

are usually required before the aircraft is established on final approach.  

Large variation in illuminance is due to changes to the relative position of the 

sun to the spectrometer.  The effect of reflection from cloud top is likely to be 

greater where the aircraft is at a lower altitude above cloud tops than at 

cruise altitude.  Additionally, there is likely to be a large change in cockpit 

illuminance between flying just above cloud tops with both direct and 

reflected sunlight being present, to flying just below cloud base with diffuse 

sunlight only. 

2) Initial climb after take-off.  The aircraft in this phase of flight will be at a 

significantly nose up attitude.  The relative position of the sun to the 

spectrometer will consequently be lower and nearer the line of sight.  

Additionally, large increases in illuminance are likely to be found when 

climbing through and above cloud, as described above. 

3) Taxy.  Large changes of heading are likely to be required in order for the 

aircraft to move from the stand to the runway threshold.  This will cause large 

changes to the relative position of the sun.  Additionally, sunlight reflection 

from taxiway and runway surfaces (particularly if wet) may increase cockpit 

illuminance further. 

 



171 
 

6.2.6 Aeroplane hazard ratios 

A summary of UVA hazard ratios are shown in Figure 6-w.  The UVA hazard ratio is 

expressed as the un-weighted UVA divided by the illuminance for each reading 

(European Commission, 2006). 

 

 

Figure 6-w Calculated UVA hazard ratios throughout flight; x axis represents number 
of spectrometer readings taken. 

 

Each flight is represented with consecutive spectrometer readings plotted.  These 

were generally captured at 10 minute intervals except during turn-around where the 

equipment was not recording for a period of time.  The horizontal axis is therefore 

not time comparable between flights.  With the exception of flight 4 which was a one 

sector flight, outbound flights constitute approximately the first half of the total 

number of readings and the inbound flight represents the remaining readings for that 

particular flight. 

 

It can be seen that flights 3 (Barcelona) and 4 (Tobago) have low UVA hazard ratio 

which is due to the superior UV attenuating properties of the front windshields 

installed on those aircraft (see section 6.3.5).  Flights 5 (Alicante) and 6 (Rhodes) 

show lower hazard ratios on outbound sectors compared to inbound sectors.  Flight 

1 (Faro) shows a higher hazard ratio on the outbound sector. 
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Blue light hazard ratios were calculated by dividing each weighted blue light 

measurement with illuminance and are shown in the same format in Figure 6-x. 

 

 

Figure 6-x Blue light hazard ratios throughout flight; x axis represents the number of 
spectrometer reading taken. 

 

The Barcelona flights (2 and 3), carried out at a similar time of year, show similar 

hazard ratio profiles.  As with UVA hazard ratios, flights 5 (Alicante) and 6 (Rhodes) 

show lower hazard ratios on outbound sectors compared to inbound sectors.  Again, 

flight 1 (Faro) shows a higher hazard ratio on the outbound sector. 

 

6.2.7 Aeroplane ocular exposure to UV 

A summary of UVA dose calculated for each flight is shown in Table 6-f.  A 

proportion of the visual flying task is directed toward instruments whilst there is also 

a proportion of the visual task which would be directed ahead looking through the 

front aircraft windshield.  Therefore, ‘down’ and ‘ahead’ should be considered the 

minimum and maximum ocular exposure respectively.  For each flight of two 

sectors, a value has been calculated, based on illuminance meter and spectrometer 

data for the exposure during turn around where the aircraft is in a stationary 

position. 
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The values shown are expressed in both dose (J/m2) and as a proportion relative to 

the daily UVA exposure limit (10,000 J/m2) recommended under ICNIRP guidelines. 

 

 

Table 6-f Summary of UVA dose compared to ICNIRP limits both with and without 
destination turnaround time. 

 

During flight 5, it was calculated that the ICNIRP guideline limit was exceeded within 

1 hour after takeoff from London Gatwick assuming an eyes down position or in less 

than 30 minutes after takeoff assuming an eyes ahead position. This also assumes 

that the pilot had no UV eye protection in place.  The mean ocular UVA dose per 

hour is shown in Table 6-g for each flight for both eyes ahead and eyes down 

towards instrument position. 

 

 

Table 6-g Summary of ocular UVA dose per hour for each flight. 

 

6.2.8 Aeroplane ocular exposure to blue light hazard 

Using the manual illuminance UV recorder data collected during flight and spectral 

irradiance measured at windshield, the blue light weighted effective radiance was 

calculated for both ‘eyes ahead’ and ‘eyes down’.  The minimum, maximum, mean 

and standard deviations for each flight are shown for both eyes ahead (Table 6-h) 

and eyes down (Table 6-i) positions. 

 

UVA ahead, 

J/m2

Relative to 

ICNIRP 

guidelines

UVA down, 

J/m2

Relative to 

ICNIRP 

guidelines

UVA 

ahead, 

J/m2

Relative to 

ICNIRP 

guidelines

UVA 

down, 

J/m2

Relative to 

ICNIRP 

guidelines

1 Faro 23405 2.34 11804 1.18 290 30400 3.04 15286 1.53

2 Barcelona 17051 1.70 10320 1.03 206 19591 1.96 12249 1.22

3 Barcelona 1468 0.15 771 0.08 204 1641 0.16 910 0.09

4 Tobago 2167 0.22 1700 0.17 588 N/A N/A

5 Alicante 38158 3.82 26705 2.67 301 39393 3.94 27693 2.77

6 Rhodes 62395 6.24 42129 4.21 479 65630 6.56 45481 4.55

UVA dose including turn aroundUVA dose

Flight

Flight 

duration 

(min)

Flight UVA per hour J/m2 (ahead) UVA per hour J/m2 (down)

1 Faro 4842 2442

2 Barcelona 4966 3006

3 Barcelona 432 227

4 Tobago 221 173

5 Alicante 7606 5323

6 Rhodes 7816 5277
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Table 6-h Summary of blue light hazard radiance for an eyes ahead position. 

 

 

Table 6-i Summary of blue light hazard radiance for an eyes down position. 

 

It can be seen that throughout flights 1-5, the maximum blue light weighted radiance 

calculated was within the 100W/m2.sr limit on an assumption that such an exposure 

would continue.  The effective radiance dose for these flights would fall well within 

the 1 x 106 J/m2.sr limit over 10,000 seconds and there is no evidence of a risk of 

type II photochemical retinal damage occurring during these flights. 

 

Flight 6 showed two readings to be beyond the 100W/m2.sr radiance limit.  These 

occurred around 1710-1715 (UTC+1) during the latter stages of cruise on the 

inbound sector.  These values were affected largely as the illuminance reading from 

the manual illuminance UV recorder was significantly higher than its corresponding 

twin unit by the spectrometer.  Assessing the azimuth flight plot (section 6.2.4), this 

occurred while the solar disc was likely to be directly visible from the captain’s eye 

position and at a relative angle of approximately 45 left of heading.  The most likely 

explanation was that during this short period of time, direct sunlight through the side 

Flight

Mean 

Radiance 

W/m2.sr

Standard 

deviation

Min 

Radiance 

W/m2.sr

Max 

Radiance 

W/m2.sr

Flight 

duration 

(min)

Radiance dose 

for flight (J/m2.sr)

Relative to 

ICNIRP 

guidelines

1 Faro 5.87 1.58 3.74 11.28 290 60991 0.06

2 Barcelona 5.95 3.11 0.86 13.75 206 79974 0.08

3 Barcelona 4.34 1.57 0.75 7.05 204 50597 0.05

4 Tobago 3.5 4.73 0.18 32.06 588 58611 0.06

5 Alicante 13.31 20.71 0.19 94.81 301 245122 0.25

6 Rhodes 9.87 20.90 0.25 115.86 479 193783 0.19

Maximum radiance to prevent type II damage = 100W/m2.sr

Maximum radiance dose over 

10,000 sec to  prevent type II 

damage = 1x106

Flight

Mean 

Radiance 

W/m2.sr

Standard 

deviation

Min 

Radiance 

W/m2.sr

Max 

Radiance 

W/m2.sr

Flight 

duration 

(min)

Radiance dose 

for flight (J/m2.sr)

Relative to 

ICNIRP 

guidelines

1 Faro 2.98 0.93 0.99 4.70 290 30820 0.03

2 Barcelona 3.65 2.22 0.72 9.43 206 53547 0.05

3 Barcelona 2.29 1.14 0.55 4.77 204 30600 0.03

4 Tobago 2.75 4.13 0.12 21.28 588 36239 0.04

5 Alicante 9.32 14.37 0.17 53.84 301 183271 0.18

6 Rhodes 6.65 10.51 0.17 52.53 479 113783 0.11

Maximum radiance to prevent type II damage = 100W/m2.sr

Maximum radiance dose over 

10,000 sec to  prevent type II 

damage = 1x106
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window was affecting manual readings to a greater extent than the spectrometer 

readings.  Excluding these two readings, the highest remaining radiance reading 

during this flight was 20.8 W/m2.sr. 

 

Effective radiance dose for flight 6 was calculated which showed a maximum 

calculated dose of 1.94 x 105 J/m2.sr over a 10,000 second period.  This is the 

equivalent of 0.19 of the radiance dose limit as stated in ICNIRP. 

 

6.2.9 Aeroplane ocular illuminance data 

A summary of the average illuminance measured by both illuminance UV recorder 

and spectrometer is shown in Table 6-j. 

 

Flight 

Av illum. 
Ahead 
(lux) 

Av illum. 
down 
(lux) 

Av illum at 
spectrometer 
(lux) 

1 Faro 4406 2291 5798 

2 Barcelona 4200 2600 5262 

3 Barcelona 5704 3309 7198 

4 Tobago 2367 1983 65654 

5 Alicante 10666 7387 29576 

6 Rhodes 7338 5038 33845 

Table 6-j Summary of mean illuminance during flight as measured by spectrometer 
and manual illuminance UV meter. 

 

It can be seen that on flight 4 (Tobago), the average spectrometer illuminance was 

highest, yet average illuminance at the eye position was lowest.  This is discussed 

further in section 6.3.6. 

 

As with the spectrometer data, illuminance readings taken at pilot eye level varied 

throughout flight.  Minimum and maximum values recorded on each flight are shown 

inTable 6-k. 
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Flight 
Min illum. 
Ahead (lux) 

Max illum 
ahead (lux) 

Min illum. 
down (lux) 

Max illum 
down (lux) 

1 Faro 2900 (clb) 12000 (desc) 1300 (clb) 5000 (desc) 

2 Barcelona 900 (grd) 10500 (alt) 760 (grd) 6900 (alt) 

3 Barcelona 1500 (grd) 61500 (clb) 1200 (grd) 39000 (clb) 

4 Tobago 142 (grd) 6200 (desc) 97 (grd) 4000 (desc) 

5 Alicante 165 (grd) 81000 (alt) 149 (grd) 46000 (alt) 

6 Rhodes 750 (grd) 80000 (alt) 600 (grd) 39000 (alt) 

Table 6-k Summary of minimum and maximum manual illuminance readings. The 
phase of flight where the readings were taken is shown in brackets: grd = ground, clb 
= climb, alt = altitude cruise, desc = descent.  All maximum and minimum readings for 

each flight occurred on the same timed measurement.  Note that no ground 
illuminance readings were taken on flight 1 (faro). 

 

6.2.10 Aeroplane erythemal weighted irradiance 

Erythemal weighted function (section 1.4.8) was included in the data analysis (Table 

6-l).  From the data, erythemal weighted irradiance was calculated for each spectral 

measurement.  The total erythemal UV dose (J/m2) was then calculated for each 

sector. Standard Erythemal Dose (SED) is an erythemally weighted measure of 

radiant exposure and is equivalent to 100 J/m2.  Erythema doses are insignificant for 

all flights. 

 

Flight SED per flight SED/hr 

1 (a) 0.071 0.04 

1 (b) 0.131 0.06 

2 (a) 0.076 0.05 

2 (b) 0.277 0.08 

3 (a) 0.037 0.01 

3 (b) 0.109 0.07 

4 3.459 0.36 

5(a) 1.226 0.63 

5 (b) 0.454 0.18 

6 (a) 1.193 0.30 

6 (b) 0.346 0.08 

Table 6-l Summary of calculated SED per flight and per hour. 
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These values are higher than the anticipated SED that the pilot would receive.  The 

arms, hands and head of the pilot would be further back inside the cockpit and 

would not be expected to receive as high a signal as the spectrometer situated just 

behind the windshield.  In order to calculate the expected dose at the pilot’s face, 

the average ratio on each flight of the paired timed readings between the 

illuminance UV meter at the spectrometer and the manual illuminance UV meter 

readings taken at eye position looking ahead was calculated (Table 6-m).  This is 

likely to represent the lower limit of erythema dose as the pilot’s arms and hands are 

likely to be in a forward position and nearer the windshield relative to the head.  The 

average calculated SED over all aeroplane flights was 0.06 SED/hr. 

 

Flight SED per flight SED/hr 

1 (a) 0.051 0.03 

1 (b) 0.070 0.03 

2 (a) 0.046 0.03 

2 (b) 0.130 0.04 

3 (a) 0.020 0.01 

3 (b) 0.043 0.03 

4 0.361 0.04 

5(a) 0.355 0.18 

5 (b) 0.229 0.09 

6 (a) 0.105 0.03 

6 (b) 0.548 0.13 

Table 6-m Summary of calculated SED at the pilot's face using ahead position 
illuminance UV meter data. 

 

6.2.11 Effect of time of year 

Flights 2 and 3 to Barcelona were conducted on 22 and 26 May respectively.  Flight 

5 to Alicante was conducted on 1 March.  The route along airways passed within 80 

miles of Barcelona airport.  Data from the Barcelona flight collected from take off at 

London Gatwick to the start of descent toward Barcelona was compared to data 

from the Alicante flight from take off at London Gatwick for the same length of time.  

Due to the transmittance properties of the windshields (section 6.3.5), flights 2 and 5 

were compared.  Spectrometer data from flight 5 showed the average illuminance to 

be 11.9 times higher than flight 2.  UVA was 5.6 times higher and blue light was 9.0 

times higher than flight 2.  This large difference is likely to be due to the presence of 
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a significant cloud layer below the aircraft on flight 5 (section 6.2.3.5) together with a 

lower elevation angle and different azimuth angle (section 6.2.4). 

 

6.2.12 Helicopter spectrometer data 

A summary of the data files collected during helicopter flights are given in Table 6-n.  

As before, each complete spectrum was a result of six measurements: a spectral 

and dark measurement for each of the three regions.  There were no saturated 

spectra.  Dark spectra measured under standardised conditions described in section 

6.2.21.2 were applied in cases of shutter failure. 

 

Flight No of 
complete 
spectra 

No of 
saturated 
spectra 

No of spectra 
with non-
operational 
shutter  

No of 
spectra 
requiring 
stitching 

7 (a+b) 17 0 0 0 

8 (a+b) 13 0 5 2 

9 (a+b) 17 0 0 1 

10 (a+b) 19 0 9 0 

Table 6-n Summary of the spectrometer data measurements for helicopter flights 
together with the number of saturated readings (discarded), number of reading where 

the shutter was not functional and the number of spectra requiring stitching. 

 

Stitching was carried out for three spectra.  Stitching was generally only required in 

cases where the spectrometer was capturing data during fast changing conditions 

such as climb or descent through cloud.  A number of spectra could not be stitched 

in the UV range during flights 9 and 10 where the ASAS did not save a region 3 data 

file.  This occurred on one occasion during flight 9 and on 14 spectral acquisitions 

on flight 10. 

 

6.2.13 Helicopter UV, blue light and illuminance data 

6.2.13.1 Flight 7 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-y.  No weather observations were recorded during this flight as it was not 

possible for the researcher to be on board.  Flight details were obtained from the 

aircraft after flight including take off and landing times, altitudes and headings.  A 

summary of illuminance measurements from both spectrometer and illuminance UV 

recorder are shown in Figure 6-z. 
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Sharp spikes in illuminance were seen immediately after take-off from Claymore A 

and at the start of the approach toward Aberdeen airport.  Both UVA and blue light 

readings peaked at 12:20 during inbound cruise at around 1,000ft.  Readings were 

5.3 W/m2 and 13.9 W/m2 respectively.  The total UVA radiant exposure measured by 

the spectrometer was 4.72 x104 J/m2.  The total blue light radiant exposure 

measured during the same period was 1.26 x105 J/m2.  Comparing the illuminance 

data collected by both illuminance UV recorder and spectrometer resulted in a 

correction factor of 1.41.  This would give revised values of 6.66 x104 J/m2 for UVA 

and 1.77 x105 J/m2 for blue light. 

 

 

Figure 6-y Flight 7 summary of UVA, blue light and spectrometer illuminance. 
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Figure 6-z Illuminance measured by spectrometer and illuminance UV recorder during 
flight 7. 

 

6.2.13.2 Flight 8 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-aa. 

 

Broken cloud was observed on departure.  The cloud base was observed marginally 

above the aircraft during the start of the outbound sector at 3,000ft.  By 15:08, there 

was no observed cloud ahead.  During the return sector, at around 2,000ft, the sun 

was observable both directly and diffusely reflected on the sea surface.  By 16:33 

cloud was noted above.  The cloud base height reduced during approach to 

Aberdeen Airport.  Light rain was observed briefly on landing. 

 

A summary of illuminance measurements from both spectrometer and illuminance 

UV recorder are shown in Figure 6-bb. 
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Figure 6-aa Flight 8 summary of UVA, blue light and spectrometer illuminance. 

 

 

Figure 6-bb Illuminance measured by spectrometer and illuminance UV recorder 
during flight 8. 
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Illuminance spikes were measured during departure from and approach to Aberdeen 

airport.  A number of spikes were also measured during the return sector.  These  

were between 5 to 15 seconds duration.   

 

UVA readings peaked at 22.3 W/m2 at 16:25.  Blue light peaked at 77.3 W/m2 at 

16:05, both of which were during the inbound sector at 2,000ft.  The total UVA 

radiant exposure measured by the spectrometer was 6.47 x104 J/m2.  The total blue 

light radiant exposure measured during the same period was 1.92 x105 J/m2.  

Comparing the illuminance data collected by both illuminance UV recorder and 

spectrometer resulted in a correction factor of 1.14.  This would give revised values 

of 7.38 x104 J/m2 for UVA and 2.19 x105 J/m2 for blue light. 

 

6.2.13.3 Flight 9 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-cc. 

 

 

Figure 6-cc Flight 9 summary of UVA, blue light and spectrometer illuminance during 
flight. 
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Weather conditions were overcast on departure and outbound flight was in cloud 

until 11:56.  From then until 12:25 the aircraft was intermittently in or just above 

cloud.  The aircraft was in cloud during between 12:37 and 12:39 during descent 

and approach. 

 

During the inbound flight, the aircraft entered cloud at 13:15 where it remained 

during the 2,000ft cruise sector.  The sea surface was intermittently visible below 

during this time.  A summary of illuminance measurements from both spectrometer 

and illuminance UV recorder are shown in Figure 6-dd. 

 

 

Figure 6-dd Illuminance measured by spectrometer and illuminance UV recorder 
during flight 9. 

 

Short illuminance spikes were again seen during inbound cruise lasting typically 10 

to 15 seconds.  The greater overall fluctuations in illuminance are likely to be due to 

variable cloud present during flight. 
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blue light radiant exposure measured during the same period was 9.45 x104 J/m2.  

Comparing the illuminance data collected by both illuminance UV recorder and 

spectrometer resulted in a correction factor of 0.94.  This would give revised values 

of 2.47 x103 J/m2 for UVA and 8.89 x104 J/m2 for blue light. 

 

6.2.13.4 Flight 10 

A summary of UVA, blue light and illuminance levels during flight are shown in 

Figure 6-ee.  No weather observations were available during this flight as the 

researcher was not able to be onboard.  However, the weather remained overcast at 

Aberdeen airport for the duration of the flight.  Illuminance measurements from both 

spectrometer and illuminance UV recorder are shown in Figure 6-ff. 

 

 

Figure 6-ee Flight 10 summary of UVA, blue light and spectrometer illuminance 
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Figure 6-ff Illuminance measured by spectrometer and illuminance UV recorder during 
flight 10. 

 

The large illuminance spike seen during the inbound sector was 5 seconds duration. 

The highest UVA readings of 0.2 W/m2 were recorded between 15:20 to 15:30 and 

at 1700.  Blue light peaked at 8.8 W/m2 at 15:20 during the outbound cruise sector 

at 3,000ft.  The total UVA radiant exposure measured by the spectrometer was 937 

J/m2.  The total blue light radiant exposure measured during the same period was 

3.84 x104 J/m2.  Comparing the illuminance data collected by both illuminance UV 

recorder and spectrometer resulted in a correction factor of 0.96.  This would give 

revised values of 900 J/m2 for UVA and 3.67 x104 J/m2 for blue light. 

 

6.2.14 Helicopter hazard ratios 

The UVA hazard ratio is expressed as the un-weighted UVA divided by the 

illuminance for each reading (European Commission, 2006). 
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Figure 6-gg Calculated UVA hazard ratios throughout flight; x axis represents number 
of spectrometer readings taken. 

 

Each flight is represented with consecutive readings plotted (Figure 6-gg).  The 

horizontal axis is not time comparable between flights.  It can be seen that UVA 

hazard ratios are significantly lower on flights 9 (Heli 3) and 10 (Heli 4) (S92a 

helicopter) compared to flights 7 (Heli 1) and 8 (Heli 2) (AS332 helicopter).  A 

summary of BL hazard ratios for each flight are shown in Figure 6-hh.  

 

It can be seen that UVA and BL hazard ratios on flight 8 (Heli 2) were lower on the 

inbound sector.  This corresponded to a flight with a high signal in clear conditions 

flying in the direction of the sun. 
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Figure 6-hh Calculated blue light hazard ratios throughout flight; x axis represents 
number of spectrometer readings taken. 
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As the researcher was not able to be on board during flights 1 and 4, no manual 

illuminance data was available for these flights.  However flights were conducted on 

the same day and on the same aircraft type on each occasion.  An estimated ocular 

exposure is presented for flights 1 and 4 by using the average ratio of the two 

illuminance UV recorder readings throughout flights 2 and 3 respectively.  The ratio 

used to calculate ocular exposure for flight 1 was 0.43 for eyes ahead and 0.25 for 

eyes towards instruments.  The ratio used to calculate ocular exposure for flight 4 
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are shown are expressed in both dose (J/m2) and as a proportion relative to the 

daily UVA exposure limit (10,000 J/ m2) recommended under ICNIRP guidelines. 

 

Flight 

UVA dose 

Flight 
duration 

(min) 

UVA 
ahead, 
J/m

2
 

Relative 
to ICNIRP 
guidelines 

UVA 
down, 
J/m

2
 

Relative 
to ICNIRP 
guidelines 

7 Heli flight 1 14903 1.49 11804 1.18 121 

8 Heli flight 2 28453 2.85 10320 1.03 134 

9 Heli flight 3 955 0.10 589 0.06 155 

10 Heli flight 4 309 0.03 200 0.02 163 

Table 6-o Summary of UVA dose compared to ICNIRP limits for both eyes ahead and 
eyes down positions. 

Overall, a mean 1.9 times increase in UVA was found at altitude compared to 

ground level on helicopter flights.  The calculated ocular UVA dose per hour is 

shown in Table 6-p. 

 

Flight 
UVA per hour J/m

2
 

(ahead) 
UVA per hour J/m

2
 

(down) 

7 Heli flight 1 7390 4297 

8 Heli flight 2 12740 6471 

9 Heli flight 3 370 228 

10 Heli flight 4 114 74 

Table 6-p Summary of the calculated ocular UVA dose for both eyes ahead and eyes 
down positions. 

 

6.2.17 Helicopter ocular exposure to blue light hazard 

A summary of blue light radiance at the pilot’s eye was calculated for each 

helicopter flight.  There were no angle of pilot binocular visibility data available for 

either helicopter type flown.  As discussed in section 6.1, where there is a uniform 

source, radiance measurements are relatively unaffected by open field or restricted 

(no less than 0.2 rad) scenarios.  In practice, it is likely that the solid angle 

subtended by the extent of the front windshield is greater in both helicopter types 

compared with a fixed wing passenger aircraft flown (section 10.8).  However, for 

the purposes of blue light weighted radiance calculations, the same solid angle 

value as used for flights 1 to 6 has been used.  By using this approach, any errors 

incurred would give higher effective radiance values and the risk of exposure may 
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be over-estimated.  If this is the case, more detailed task analysis could be 

conducted however this would be of limited value where radiance or radiance dose 

were within ICNIRP guideline limits.  The minimum, maximum, mean and standard 

deviations for each flight are shown for both eyes ahead (Table 6-q) and eyes down 

(Table 6-r) positions. 

 

 

Table 6-q Summary of blue light hazard radiance for an eyes ahead position. 

 

 

Table 6-r Summary of blue light hazard radiance for an eyes down position. 

 

All blue light weighted radiance measured fell within recommended limit under 

ICNIRP to prevent type II retinal damage.  The highest radiance value occurred 

during flight 8 during the inbound cruise flight when weather conditions were clear 

with no significant cloud cover.  The aircraft was heading approximately west with an 

afternoon sun causing a large area of diffuse reflection from the sea surface visible 

to the pilot.  Overall, a mean 2.5 times increase in blue light weighted signal was 

found at altitude compared to ground level for helicopter flights. 

 

Flight

Mean 

Radiance 

W/m2.sr

Standard 

deviation

Min 

Radiance 

W/m2.sr

Max 

Radiance 

W/m2.sr

Flight 

duration 

(min)

Radiance dose 

for flight (J/m2.sr)

Relative to 

ICNIRP 

guidelines

7 Heli flight 1 5.71 1.91 2.84 9.00 121 41467 0.04

8 Heli flight 2 14.00 17.07 1.27 77.11 134 112566 0.11

9 Heli flight 3 5.59 3.91 0.73 13.55 155 52033 0.05

10 Heli flight 4 1.61 1.22 0.24 4.15 163 15788 0.02

Maximum radiance to prevent type II damage = 100W/m2.sr

Maximum radiance dose over 

10,000 sec to  prevent type II 

damage = 1x106

Flight

Mean 

Radiance 

W/m2.sr

Standard 

deviation

Min 

Radiance 

W/m2.sr

Max 

Radiance 

W/m2.sr

Flight 

duration 

(min)

Radiance dose 

for flight (J/m2.sr)

Relative to 

ICNIRP 

guidelines

7 Heli flight 1 3.32 1.11 1.65 5.23 121 24109 0.02

8 Heli flight 2 6.69 5.70 0.56 24.67 134 53752 0.05

9 Heli flight 3 3.43 2.22 0.45 7.51 155 31884 0.03

10 Heli flight 4 1.04 0.79 0.16 2.69 163 10216 0.01

Maximum radiance to prevent type II damage = 100W/m2.sr

Maximum radiance dose over 

10,000 sec to  prevent type II 

damage = 1x106
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6.2.18 Helicopter ocular illuminance data 

A summary of the average illuminance measured by both illuminance meter and 

spectrometer is shown in Table 6-s. 

 

Flight 

Av illum. 
Ahead 
(lux) 

Av illum. 
down 
(lux) 

Av illum at 
spectrometer 
(lux) 

7 (Heli 1) N/A N/A 12626 

8 (Heli 2) 10021 4866 26670 

9 (Heli 3) 4551 2860 11395 

10 (Heli 4) N/A N/A 4184 

Table 6-s Summary of mean illuminance during flight as measured by spectrometer 
and manual illuminance UV meter. 

 

As with the spectrometer data, illuminance readings taken at pilot eye level varied 

throughout flight.  Minimum and maximum values recorded on each flight are shown 

in Table 6-t. 

 

Flight 
Min illum. 
Ahead (lux) 

Max illum 
ahead (lux) 

Min illum. 
down (lux) 

Max illum 
down (lux) 

7 (Heli 1) N/A N/A N/A N/A 

8 (Heli 2) 1350 (desc) 26000 (alt) 600 (desc) 10500 (alt) 

9 (Heli 3) 470 (grd) 9000 (alt) 290 (grd) 6000 (alt) 

10 (Heli 4) N/A N/A N/A N/A 

Table 6-t Summary of minimum and maximum manual illuminance readings. The 
phase of flight where the readings were taken is shown in brackets: grd = ground, alt 

= altitude cruise, desc = descent.  Maximum and minimum readings for each flight 
occurred on the same timed measurement. 

 

Overall, a mean 2.9 times increase in illuminance was found at altitude compared to 

ground level on helicopter flights. 

 

6.2.19 Helicopter erythemal weighted irradiance 

Erythemal weighted function was also included in the helicopter data analysis.  

Erythemal weighted irradiance, total erythemal UV dose (J/m2) and SED were 

calculated (Table 6-u).  Erythema doses were insignificant for all flights. 
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Flight SED per flight SED/hr 

7 (heli 1) 0.189 0.09 

8 (heli 2) 0.442 0.20 

9 (heli 3) 0.284 0.11 

10 (heli 4) 0.017 0.01 

Table 6-u Summary of calculated SED per flight and per hour. 

 

As for the aeroplane flights, these values are higher than the anticipated SED that 

the pilot would receive as the arms, hands and head of the pilot would be further 

back inside the cockpit and would not be expected to receive as high a signal as the 

spectrometer situated just behind the windshield.  SED calculations at the pilot’s 

face (considered the lower limit of erythema dose) were conducted in the same 

manner as for aeroplane flights (section 6.2.10) and are shown in Table 6-v.  

Furthermore, calculation for flight 7 involved using average ratio calculated in flight 

8.  Similarly, flight 10 used the average ratio from flight 9 as both involved the same 

aircraft.  The average calculated SED over all helicopter flights was 0.04 SED/hr. 

 

Flight SED per flight SED/hr 

7 (heli 1) 0.081 0.04 

8 (heli 2) 0.189 0.08 

9 (heli 3) 0.097 0.04 

10 (heli 4) 0.006 0.00 

Table 6-v Summary of calculated SED at the pilot's face using ahead position 
illuminance UV meter data. 

 

6.2.20 Observed eye protection practices employed during 

flight 

Data were additionally collected of eye protection practices observed of both pilots 

during flight.  There were no non-standard practices of blocking sunlight observed 

during aeroplane flights except briefly on flight 6. 

 

There were no observed eye protection practices used at any point during flight 1.  

During flight 2, the captain (left seat) wore sunglasses once established at cruise 

altitude for the remainder of the outbound flight.  The first officer (right seat) 

deployed the aircraft front visor above FL200 (section 1.5.2) for the majority of the 

sector.  On the return sector, both captain and first officer wore sunglasses from 
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when the aircraft was pushed back from the stand at Faro.  During cruise altitude, 

the first officer was also observed to deploy the side blind on three occasions from 

just before reaching cruise altitude until 5 minutes before landing.  The total time the 

side blind was used was approximately 1 hour 15 minutes. 

 

On flight 3, the first officer wore sunglasses for the duration of the outbound flight 

and for the final 20 minutes of the inbound flight.  The captain was not observed to 

use sunglasses.  Both captain and first officer used front visors from immediately 

after takeoff.  The captain also used his side window blind once established at 

FL330.  These were used until 3 minutes before landing.  On the return sector, the 

first officer used his side blind for approximately 1 hour 10 minutes during cruise at 

FL380. 

 

During flight 4, the first officer used his front visor from immediately after takeoff.  

During the climb, both pilots used their side window blinds.  Once at FL300, the 

captain also used his front visor and a small visor between the pilots.  During cruise, 

the captain stowed his visor for approximately 35 minutes and the first officer stowed 

his visor away for approximately 40 minutes.  The side blinds and centre visor were 

stowed just before commencing descent and both visors were stowed during the 

final 6 minutes of flight.  Neither pilot was observed to use sunglasses during flight. 

 

On flight 5, the first officer wore sunglasses for the duration of the outbound flight 

and from just after takeoff on the inbound flight.  The captain was not observed to 

wear sunglasses.  The captain deployed his front visor from near the top of the climb 

and positioned it between front and side windshields.  The captain also used his 

side window blind during descent toward Alicante.  Both visor and blind were stowed 

four minutes before landing.  During the return sector, the first officer used his front 

visor for a brief period during climb.  The captain used his side blind from just after 

takeoff and his front visor from near the top of the climb.  Both were stowed within 

nine minutes before landing.  

 

During flight 6, the captain wore sunglasses for the duration of both sectors.  The 

first officer used his sunglasses from take off until early descent towards Rhodes 

and from when the aircraft achieved cruise altitude on the inbound sector until 

landing at London Gatwick.  On the outbound flight, the first officer deployed his 

visor twice during cruise altitude for a total of approximately 1 hour 50 minutes.  

During the inbound sector, the captain deployed his front visor just after takeoff and 
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his side window blind once established in the cruise.  These remained in place until 

commencing the descent.  The captain was also observed to use his hand to shield 

sunlight from his eyes briefly during takeoff from Rhodes and again during final 

approach at London Gatwick when the first officer was also using his hand to shield 

his eyes from a low sun in line with the runway. 

 

During helicopter flights, visors were not fitted on the aircraft flown.  During the 

inbound cruise during flight 8(b), the captain was observed to use a laminated check 

list under her headset as a makeshift peaked cap to shield her eyes.  On flight 9(a), 

the captain used his sunglasses for approximately the final 30 minutes of the 

outbound flight. 

 

6.2.21 Limitations of data 

6.2.21.1 Pixel saturation 

As discussed in section 5.7, a small number of readings suffered signal saturation 

and potential pixel leakage.  As this can affect the accuracy of the data, these 

measurements were not used for analysis. 

 

6.2.21.2 Shutter 

The Ocean Optics INLINE-TTL-S optical shutter is gravity operated for one state, 

thus depending on its orientation will be open or closed.  As ASAS software program 

monitors irradiance levels between measurements, the shutter was always 

orientated to remain open and battery power was then required only during dark 

measurements.  The battery failed during the flight 4 (Tobago).  This meant that 

spectral data were still collected but without a dark measurement.   Therefore, for 

every region at every 10 minute interval, two equivalent spectral readings were 

obtained.  Although a metallic click can be heard when the shutter operates, it was 

often not possible to hear this in the cockpit environment as a headset was worn 

and the equipment was often not sited next to the researcher.  In the helicopter 

environment, the shutter noise could not be detected.  This shutter failure came 

about through an incorrect battery charging procedure. Following flight 4, charging 

instructions from the unit on loan from HPE were made available.  It was apparent 

that the battery could only be charged when switched on.  Subsequent 

measurements revealed an intermittent failure of the shutter to operate.  This 

intermittent error was found difficult to reliably replicate, however it was thought to 
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be due to a fault within the cable from the battery to the TTL control unit.  Spare 

cables and batteries were carried during later flights. 

 

A series of dark measurements were taken with the HR4000 in the HPE laboratories 

and were used as a reference standard.  These were taken at various board 

temperatures (5oC, 10oC, 15oC, 22oC, 30oC and 40oC) and integration times (5ms, 

10ms, 20ms, 50ms, 100ms, 300ms, 500ms, 700ms, 1s, 2s, 5s and 10s).  The 

closest dark reading was used and inserted into those data files without a dark 

measurement. 

 

The spectral signal was generally strong and dark data from shorter integration time 

reference standards was usually required.  Additionally, having a strong signal 

meant that effect of inaccuracies in background data would be reduced.  Data points 

requiring dark data showed good correlation to illuminance UV meter readings. 

 

6.2.21.3 Illuminance UV recorder 

Both illuminance UV recorders were always fitted with new AA batteries before 

flight.  For flights 1-3, the illuminance UV recorder coupled to the spectrometer was 

pre-programmed the day before deployment in order to reduce workload in setting 

up the equipment on the day of data collection.  On flight 3, it was found that the 

new battery inserted on the previous day was registering as flat and had to be 

replaced.  Although spare AA batteries were carried, the pre-programmed settings 

had been lost.  It was not possible to re-programme the illuminance UV recorder for 

automated data collection as the appropriate USB cable was not available.  Both 

illuminance UV recorders were therefore read manually during this flight.  For 

subsequent flights, a spare cable was carried and the illuminance UV recorder was 

generally programmed just before departure.  

 

6.3 Discussion 

6.3.1 Ocular exposure 

The calculated ocular exposure of UVA on different flights varies widely.  Flights 2 

and 3 were conducted at near identical times of year and time of day.  The 

destination was the same and the flight times were very similar.  Weather conditions 

for both flights were similar and relatively cloud free.  The equipment and 

measurement protocol was identical.  The aircraft type (Airbus A320) was the same 
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on each flight, however the two individual aircraft were different.  The aircraft used 

for flight 2 was built in 2001 and had a total flight time of 37,526 hours logged at 

31/12/2012.  The aircraft used for flight 3 was built in 1994 and had a total flight time 

of 69,461 hours logged at 31/12/2012.  The pilot flying the newer aircraft received 

over 11x the UVA dose to that of the pilot flying the older aircraft.  The large 

difference in exposure was due to differences in the transmission properties of the 

two aircrafts’ windshields. 

 

An example of a spectral reading taken at cruise altitude on each outbound flight is 

shown in Figure 6-ii. 

 

 

Figure 6-ii Sample spectral data measured during cruise on flights 2 and 3 show the 
difference in windshield attenuation properties. 

 

The two spectra are similar from 420 - 700nm, however a large difference in the 

irradiance between 350 – 420nm can be seen.  UVA dose is therefore highly 

dependent on the type of windshield installed.  It is clear from the data that flights 3 

(Barcelona) and 4 (Tobago) were undertaken in aircraft with good UVA attenuating 

properties.  This finding prompted a series of windshield transmittance 

measurements to be conducted from various aircraft on the ground.  This is 

described in chapter 8.  
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Data show that ICNIRP guidelines for UVA ocular exposure can be exceeded for 

even a relatively short two sector flight such as London Gatwick to Barcelona.  Flight 

6 demonstrated the highest calculated UVA dose being around 4.5 to 6.5 

(depending on eye position) times greater than ICNIRP guidelines.  This flight was 

particularly chosen as it was a morning departure from London Gatwick with an 

easterly component to the heading and returned from Rhodes during the afternoon 

with a westerly component to the heading.  This was a longer two sector flight and 

was in a similar direction to the solar azimuth.  It was therefore anticipated that a 

potentially high ocular dose would result if measurements took place in an aircraft 

with poor UV attenuating windshield properties.  The presence of cloud below the 

aircraft during the inbound sector is likely to have increased exposure further due to 

reflection of radiation from cloud tops.  It should however be noted that on this flight, 

both captain and first officer wore sunglasses for the majority of the flight.  

Therefore, in this particular instance actual ocular UVA exposure received by the 

pilots may be significantly less than ICNIRP guideline limits depending upon the 

transmission properties of the sunglasses used (see chapter 9). 

 

A large difference in calculated UVA dose can also be seen within the helicopter 

flights with the aircraft flown for flights 9 and 10 having better UVA attenuating 

properties than the aircraft flown for flights 7 and 8.  Indeed the reference manual for 

the Sikorsky 92a describes the aircraft to have a glass/acrylic plastic laminate 

windshield.  It is likely that the addition of this plastic layer in the windshield 

construction offers better UVA protection to the pilots.  Clear acrylic material can, 

with additives, be manufactured to block up to 98% of UV (Ridout Plastics, no date).  

It is likely that this is responsible for the low UVA detected in this aircraft. 

 

Although flights were taken on consecutive days at similar times of day, weather 

conditions for flights 7 and 8 were much sunnier and cloud free compared to the 

second day, which was more overcast and involved more flight time in or below 

cloud.  The data from the two days of flights are likely to indicate the range of ocular 

exposure for the off shore helicopter pilot with flights 7 and 8 carried out in bright 

conditions in an aircraft with poor UVA attenuating windshields and flights 9 and 10 

being carried out in dull, overcast conditions mainly in cloud with little direct sunlight 

seen in an aircraft with good UVA attenuating properties. 

 

As the use of eye protection strategies in flight is mainly driven by the need to block 

sunlight and provide ocular comfort, as was found in section 4.9, a greater use of 
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strategies would be expected in situations where a high blue light hazard dose were 

present.  The effectiveness of typical pilot sunglasses to block the blue light hazard 

is discussed in section 10.11. 

 

UVA hazard ratios were low throughout flight on aircraft with good UVA attenuating 

properties.  It can be seen that blue light hazard ratios and UVA hazard ratios on 

aircraft with poor UVA attenuating properties appear inversely related to overall 

illuminance.  Therefore, the sectors with high illuminance measured had relatively 

lower hazard ratios, and those sectors with lower illuminance had higher hazard 

ratios.  Flight 6 was the only two sector flight where the presence of cloud was 

significantly greater on one sector.  On this flight, the inbound sector was flown 

above significantly more cloud but with lower overall irradiance levels and 

significantly higher hazard ratios were found.  This finding confirms the UV 

enhancing effect of cloud as discussed in section 1.4.6.  Again, as eye protection 

strategies are strongly driven by overall illuminance, sunglasses are less likely to be 

worn when hazard ratios are higher. 

 

6.3.2 Solar azimuth and elevation 

The position of the sun relative to the input optics of the spectrometer or the pilot’s 

eyes is a large factor influencing potential irradiance received.  Most two sector 

flights show a difference in irradiance between outbound and inbound cruise.  

Clearly, if the headings of the two sectors are different by 180o, so too will be the 

solar position relative to the pilots.  Those flights with a marked difference between 

outbound and inbound sectors will have had direct radiation captured by the 

spectrometer for most or all of one of the cruise sectors.  

 

6.3.3 Effect of reflection from cloud top 

From the data collected, it is not possible to quantify the degree of this effect.  

However, the presence of a surface reflecting a higher percentage of radiation at a 

closer distance than the ground is likely to cause an increase in radiation reaching 

the aircraft cockpit windshield.  It is known that short wavelength radiation will be 

subject to greater scattering which is likely to cause a higher relative irradiance of 

short wavelengths compared to the overall spectrum and that the presence of cloud 

can enhance UV dose (section 1.4.6). 
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Flights 5 and 6 showed the largest difference in hazard ratios between outbound 

and inbound flights.  Both flights had significantly higher overall irradiance levels on 

the outbound sector compared to the inbound and both had a heading which 

resulted in the relative solar azimuth angle such that the solar disc would have been 

directly visible to the pilot (section 6.2.4).  Data in these outbound sectors would 

therefore be comprised of a high proportion of direct radiation.  The inbound sectors 

of both flights were more likely to receive diffuse radiation, enhanced in the short 

wavelengths by reflection from cloud tops. 

 

6.3.4 Illuminance spikes 

A number of short duration increases (and decreases) in illuminance are seen on 

most flights.  They constitute a small proportion of the total flight time and are 

generally not present during the cruise phase of flight. 

 

Large spikes in illuminance are recorded on multiple occasions during periods of 

flight where the aircraft is undergoing large changes of heading.  This is particularly 

seen during taxy and approach to land phases of flight.  Large illuminance spikes 

were also seen during takeoff and climb, where the aircraft adopts a significantly 

greater nose up attitude which has the effect of reducing the relative solar elevation 

angle to the pilot’s eye.  This could also mean that the sun at a high elevation angle 

is obscured by the aircraft structure while the aircraft is on the runway and is then 

directly visible during climb.  In other words, the illuminance spikes may represent 

the change from indirect light to direct sunlight falling on the probe. 

 

Helicopters are more able to conduct fast changes of heading particularly after 

transiting from the hover into forward flight.  With no airspace restrictions present, 

they are able to quickly take up the desired heading.  Additionally, as the cruise 

altitude is lower there is a short time between ground and reaching cruise altitude.  

Helicopters adopt a more nose down attitude during climb and any illuminance 

spikes seen during climb on helicopter flights are likely to be due to changes of 

heading.  Helicopters are also likely to cruise with a more nose down attitude than 

fixed wing aircraft (this is one component of the flight controls which determines the 

speed of the aircraft) which would result in a marginally higher solar elevation angle 

relative to the pilot. 

 



199 
 

More illuminance spikes and variation in signal are seen from the illuminance UV 

recorder during helicopter cruise compared to aeroplane flights.  These were more 

apparent on flights 8 and 9.  It is possible that as the helicopter operates near cloud, 

these spikes are partly due to flying in and out of cloud.  It is also possible that the 

main rotor blades tips of the helicopter may have been in the line of sight between 

the sun and illuminance UV recorder and have temporarily affected readings.  The 

weather conditions and solar position relative to the aircraft on the inbound flight 8 

would meet these criteria.  Finally, it is possible that the Illuminance UV meter was 

in some way affected by aircraft vibration however the illuminance spikes were not 

consistent throughout all helicopter flights.  

 

6.3.5 Aircraft windshields 

Although visual inspection revealed no observed differences of the windshields 

installed on the aircraft flown, there were large differences in UVA dose measured 

on different aircraft.  Flights with a low UVA irradiance showed the windshield to 

have a sharp transmittance cut off around 400nm.  Therefore, onboard these flights, 

only a minimal UVA signal was detectable.  On board an aircraft with a good UV 

blocking windshield, the UVA dose is unlikely to exceed ICNIRP guidelines 

regardless of the flight time, position of sun or external conditions.  Windshields from 

flights with a higher UVA dose showed a gradual increase in transmittance of 

radiation from around 360-365nm.  Flights on board a poorer UVA blocking 

windshield have been shown to easily result in a UVA exposure in excess of ICNIRP 

guidelines.  This may occur where flight conditions may not feel excessively bright to 

the pilot.  As the pilot currently has no means to assess the UV blocking properties 

of a particular windshield, they may inadvertently be subject to a significantly higher 

UVA dose without using appropriate eye protection. 

 

6.3.6 Flight 4 (Tobago) illuminance and pilot exposure 

The spectrometer and paired illuminance UV meter measured the highest levels of 

overall illuminance of all flights undertaken with measurements peaking at over 

120,000 lux.  Additionally, this flight was also the longest duration at nearly 10 

hours, all of which were during daylight.  However, the results showed a lower 

calculated ocular exposure than other flights.  As previously discussed, the UVA 

dose was found to be within ICNIRP guideline limits due to the good attenuation 

properties of the aircraft windshield.  Additionally, the average illuminance at the 
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pilot’s eye level during flight was found to be lowest of all aeroplane flights.  This is 

thought to be due to the cockpit design of the Airbus A330.  The aircraft has wide 

pull down visors for each pilot’s front windshield.  These, when fully extended, cover 

a greater proportion of the windshield area than other aircraft types encountered.  

Additionally, a central visor is available (Figure 6-jj).  These, together with the roller 

blinds for side windows were used during flight and allowed the pilots greater control 

of cockpit illuminance.  Indeed the pilots on this flight did not use sunglasses despite 

the bright external conditions.  

 

 

Figure 6-jj A330 cockpit offering a larger area of front windshield coverage. 

 

Due to this enhanced control of cockpit illuminance, the calculated ocular dose of 

blue light hazard was also the lowest of all aeroplane flights.  Flight 4 demonstrates 

the importance of transmission properties of aircraft windshields and design of 

visors in protecting the non-sunglass wearing pilot. 

 

6.4 Summary 

This chapter has demonstrated that higher irradiance levels of UVA and blue light 

are present at altitude compared to ground level.  The mean increase in UVA during 

airline flights was 2.4 times higher and the mean increase in blue light hazard was 

4.1 times higher at altitude.  During helicopter flights, the increases measured were 

1.9 times for UVA and 2.5 times for the blue light hazard.  Erythemal weighted 

irradiance was low due mainly to the UVB blocking properties of all windshields. 
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Calculated blue light hazard radiance always fell within ICNIRP guideline limits 

however, ocular irradiance to UVA exceeded ICNIRP exposure limit guidelines 

during four airline flights.  The key determinant of high UVA exposure was not the 

external conditions, but rather the differences in windshield attenuation properties.  

In order to investigate this important finding further, ground aircraft windshield 

transmittance readings have been captured on a series of airline aircraft of differing 

types and these results are described in chapter 8.  First, in chapter 7, data are 

provided for comparison of pilot UVA and blue light exposure to sample office 

workers.  
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7. Chapter 7 Office Measurements 

CHAPTER OVERVIEW 

This chapter describes spectral measurements using the HR4000 in order to assess 

the typical ocular exposure at a series of office workstations.  Data are collected 

over an eight hour working shift and are repeated at different times of the year.  The 

results of this chapter offer a comparison to the ocular exposure measured during 

flight for both airline and helicopter pilots as described in chapter 6. 

 

7.1 Introduction 

In addition to capturing spectral data on high altitude jet airline operations and low 

altitude helicopter operations, it was additionally decided to obtain some 

comparative data from a more commonplace working environment.  Occupational 

exposure data were captured from a series of office workstations in the CAA Safety 

and Airspace Regulation Group building at Gatwick Airport South, West Sussex.   

 

7.2 Method 

Three workstation locations were selected.  The first (workstation 1) was a ground 

floor location in a room with large windows across both south and west facing walls.  

The workstation was situated near the south facing window.  Workstation 2 was 

located on the ground floor, facing south in an open plan office area nearer the 

centre of the building and away from any external windows.  Limited natural daylight 

was visible through the glass ceiling above the third floor of the nearby atrium.  Both 

workstations were lit by overhead ceiling fluorescent tube lighting.  Workstation 3 

was the researcher’s consulting room which contained no windows and had no 

access to daylight.  Lighting was provided by overhead ceiling fluorescent tube and 

tungsten spot lighting. 

 

Following agreement from the CAA employees whose workstations were selected, 

data collection was carried out during normal office hours on dates when the 

workstations were available.  As it was then possible to set the spectrometer input 

optics at the likely office worker eye level and facing toward the computer and desk 

area of their workstation, the illuminance UV recorders were not used.  The detector 

and fibre optic cable were optimally positioned by securing to a camera tripod using 
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electrical tape.  ASAS was set to collect data every 10 minutes over an eight hour 

continuous period using the same settings as for all flight data collected. 

 

Measurements from each workstation were taken during both February 2013 and 

July 2013.  For workstation 1, data collection took place on days where the room 

was not being used.  Data collection for workstation 2 took place on days when desk 

was vacated.  The spectrometer was set up for workstation 3 so that the researcher 

was able to continue working in this office during data collection. 

 

Data collection from workstation 1 was carried out during days that were clear and 

mainly sunny.  It is possible that the solar disc was obscured by cloud for short 

periods during data collection.  The room containing workstation 1 had horizontal 

blinds fitted.  Two days of data collection at this location were carried out in 

February 2013.  The first with the blind slats closed and the second day with the 

blind slats open but with the blinds not raised.  One day of data collection were 

carried out in July 2013 with the room blind slats open but not raised. 

 

Spectrometer data were analysed in the same way as for in flight measurements 

(section 6.1).  However, as there were no illuminance UV recorder data, ocular 

exposure calculations were made directly from the spectrometer data. 

 

7.3 Results 

Each complete spectrum was a result of six measurements: a spectral and dark 

measurement for each of the three regions.  There were no saturated spectra.  Dark 

spectra measured under standardised conditions described in section 6.2.21.2 were 

applied in cases of shutter failure.  No spectra required stitching (Table 7-a). 

 

The dose results for UVA are summarised in Table 7-b.  Also shown is the average 

illuminance measured by the spectrometer at the simulated eye position of the office 

worker although it should be noted that these illuminance figures do not equate to 

typical recommended office guidelines which relate to illuminance of the task and 

not irradiance at the eye. 
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Office 
workstation no. 

No of 
complete 
spectra 

No of 
saturated 
spectra 

No of spectra 
with non-
operational 
shutter  

No of spectra 
requiring 
stitching 

1 (winter BC) 49 0 0 0 

1 (winter BO) 49 0 0 0 

1 (summer BO) 49 0 0 0 

2 (winter) 48 0 0 0 

2 (summer) 49 0 8 0 

3 (winter) 49 0 0 0 

3 (summer) 49 0 0 0 

Table 7-a Summary of data collected by spectrometer during office measurements. BC 
= window blinds closed; BO = window blinds open. 

 

Workstation UVA 
dose, 
J/m2 

Relative 
to ICNIRP 
guidelines 

Average 
illuminance 
(lux) 

Duration 
(min) 

1 (winter BC) 2281 0.23 342 490 

1 (winter BO) 2291 0.23 361 490 

1 (summer BO) 2200 0.22 125 490 

2 (winter) 1930 0.19 146 480 

2 (summer) 2158 0.22 126 490 

3 (winter) 2818 0.28 125 490 

3 (summer) 2835 0.28 120 490 

Table 7-b Summary of UVA dose compared to ICNIRP limits together with average 
illuminance and data recording duration of each workstation. 

 

A summary of blue light radiance measured at office workstation is shown in Table 

7-c.  Measurements were considered open field and not restricted.  As with 

helicopter data and to provide a conservative calculation of effective radiance and 

radiance dose in relation to the guidelines, the same solid angle was used as for 

flight data. 
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Table 7-c Summary of mean, minimum and maximum blue light hazard weighted 
radiance measured together with comparison to calculated ICNIRP recommended 

exposure limit. 

 

All blue light weighted effective radiance measurements were minimal when 

compared to ICNIRP guideline limits for type II retinal photochemical damage.  

Office data was unsurprisingly lower than flight data.  Also expected was that 

workstation 1 would show a higher blue light weighted radiance due to the influence 

of natural daylight.  This also explains the higher standard deviation values due to 

the gradual shift in relative solar position throughout the measurement period and 

the presence of any cloud cover.  It would seem that there was little or no effect of 

natural daylight on measurements captured from workstation 2 as data is similar to 

that taken from workstation 3 with no natural daylight present. 

 

The calculated doses from all workstations at both times of year fell within ICNIRP 

guidelines for UVA and blue light hazard doses.  The graph shown in Figure 7-a 

shows a summary of the variation in measurements throughout each data collection. 

Workstation

Mean 

Radiance 

W/m2.sr

Standard 

deviation

Min 

Radiance 

W/m2.sr

Max 

Radiance 

W/m2.sr

Duration 

(min)

Max radiance 

dose over 10,000 

sec (J/m2.sr)

Relative to 

ICNIRP 

guidelines

1 (winter BC) 0.46 0.74 0.08 5.04 490 8314 0.008

1 (winter BO) 0.47 0.71 0.10 3.79 490 7139 0.007

1 (summer BO) 0.43 0.19 0.21 0.92 490 4588 0.005

2 (winter) 0.11 0.01 0.09 0.13 480 1156 0.001

2 (summer) 0.11 0.03 0.05 0.16 490 821 0.001

3 (winter) 0.10 0.01 0.06 0.12 490 960 0.001

3 (summer) 0.10 0.01 0.08 0.11 490 912 0.001

Maximum radiance to prevent type II damage = 100W/m2.sr

Maximum radiance dose over 

10,000 sec to  prevent type II 

damage = 1x106
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Figure 7-a UV and Blue light hazard ratios throughout data collection period; x axis 
represents the number of spectrometer reading taken. WS = workstation, BC = 

window blinds closed, BO = window blinds open. 

 

7.4 Discussion 

Minimal UVA signal was detected at any workstation.  A large variation was seen in 

blue light measured at workstation 1, particularly during winter measurements where 

the solar elevation angle is lower and nearer the line of sight of the simulated eye 

position.  It can also be seen that the blinds do not efficiently block sunlight.  This is 

explained on examination of the blinds as the material is not solid and contains 

multiple small holes in each horizontal slat.  Additionally, the degree of cloud cover 

is likely to have caused fluctuations between measurements.  Although conditions 

were observed to be mainly clear, cloud may have obscured or partially obscured 

the solar disc at the point of automated data collection. 

 

All calculated doses were well within ICNIRP guideline limits for UVA and blue light 

hazard exposure for the office environments measured.  Unsurprisingly, calculated 

doses for blue light hazard are significantly lower in the office compared to flight 

deck environment.   However, on aircraft with good UVA attenuating windshields, 

UVA dose for pilot and office worker are comparable.  The pilots on flight 4, 
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measured over the 9 hour 48 minute flight duration, received a calculated 0.22 

ICNIRP dose while office workers over an 8 hour period would receive a UVA dose 

of between 0.19 to 0.28.  Flight 3 was 4 hours 54 minutes including turn around and 

pilots received 0.15 ICNIRP dose.  The pilots employed by the airline flown for data 

collection were rostered for a two sector flight.  It is possible that other airlines may 

schedule pilots to fly a three or four sector shift depending on flight duration (section 

10.5); however it is clear that ICNIRP guidelines are not exceeded when operating 

an aircraft with good UVA attenuating windshield properties. 

 

The S-92a helicopter also showed good UVA attenuating properties.  Helicopter 

pilots operating to North Sea oil platforms are more likely to undertake four sectors 

(two return flights) per working shift.  The two flights on which data were collected 

showed calculated doses of 0.10 and 0.03 ICNIRP dose, comparable with the office 

worker and pilot operating an airline transport aircraft with good UVA attenuating 

windshields. 

 

7.5 Summary 

It is unsurprising that the calculated ocular dose for the office worker fell well within 

ICNIRP limits.  It is recognised that these exposure calculations assume no solar 

eye protection, which is likely for an office worker.  The results in chapter 4 describe 

the prevalence of sunglass use in pilots. 
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8. Chapter 8 Windshield and visor ground 
transmittance measurements 

CHAPTER OVERVIEW 

This chapter will describe the results of transmittance measurements taken through 

front and side aircraft windshields in addition to transmittance measurements 

through front visor and side window blinds.  These data are captured whilst the 

aircraft is parked at a stand.  Comparison of the various aircraft assessed 

particularly with regard to the UVA attenuating properties of the front windshields will 

be made.  Limitations of these data will be discussed.  Further data are presented 

regarding the prevalence of windshield failures during flight.  Optical transmittance 

data from manufacturers and the windshield replacement schedule for aircraft will 

also be discussed. 

 

8.1 Introduction 

In flight irradiance data from flights 2 and 3 showed that there was a large difference 

in UVA measured (see section 6.3.1).  Other factors influencing irradiance such as 

aircraft type, time of day, time of year, weather conditions, altitude and route were 

similar for both flights.  The difference in UVA irradiance measured was found to be 

due to differences in the UVA attenuating properties of the two windshields. 

 

As the type of windshield had a marked effect on pilot exposure to UVA, it was 

decided to take a series of transmittance measurements from both side and front 

windshields of a number of aircraft.  This could be most efficiently achieved by 

taking measurements while the aircraft was on the ground.  Taking ground 

measurements would have the additional advantage of ascertaining the 

transmission properties of any visors or blinds fitted in the aircraft. 

 

8.2 Method 

Two airlines (not previously taking part in the study) were approached and, following 

discussions, agreed to allow access to aircraft at the stands at London Heathrow 

(British Airways) and Exeter (FlyBE) airports.  The same optical components as 

used for in flight measurements (Ocean Optics CC-3-UV diffuser, QP600-2-UV/BX 2 

metre optic fibre cable and INLINE-TTL-S optical shutter powered by a YSN-12680 

12V DC battery) were used.  A series of spectral data were collected using the 

SpectraSuite software.  This software was installed on a Toshiba Tecra M10-10I 
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laptop with Windows XP operating platform.  During practice data collection, it was 

found to be faster for the user to adjust integration times and save data using this 

machine compared with the smaller ASUS R2E palmtop.  Time constraints were an 

important consideration as an aircraft cockpit was often only available for a short 

period of time between flights.  Additionally, being able to efficiently collect data from 

aircraft was thought important to encourage airline personnel to cooperate in 

allowing access to further aircraft. 

 

A representative from the airline escorted the researcher to the various aircraft. 

During data collection, they were instructed on how and where to hold the probe 

while the researcher adjusted the integration time to give an optimum signal.  A 

maximum signal of between 14,000 to 15,000 counts was chosen to give a strong 

signal which was not saturated.  Each spectrum was saved as a tab delimited text 

file readable in Microsoft Excel. 

 

Measurements were taken with the probe in the following positions: 

1) Facing forward within 5cm of right windshield 

2) Facing forward within 5cm of left windshield 

3) Outside facing forward at the same fore/aft position with probe held out of 

open side window. 

4) Facing forward within 5cm of a deployed front right visor 

5) Facing forward within 5cm of a deployed front left visor 

6) Facing toward right side window within 5cm of inside surface 

7) Facing toward right side window with side blind deployed and within in 5cm 

of surface 

8) Facing toward left side window within 5cm of inside surface 

9) Facing toward left side window with side blind deployed and within in 5cm of 

surface 

10) Dark measurement 

Data were collected on 6 November 2012 (London Heathrow), 16 April 2013 

(London Heathrow) and 28 August 2013 (Exeter).  On each occasion, weather 

conditions were dry with some scattered cloud cover present.  No illuminance UV 

recorder data were collected.  Following agreement from Brooklands Museum, 
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Weybridge, ground measurements were also captured from the Concorde at the 

museum on 25 June 2013 when weather conditions were dry and sunny. 

Additionally, ground measurements were taken on flights 5 and 6 during turn around 

at Alicante and Rhodes respectively.  Here, data were collected using the ASUS 

R2E palmtop. 

 

All data were analysed using Microsoft Excel 2007.  Transmittance data were 

calculated by subtracting the appropriate dark reading from each spectral 

measurement and using integration time to calculate the counts per second (cps) 

value for each wavelength step from around 200 – 1100nm.  Front and side 

windshield transmittance was then expressed as a percentage value of the 

equivalent wavelength step cps values from the outside (source) measurement. 

 

To calculate the transmission properties of visors and blinds, the cps values were 

calculated and were expressed as a percentage value of the equivalent wavelength 

step from the inside data captured behind the particular window without the visor or 

blind in place. 

 

8.3 Results 

Transmittance data were collected from 15 aircraft of various aircraft types including 

Boeing (B747, B757, B777), Airbus (A320, A321), Embraer (195) and Bombardier 

(Dash8).  Outside measurements were not possible from B747 as there are no 

opening side windows fitted on this aircraft.  The pilots’ emergency exit on this 

aircraft type is a hatch situated in the roof of the cockpit.  Opening side windows 

were also not available on Concorde and Dash8 aircraft.  Here, measurements were 

taken on the ground to the side of the aircraft at the same fore/aft position as the 

windshield. 

 

Full transmittance data were not used for all aircraft tested.  This was due to the 

peak transmittance values found for some measurements.  As the source was the 

outside measurement and was taken at one point during each aircraft data 

collection, it is recognised that this signal may not be stable throughout the 

measurements taken on each aircraft due to partial cloud cover.  Additionally, where 

the signal is weaker due to cloud cover or low UV due to time of year, a lower signal 

to noise ratio is present which leads to increased uncertainty of data. 
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For all windshields, it was possible to ascertain the point at which a UVA signal was 

detectable (Table 8-a and Table 8-b).  Aircraft number 4 was also used for in-flight 

measurements on flight 5 and aircraft number 15 was used for flight 6.  The 

windshields all fell into one of two distinct categories.  Due to the uncertainties 

described above, windshields are described as either good or poor UV attenuators. 

 

 

Table 8-a Summary of aircraft used for ground measurements together with the 
windshield UVA attenuation properties.  Good UVA attenuation is where a signal is 

detectable from around 400nm.  Poor UVA attenuation is where a signal is detectable 
from around 365nm. 

 

 

Table 8-b Summary of additional data captured from aircraft used for in flight 
measurements. Good UVA attenuation is where a signal is detectable from around 
400nm.  Poor UVA attenuation is where a signal is detectable from around 365nm. 

 

A total of 140 spectral measurements were taken including outside (source) 

measurements.  Of these, full spectral data from 64 files were excluded due to peak 

transmittance values.  This is discussed further in section 8.5. 

 

Figure 8-a shows transmittance curves from the left front and side windows from 

aircraft 6, a Boeing 777 together with the transmittance curves of the left front visor 

R front L front R side L side

1 B777-200 2000 48780 31/12/2011 06/11/2012 poor poor poor poor

2 B747-400 1993 89575 31/12/2012 06/11/2012 good good good

3 B777-200 1999 54961 31/12/2011 06/11/2012 poor poor

4 (used on flight 5) A321-200 2004 23440 31/12/2011 01/03/2013 poor poor poor good

5 B777-300 2011 919 31/12/2011 16/04/2013 poor poor good poor

6 B777-200 1998 66296 31/12/2012 16/04/2013 poor poor poor poor

7 B777-200 1997 62462 31/12/2011 16/04/2013 poor poor good good

8 B747-400 1991 90272 31/12/2011 16/04/2013 good good good good

9 B777-200 1998 61318 31/12/2011 16/04/2013 poor poor poor good

10 B747-400 1990 101859 31/12/2011 16/04/2013 good good good good

11 A320-200 2007 10703 31/12/2011 16/04/2013 poor poor good good

12 Concorde 1973 not available 26/06/2013 good good poor

13 Embraer 195 2008 8413 31/12/2012 28/08/2013 poor poor good good

14 Bombardier Dash82005 12195 31/12/2011 28/08/2013 good good good good

15 (used on flight 6) B757-2T7 1987 91829 31/12/2012 21/08/2013 poor poor good good

UV attenuation

Aircraft No. Type Built Airframe hrs as of measured on

Helicopters flown for flight Type Built Airframe hrs as of measured on R front L front

7 AS332L 1984 37312 31/12/2012 09/04/2013 poor

8 AS332L 1982 39293 31/12/2011 09/04/2013 poor poor

9 & 10 S-92A 2011 7 31/12/2011 10/04/2013 good

Aeroplanes flown for flight

1 & 2 A320-200 2001 37526 31/12/2012 16/05/2012 poor

3 A320-200 1994 69461 31/12/2012 26/05/2012 good

4 A330 1999 63,637 21/11/2012 21/11/2012 good
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and side blind.  This is an example of an aircraft with poor UVA attenuating front and 

side windows. 

 

 

Figure 8-a Summary of transmittance measurements from aircraft 6. 

 

Figure 8-b and Figure 8-c show transmittance curves from aircraft with good UVA 

attenuating windshields.  Figure 8-b shows transmittance of left front and side 

windows from aircraft 14, a Dash8, together with the transmittance curves of the left 

front visor.  Figure 8-c shows transmittance of right front and side windows from 

aircraft 10, a B747, together with the transmittance curves of the corresponding 

visor and side blind.  Outside (source) data applied was from outside aircraft 11 

taken approximately 30 minutes after measurement on aircraft 10. 
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Figure 8-b Summary of transmittance measurements from aircraft 14. 

 

Figure 8-c Summary of transmittance measurements from aircraft 10. 
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Figure 8-d and Figure 8-e show the transmission properties of aircraft with poor UVA 

attenuating front windshields but with a good UVA attenuating side window. 

 

Figure 8-d Summary of transmittance measurements from aircraft 4. 

 

Figure 8-e Summary of transmittance measurements from aircraft 11. 
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Figure 8-f shows the transmission properties of an aircraft with poor UVA 

attenuating front windshields and with one good and one poor UVA attenuating side 

window. 

 

 

Figure 8-f Summary of transmittance measurements from aircraft 5 

 

Figure 8-g shows a further example the transmission properties of an aircraft with 

poor UVA attenuating front windshields but with a good UVA attenuating side 

window.  Additionally, transmittance measurements were captured through a Head-

Up Display (HUD) fitted for the captain of the aircraft (left hand seat).  The HUD had 

a dedicated fitted visor which was also measured. 

 

Figure 8-h shows the results of the measurements taken from Concorde.  The nose 

cone was in the raised position as would have been during cruise flight, thus front 

transmittance measurements are a result of attenuation through two separate 

windshields.  

 

0

10

20

30

40

50

60

70

80

90

100

320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

tr
an

sm
it

ta
n

ce
, %

wavelength, nm

Aircraft 5 - B777

R front

R front visor

L front

L front visor

R side 

R side blind

L side

L side blind



216 
 

 

Figure 8-g Summary of transmittance measurements from aircraft 13. HUD = Head Up 
Display. 

 

Figure 8-h Summary of transmittance measurements from aircraft 12. 
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8.4 Discussion 

Aircraft windshields are generally thick and constructed of multi-laminate glass.  A 

heating element layer composed of gold thread is present and the windshield is 

constructed to withstand impact, high cyclical temperature loads and cabin 

pressurisation.  A small percentage of incident light will be reflected at each laminate 

surface.  It will therefore be expected that a higher proportion of incident light will be 

reflected compared to a single layer pane of glass.  Additionally, the cleanliness of 

the windshield will affect the signal received at the spectrometer.  These factors 

together with potential variations in outside signal and direction of the diffuser 

(discussed in section 8.5) are likely to affect the peak transmittance curves 

measured. 

 

8.4.1 Front windshield transmittance 

Of the aeroplanes measured currently registered (n=17 including those where 

measurements were taken in flight), 5 (29%) would be considered to have good 

UVA attenuating front windshields.  The aircraft show a wide range of age from a 

Boeing 777-300 registered in 2011 to a Boeing 757 registered in 1987.  It is 

interesting to note that the oldest registered aircraft measured were the three Boeing 

747s (registered 1990, 1991 and 1993) the Airbus A320 (1994) and the Boeing 757 

(1987).  Of these five aircraft, all have good UVA attenuating front windows with the 

exception of the Boeing 757.  Additionally, the decommissioned Concorde built in 

1972 showed better UVA attenuating properties than many of the newer aircraft.  

British Airways (who operate the three Boeing 747s measured) plan to replace the 

B747 fleet with new B787 Dreamliner aircraft.   

 

Information gained from pilots and airline engineering departments revealed that 

there is no scheduled replacement of windshields.  Although the fixings to secure 

the windshield in place are replaced, the windshield itself is inspected and replaced 

when damage such as cracks or de-lamination occurs.  Information was requested 

from the airlines of the windshield replacement history, if any, on various aircraft.  

Although this information would be retained, it was not possible to access this for the 

purposes of this study.  However, it seems probable based on the data, that newer 

aircraft have poorer UVA attenuating windshields fitted.  It is suspected that the 

aircraft 15 (Boeing 757) has, at some point, had replacement front windshields fitted. 
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Based on the data, it would seem likely that the proportion of current registered 

aircraft with good UVA attenuating properties will decrease over time as older 

aircraft are taken out of service or have replacement windshields fitted. 

All aircraft measured showed similar UVA attenuating properties for left and right 

windshields.  It could be argued that if windshields were replaced routinely, there 

could be a higher probability that the left and right front windshields would show 

different transmission properties. 

 

No additional ground measurements were taken from helicopters other than those 

that flew with the spectrometer.  There is therefore limited data available, however a 

recently manufactured (2011) Sikorsky helicopter showed good UVA attenuating 

windshields due to the acrylic glass laminate windshield fitted (see section 6.3.1) 

while the older Aerospatiale aircraft had poor UVA attenuating windshields.  It is not 

known the properties of new Aerospatiale aircraft windshields. 

 

8.4.2 Side window transmittance 

A higher proportion of side windows measured demonstrated good UVA attenuating 

properties.  All aircraft with good UVA attenuating front windshields had side 

windows with similar properties.  An additional four aircraft had both side windows 

with good UVA attenuating properties but with front windshields with poor UVA 

attenuating properties.  Further, three aircraft demonstrated one poor and one good 

UVA attenuating side window together with poor UVA attenuating front windshields.  

This was the case on a relatively new aircraft built in 2011 (aircraft no 5).  It is not 

known what, if any, replacement schedules are in place for side windshields. 

 

8.4.3 Front visor transmittance 

Boeing front visors showed low transmittance (3-4%) of wavelengths below 

700nm.  Aircraft 5 and 6 (both B777) show a slight increase in transmittance beyond 

700nm to around 10% while aircraft 10 (B747) and 15 (B757) remain at around 3% 

beyond 700nm.  This may be due to a different material or tint used for these visors.  

Aircraft 10 (1991) and 15 (1987) were older than aircraft 5 (2011) and 6 (1998) and 

this difference may represent a modification to Boeing visor manufacture between 

1991 and 1998 or may be due to changes to the transmission properties of visors 

with age. 
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The front visors on aircraft 4 (Airbus A321) show minimal transmittance from 400nm 

and increase in transmittance around 680nm to between 9% (right visor) to 15% (left 

visor).  Following ground measurements of aircraft 4, it was discovered that front 

visors from Airbus A320/A321 had a slight graduation of visor tint.  It is therefore 

feasible that the two front visor measurements were taken from different relative 

points on the visor.  Transmittance data from aircraft 11 (Airbus A320) also show 

minimal transmittance up to around 680nm however increased only to 2-3% 

transmittance at the top of the visor and around 11% at the bottom of the visor. 

Aircraft 13 (Embraer 195) showed a low transmittance (around 5%) throughout the 

visible spectrum from both visors.  Aircraft 14 (Dash8) shows a consistent 

transmittance of around 5% for the front visor throughout the visible spectra.   

Aircraft 4, 5, 6 and 13 all have poor UVA attenuating front windshields.  The front 

visors all show a signal detected below 400nm.  Therefore the front visors fitted in 

these aircraft do not provide complete UV attenuation. 

 

Additionally, aircraft 13 had a HUD which selectively blocks wavelengths around 

500nm.  The placement of the dedicated HUD visor provides similar blocking 

properties to the front visors and also does not appear to provide total UV 

attenuation. 

 

8.4.4 Side blind transmittance 

The transmittance of the side blinds show aircraft 4 (Airbus A321), 5 and 6 (Boeing 

B777s), 10 (Boeing B747) and 11 (Airbus A320) have similar transmission blocking 

properties, transmitting around 2% of wavelengths below around 500nm increasing 

to around 10% transmittance at 560nm and remaining between 5-10% transmittance 

for the rest of the visible spectrum.  No detectable signal was seen below 400nm.  

This was the case in side blinds measured in front of both good and poor UVA 

attenuating side windows.  Aircraft 5 was found to have a good UVA attenuating left 

side window and a poor UVA attenuating right side window, yet minimal 

transmittance of wavelengths below 500nm was found with both side blinds. 

 

Aircraft 13 showed a low transmittance (around 5%) throughout the visible spectrum 

through the side blinds.  It cannot be ascertained whether the side blinds transmit 

below 400nm as this was effectively blocked by the side windshields in front of 

which they were measured.   
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8.5 Limitations of data 

Due to the potential variation of a solar reference source under which 

measurements took place, care must be given to detailed interpretation of the 

degree of absorption particularly of fitted visors and blinds in the aircraft.  

Additionally, it is recognised that measurements through side windows and blinds 

were taken with the diffuser head at a different angle to the outside reference 

measurement.  This may have also affected the accuracy of peak transmittance 

values.  Transmittance measurements of visors and blinds are affected by the 

transmission properties of the windshield behind.  It is likely that due to the 

multilayer nature of the windshields, at least 20% of incident light would be lost due 

to reflection. 

 

Consideration was given to adjusting all windshield transmittance data to a common 

peak transmittance.  By carrying this out, more of the data could be assessed.  

However due to the assumptions required, the accuracy of the degree of 

transmittance of the blinds and visors could be challenged.  For this reason, data 

that were considered unfeasible were not used.  This occurred for example, where 

windshields were calculated to have transmittance over 100%.  This was most likely 

due to changing ambient light levels being higher at the time of windshield 

measurement compared to when the outside measurement was captured or, as 

described above, where the diffuser head was pointing in a different direction to the 

reference measurement. 

 

8.6 Windshield information 

8.6.1 Data from manufacturers (aircraft and windshield) 

Numerous contacts were made with aircraft manufacturers (Airbus and Boeing) and 

identified windshield manufacturers.  Information was requested for any technical 

information of the optical transmission properties of windshields made or installed. 

Despite attempts, no information has been provided.  It is suspected that this may 

be considered proprietary information and viewed by the companies as their own 

property and not appropriate for public release. 
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8.6.2 Mandatory Occurrence Reporting Scheme data 

The CAA manages the Mandatory Occurrence Reporting Scheme (MORS) which 

applies to any aircraft operated under a UK Air Operators Certificate and any 

turbine-powered aircraft with a Certificate of Airworthiness issued by the CAA.  

A reportable occurrence in relation to an aircraft means any incident which 

endangers or which, if not corrected, would endanger an aircraft, its occupants or 

any other person. 

 

Voluntary reports related to any aircraft are encouraged and treated in the same 

way as a mandatory report.  The reporting requirement also applies to any United 

Kingdom ground facilities or services provided for such operations.  Incidents of 

windshield damage or failure in flight should be reported under MORS.  Therefore a 

database search was requested of the number of windshield incidents reported 

between 1 January 2010 to 31 December 2013 on passenger turbo-prop and jet 

aircraft.  Incidents involving business jet aircraft were excluded. 

 

A total of 75 incidents were reported which mainly involved damage to the outer 

windshield layer.  Incidents normally involved damage to one windshield and 

involved front or side windows.  Airline statistics data, held by the CAA (CAA, 2014) 

revealed a total of 977 UK registered commercial passenger aircraft being operated 

in November 2013.  Assuming all incidents are reported, this represents a risk of a 

particular aircraft having a windshield failure during flight at 1.9% risk per annum or 

1 windshield failure per aircraft every 52 years.  The total number of flying hours 

flown during the whole of 2013 was 7.9 million hours which gives an incident rate of 

1 every 420,500 hours. 

 

It is not clear whether all of these incidents would trigger a replacement windshield 

to be fitted or whether repair could be carried out to minor damage.  Additionally 

these data do not include cases of windshield replacement triggered through 

inspection at routine maintenance checks. 

 

Examination of the 75 cases reported revealed that the aircraft used for flight 1 and 

2 suffered a crack to the outer pane of the right hand windshield on 13 February 

2010 (before data collection was undertaken).  Spectrometer data collection was 

conducted behind the left windshield for both flights.  Additionally, aircraft 2 used for 

ground measurements reported a “shattered nr3 window behind First Officer” during 
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flight on 31 January 2011.  This also occurred before data collection; however it is 

thought that the window involved was the furthest (aft) side window from the pilot 

and not the fore side window used for transmittance measurement.  

 

8.7 Summary 

The results of this chapter show that most of the oldest aircraft assessed had good 

UVA attenuating windshields whilst all of the most recently registered aircraft had 

poor UVA attenuating windshields.  There was no correlation observed between the 

aircraft manufacturer or aircraft type and the UVA windshield attenuation properties.  

Indeed, aircraft measured of the same type showed different windshield attenuation 

properties.  Whilst no data was available from manufacturers, the evidence would 

indicate that a windshield failure during flight is a rare occurrence and that 

windshields are replaced at maintenance assessments only when there is evidence 

of damage to the windshield or to the windshield fixings. 

 

The results show that all side window blinds offer good UVA blocking properties 

however a number of front visors demonstrated higher transmittance of UVA.  All 

visors and blinds showed effective attenuation of visible light. 

 

Limitations of the data include the potential for inconsistency of output of the solar 

source and a low UV signal due to cloud cover.  Some data were discarded due to 

this.  Additionally, transmittance measurements of visors and side blinds are 

restricted by the filtering of the windshield however comparison is offered in chapter 

9 using a similar front visor measured in more controlled conditions.   
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9. Chapter 9 Sunglass Transmittance Measurements 
(Phase 3) 

CHAPTER OVERVIEW 

This chapter describes the results of used and new sunglass filter transmittance 

measurements and forms phase 3 of the research previously described in chapter 3.  

Particular attention is paid to the sunglass filtering properties within the UVA range 

and at the peak of the blue light hazard.  Data limitations and exclusion criteria for 

used sunglasses are discussed.  Comparison between right and left filters, new and 

used filters and clean and marked filters is made.  Additionally, an assessment of 

compliance to ISO with regard to solar UVA transmittance is undertaken on a small 

selection of sunglasses. 

 

9.1 Introduction 

As with irradiance measurements, the assessment of sunglass transmittance 

requires specific equipment for accurate measurement.  Spectrometers are 

commonly used for material transmittance measurements (ISO 12311, 2013).  The 

same considerations regarding accuracy and reliability of the spectrometer and 

associated optics apply as for irradiance measurements. 

 

The primary objective of phase 3 was to assess the lens transmittance properties of 

typical sunglasses used by pilots.  As recognised in sections 1.10 and 2.4, a degree 

of peripheral radiation beyond the edge of the sunglass frame may be present and 

could contribute to the overall ocular irradiance.  Measurement of transmittance 

through the sunglass filter does not account for this factor.  If this aspect were to be 

addressed, it would be most effectively simulated in laboratory conditions rather 

than field measurements.  A series of sunglasses could be fitted to a manikin head 

with a cosine corrected head placed in the eye position.  A light source could be 

adjusted to various incident angles to the manikin eye and spectral measurements 

taken with and without sunglasses fitted.  However, the fitting of sunglasses to a 

manikin head does not take into account the anatomical variation in the pilot 

population and may not provide results that could be transferable to sunglass fitting 

guidelines.  It was decided that, due to this and to the additional amount of data that 

would be generated, that measurements of peripheral radiation would not be 

included in this research. 
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The Ocean Optics spectrometer used is a single beam instrument therefore, 

separate measurements are required with and without the sample in place.  A 

double beam instrument would allow simultaneous readings to be taken and would 

be considered more accurate (ISO 12311, 2013), however would not have offered 

the portability of a single beam instrument.  In order to take measurements, a known 

light source with a stable output over time should be used.  Ideally, this lamp should 

contain an optical shutter so that measurements of background noise can be taken.  

Radiation from the lamp should be collimated and the distance between lamp and 

spectrometer collimating lenses kept to a minimum to prevent significant loss of 

signal.  Collimating lenses must be accurately aligned and steps taken during 

measurement to ensure that the beam is not displaced across the measurement 

zone. 

 

The aim was to measure a small selection of sunglasses typically used by pilots.  

The typical sunglass types are known through the results of the questionnaire.  It 

was considered that used pilot sunglasses should primarily be measured as this 

would produce data of the attenuation properties of sunglasses (including old or 

damaged lenses) used in flight.  However, it was also recognised that these used 

sunglasses may represent different properties from their new equivalents.  Whilst 

acknowledging that there is a large choice for the consumer in sunglass models, it 

was aimed to gain measurements from 15 used and 10 new appropriately selected 

sunglasses of the types typically used by pilots. 

 

9.2 Description of equipment 

The HR4000 Spectrometer (described in chapter 5) was used for this phase of the 

project.  The optics used differed from previous data collection phases.  An Ocean 

Optics DT-MINI-2-GS with combined deuterium and tungsten halogen light sources 

and a constant relative spectral power distribution throughout the UVA and visible 

range was used.  The unit had a shutter switch allowing dark measurements to be 

taken without turning the lamp off.  The lamp was connected to a metal sleeved 

QP600-2-UV/BX 2 metre optic fibre cable which was in turn connected to an Ocean 

Optics 74-UV collimating lens.  These lenses are adjustable and are set at the time 

of manufacture to provide collimated light from a 600µm optic fibre.  The lenses 

have a screw thread which enables them to be secured to an Ocean Optics 

Adjustable Collimating Lens Holder.  This holder (Figure 9-a) allows a pair of 

collimating lenses to be installed at a chosen equal height directly in line with each 
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other.  The distance between the collimating lenses can be adjusted by Allen key at 

the base and moving each vertical post along its sliding base. 

 

 

Figure 9-a Ocean Optics adjustable optical bench showing four matched height 
options for securing collimating lenses.  Foam blocks were available to assist stable 

sunglass placement. 

 

A series of foam blocks were available to position the sunglass lens as shown in 

Figure 9-a.  A large piece of fabric blackout material was also available.  The second 

Ocean Optics 74-UV collimating lens was connected to another QP600-2-UV/BX 2 

metre optic fibre cable which was connected to the HR4000 unit.  As the light source 

unit had an inbuilt shutter, the Ocean Optics INLINE-TTL-S optical shutter was not 

required. 

 

The HR4000 unit was connected to the Toshiba Tecra M10-10I laptop used for 

ground transmittance measurements in chapter 8.  SpectraSuite software was used 

for data collection. 
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9.3 Method 

9.3.1 Pilot sunglasses 

An airline with a large base at London Gatwick was contacted.  A request was 

submitted to visit the crew rooms in order to collect transmittance data from used 

pilot sunglasses.  This was agreed by the airline and the researcher together with 

two colleagues from PHE collected data on 8 July 2013. 

 

Crew rooms are used by the flight crew mainly before but also after flight.  The flight 

crew are normally present for around 30 minutes before departing for the aircraft in 

order to conduct pre-flight planning.  The proposal was that the pilot would, if willing 

to participate, loan their sunglasses for measurement while conducting their pre-

flight planning.  The researchers then would take measurements from the 

sunglasses and return them to the pilot.  The airline informed the staff of the visit 

prior to the date and information sheets (appendix P) were placed around the crew 

room on the date of data collection in order to promote participation. 

 

A representative from a manufacturer of pilot sunglasses (Bigatmo) was additionally 

a professional pilot for the airline approached for sunglass measurements and 

contacted the researcher prior to the date of data collection.  Following discussion, it 

was agreed that he would also attend during data collection with new samples of 

Bigatmo sunglasses for measurement. 

 

Details were taken of each pair of sunglasses including make and model (usually 

available on the inside surface of one of the spectacle frame sides), details of 

whether the lenses were known to be photochromic, prescription, polarised or 

graduated tints and predominant tint colour based on visual inspection.  These 

details were stored in a separate Microsoft Excel spreadsheet. 

 

The light beam emitted from both collimating lenses was visually assessed for even 

intensity and uniformity against a piece of white paper.  Reference spectra from the 

source together with dark measurements were taken at the start and end of the data 

collection session.  To ensure that the data would not be affected by the surrounding 

ambient light, blackout material was sourced.  However, when assessed on the day 

of data collection, it was found that the use of this material enclosing the area of the 

optical bench made no difference to the spectra (Figure 9-b).  The data were 
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therefore considered to be unaffected by the ambient light (the equipment was 

situated inside and with no natural daylight).  The spikes seen represent hydrogen 

emission lines present from the deuterium component of the light source.  Although 

this deuterium component allows a strong and consistent output throughout the UVB 

and UVA range, emission spikes within the visible spectrum are unfiltered (personal 

communication, Ocean Optics 23/06/14) and therefore contribute to the overall 

output which also includes the tungsten halogen component. 

 

The lens holder was adjusted to ensure a minimum distance between collimating 

lenses yet to allow the sunglass filter to be safely positioned without damage.  It was 

found that for speed of measurement, one researcher could hold the sunglasses in 

position and verbally confirm position to another researcher who took the 

measurement.  

 

 

Figure 9-b Signal detected from Deuterium Tungsten Halogen light source with or 
without black out material over optical bench.  

 

For each measurement, the researcher adjusted the integration time to give an 

optimum signal.  A maximum signal of between 14,000 to 15,000 counts was 

chosen to give a strong signal which was not saturated (maximum count of HR4000 

was 16,383).  Each spectrum was saved as a tab delimited text file readable in 

Microsoft Excel. 
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The sunglasses were assessed for lens degradation (such as scratches) and 

cleanliness and this was recorded with the sunglass details.  They were then placed 

at the estimated optical centre at a normal plane to the collimating lenses with the 

frame in a horizontal position. Measurements were taken from each lens of each 

pair of sunglasses.  Where the sunglasses lenses were seen to be dirty, a second 

set of measurements were taken after cleaning the lenses with a lens cloth.  It was 

not known whether the HR4000 would be sensitive to polarised light.  Therefore, 

sunglass lenses known to be polarised were additionally measured with the 

sunglasses rotated so that the right and left lenses were as close to a vertical plane 

as practical. 

 

Graduated tinted lenses were measured at three points on each lens.  These were 

at the top for the maximum tint, at the bottom of the lens for the minimum tint and at 

the estimated optical centre.  Photochromic lenses were measured in the reacted 

state in which they presented.  The outside weather conditions were sunny and it is 

possible that some lenses were partially reacted when measured.  A UV penlight 

became available during data collection and attempts were made to measure some 

lenses in a level of activation.  The penlight was also used to determine whether a 

particular pair of sunglasses had photochromic properties. 

 

Each pair of sunglasses had transmittance measurements taken from right and left 

lenses.  A dark measurement was taken after completion of transmittance readings 

of each pair of sunglasses.  Data collection from each pair of sunglasses typically 

took between one to four minutes.  Stability of the output of the light source was 

assessed by capturing a spectrum at the start and end of data collection.  This is 

shown in Figure 9-c for the new sunglass data collection session and shows a 

consistent output. 

 

Data were analysed in Microsoft Excel 2007.  Transmittance data were calculated 

by subtracting the dark reading from each spectral measurement and using 

integration time to calculate the counts per second (cps) value for each wavelength 

step from around 200 – 1100nm.  These cps values were expressed as a 

percentage value of the equivalent wavelength step cps values of the source.  
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Figure 9-c Stability of Deuterium Tungsten Halogen light source.  Output measured at 
start and end of data collection session. 

 

9.3.2 New sunglasses 

A local community based optometry practice was approached and agreed to allow 

the researcher to attend to capture transmittance data from a series of new 

sunglasses.  This was carried out on 11 July 2013 and after the crew room data 

collection when equivalent models of the most prevalent sunglass types (mainly 

RayBan and Oakley) measured in the crew room could be assessed.  Where 

possible, the same sunglass model was used.  The equipment and protocol for 

measurement were the same as for the used sunglass measurements.  No 

difference was found in the spectrum with and without the blackout material in place.  

Measurements were taken with the assistance of a member of staff at the practice 

holding the sunglasses in place using the same protocol as for the used sunglass 

measurements with the exception that measurements were generally collected from 

one lens.  A dark measurement was taken after completing measurements from 

each pair of sunglasses. 
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9.4 Results 

9.4.1 Comparison of right and left lenses 

There was insufficient time available to assess the uniformity of filter luminous 

transmittance, however all used sunglasses had transmittance measurements taken 

from both lenses.  For analysis purposes, the mean transmittance was used and 

differences in inter lens transmittance measured were minimal.  Figure 9-d shows 

examples of used sunglass transmittance curves through right and left lenses. 

 

 

Figure 9-d Comparison of left and right lenses from a selection of used sunglasses. 

 

Transmittance measurements were captured from one lens for most of the new 

sunglasses measured.  Figure 9-e shows examples of new sunglass transmittance 

curves where both lenses were measured. 
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Figure 9-e Comparison of left and right lenses from a selection of new sunglasses. 

 

9.4.2 Effect of polarised lenses 

It was not known if the fibre optic cable or spectrometer would be sensitive to 

polarised lenses.  One pair of new sunglasses measured (RayBan RB3025P) was 

known to have polarised lenses.  Therefore, further measurements were taken with 

the sunglasses rotated as described in section 9.3.1.  The transmittance curves 

were unaffected by the orientation of measurement (Figure 9-f).  Results showed 

that the data was not affected by the presence of polarised radiation. 
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Figure 9-f Effect of rotation of polarised filters on spectral transmittance 
measurements.  

 

9.4.3 Pilot sunglasses 

A total of 34 pairs of pilot sunglasses were measured.  Additionally measured were 

four pairs of new Bigatmo sunglasses (included in the new sunglass results in 

section 9.4.4) and a front visor from an Airbus A320 (compared to visor measured 

during ground transmittance measurements in section 8.3 and discussed in section 

10.4).  The visor tint was noted to be graduated and the sample presented had 

heavy fingerprint mark contamination.  For measurement purposes, one half of the 

visor was thoroughly cleaned with the ‘selvyt’ cloth (a commonplace cloth designed 

to clean spectacle lenses; www.selvyt.com) and transmittance measurements were 

taken through top, middle and bottom sections of the visor from both clean and 

contaminated sides. 

 

A summary of the pilot sunglasses measured is shown in Table 9-a.  It can be seen 

that five pairs of sunglasses had no identifiable model number. 
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Table 9-a Details of used pilot sunglasses presented for measurement. 

 

The first two pairs of sunglasses measured had very low transmittance values 

(<0.2%) across the spectra which would be too low for a sunglass lens.  It is not 

known the cause of this experimental error however it could have been due to a 

temporary fault within the lamp’s optical shutter which caused it to not fully open 

during measurement.  The data from these two sunglasses were excluded.  Data 

from the six prescription pairs of sunglasses were excluded from analysis as the 

degree of beam divergence and dispersion through a prescription lens was not 

known; this factor would likely cause false low transmittance values.   

 

Five of the Serengeti sunglasses were known to be photochromic and data from 

these has been analysed separately and are presented in section 9.4.6.  

Additionally, the Oakley Crosshair sunglasses measured had a graduated tint and a 

transmittance curve similar to a photochromic lens.  Oakley product information 

Make Model Number

RB3404 3N

RB3026 2N

RB3293 3N

RB4057 3N

RB8305 3N

RB4075 3N

RB3990 3N

RB3467 3P

Wayfarer 3N

No model no. (3N)

Whisker (2)

Crosshair

Tightrope

Minute

Squarewire

Pisa

Velocity 6692 (4)

Brando prq

S8527N OK05

No model no.

Ted Baker Porter cat 3 1

Prada No model no. 1

M&S No model no. 1

unknown No model no. 1

prescription 6

RayBan 10

Oakley

Serengeti

Police

6

6

2
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revealed that this pair of sunglasses was not manufactured with a graduated tint.  It 

was suspected that different lenses, probably photochromic, have been glazed into 

this particular frame at some point.  It was decided to include this pair of sunglasses 

within the photochromic data. 

 

The remaining sunglasses consisted of 15 pairs with uniform tints and 5 pairs with a 

graduated tint.  Data presented are the result of the mean value from right and left 

lenses.  Figure 9-g shows the transmittance of uniform tints at 315, 350, 365, 380, 

400 and 440nm points (within UVA range and at the peak of the blue light hazard 

function).  Examples of full spectra transmittance curves are shown in section 9.4.1. 

 

 

Figure 9-g Transmittance of uniform tints at 315, 350, 365, 380, 400 and 440nm points. 

 

Figure 9-h, Figure 9-i and Figure 9-j show transmittance data from top, middle and 

bottom parts of graduated tinted lenses respectively. 

0

5

10

15

20

25

30

35

40

45

50

310 320 330 340 350 360 370 380 390 400 410 420 430 440

Tr
an

sm
it

ta
n

ce
, 

%

Wavelength, nm

Uniform tints315nm 350nm 365nm

380nm 400nm 440nm



235 
 

 

Figure 9-h Transmittance of the top section of graduated tints at 315, 350, 365, 380, 
400 and 440nm points. 

 

 

Figure 9-i Transmittance of the middle section of graduated tints at 315, 350, 365, 380, 
400 and 440nm points. 
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Figure 9-j Transmittance of the bottom section of graduated tints at 315, 350, 365, 380, 
400 and 440nm points. 

 

Figure 9-k to Figure 9-p show more detailed comparison of transmittance values of 

uniform tints and top and middle sections of graduated tints at 315, 350, 365, 380, 

400 and 440nm.  All sunglasses in this group were found to have transmittance 

values lower than 0.6% at all wavelength points up to 380nm.  At 400nm, the 

highest transmittance for uniform tinted sunglasses was 7.0% (Ted Baker) followed 

by 5.3% (RayBan).  All other uniform tinted pilot sunglasses measured had a 

transmittance below 1.2% at 400nm.  At 400nm, all graduated tints (n=5) showed a 

transmittance values of less than 1.6% at the top of the lens.  The highest 

transmittance measured at the centre of a graduated tint was 2.7%.   The highest 

transmittance measured at the bottom of a graduated tinted lens was 3.3%.  Note 

that Figure 9-o and Figure 9-p have a different y axis scale. 
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Figure 9-k Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 315nm.  

 

  

Figure 9-l Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 350nm. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
an

sm
it

ta
n

ce
, 

%

Uniform                                 Middle                               Top

Transmission at 315nmUniform

Middle

Top

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
an

sm
it

ta
n

ce
, 

%

Uniform                               Middle                                Top

Transmission at 350nm Uniform

Middle

Top



238 
 

  

Figure 9-m Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 365nm. 

 

  

Figure 9-n Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 380nm. 
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Figure 9-o Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 400nm. 

 

  

Figure 9-p Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 440nm. 

 

A wider variation was seen in transmittance at 440nm with the highest of 16.1% 

(Police) and lowest of 0.6% (RayBan) for uniform tinted pilot sunglasses.  For 

graduated tinted pilot sunglasses (n=5, all RayBan), transmittance varied between 

6.0% to 27.3% at the top of the lens and increased to between 32.3% to 46.7% at 

the bottom of the lens. 
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The lenses on one pair of Oakley Whisker sunglasses were found to be particularly 

contaminated with smear and fingerprint marks.  Transmittance measurements were 

taken before and after cleaning of the lens.  The transmittance results are shown in 

Figure 9-q and showed no measurable difference in the UVA range. 

 

 

Figure 9-q Transmittance of a lens before and after cleaning. 

 

All uniform and graduated sunglasses measured had an average UVA transmittance 

less than 1% for the wavelength range 315-400nm.  Analysis of the maximum UVA 

transmittance (at 400nm) for uniform and graduated sunglasses is shown in Figure 

9-r. 
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Figure 9-r Maximum UVA transmittance at 400nm. 

 

The wavelength at which the threshold for transmittance of 1% and 2 % for uniform 

and graduated sunglasses was also assessed.  The results are shown in Figure 9-s 

and Figure 9-t respectively.  The wavelengths at which the two pairs of uniform 

sunglasses whose 1% transmittance occurred within the range of 370-390nm was 

387 and 390nm. 

 

 

Figure 9-s Threshold at which 1% UVA is transmitted. 
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Figure 9-t Threshold at which 2% UVA is transmitted. 

 

The transmittance curves of uniform tinted RayBan sunglasses measured compared 

to the top, middle and bottom of RayBan graduated sunglasses are shown in Figure 

9-u to Figure 9-w respectively. 

 

 

Figure 9-u Spectral transmittance curves for a series of uniform and top section of 
graduated tinted RayBan sunglasses. 
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Figure 9-v Spectral transmittance curves for a series of uniform and middle section of 
graduated tinted RayBan sunglasses. 

 

 

Figure 9-w Spectral transmittance curves for a series of uniform and bottom section 
of graduated tinted RayBan sunglasses. 

 

0

10

20

30

40

50

60

70

80

90

100

250 300 350 400 450 500 550 600 650 700 750 800 850 900

Tr
an

sm
it

ta
n

ce
, 

%

Wavelength, nm

Uniform & Middle Graduated 
RayBan Transmittance

6 (graduated)

7 (graduated)

8 (uniform)

11 (uniform)

24 (uniform)

25 (uniform)

29 (graduated)

31 (graduated)

32 (uniform)

34 (uniform)

0

10

20

30

40

50

60

70

80

90

100

250 300 350 400 450 500 550 600 650 700 750 800 850 900

Tr
an

sm
it

ta
n

ce
, 

%

Wavelength, nm

Uniform & Bottom Graduated
RayBan Transmittance

6 (graduated)

7 (graduated)

8 (uniform)

11 (uniform)

24 (uniform)

25 (uniform)

29 (graduated)

31 (graduated)

32 (uniform)

34 (uniform)



244 
 

9.4.4 New sunglasses 

Sixteen pairs of sunglasses were assessed which, including the four pairs of 

Bigatmo sunglasses previously measured gives a total of 20 new sunglasses.  A 

summary of the types measured are shown in Table 9-b. 

 

 

Table 9-b Details of new sunglasses used for measurement. 

 

The sunglasses consisted of 14 pairs with uniform tints, five pairs with a graduated 

tint and one photochromic.  Where both lenses were assessed, data presented are 

the result of the mean value from right and left lenses.  Photochromic lens data is 

presented separately.  Figure 9-x shows the transmittance of uniform tints at 315, 

350, 365, 380, 400 and 440nm points. 

 

Make Model Number

RB3016

RB 3025 graduated

RB4180

Whisker

Jupiter

Pitbull

Fuel Cell

neutral density

S8743

S8748

S8750

Lacoste 1345 1

54is

51os

57ls

Caruso & Freeland Cr188 1

HCNB S14

HCNB polarised

Grey mirror

Copper P20 photochromic

RayBan 3

Bigatmo 4

Oakley

Police

Prada

5

3

3



245 
 

 

Figure 9-x Transmittance of uniform tints at 315, 350, 365, 380, 400 and 440nm points. 

 

Figure 9-y, Figure 9-z and Figure 9-aa show transmittance data from top, middle 

and bottom parts of graduated tinted lenses respectively. 

 

 

Figure 9-y Transmittance of the top section of graduated tints at 315, 350, 365, 380, 
400 and 440nm points. 
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Figure 9-z Transmittance of the middle section of graduated tints at 315, 350, 365, 380, 
400 and 440nm points. 

 

 

Figure 9-aa Transmittance of the bottom section of graduated tints at 315, 350, 365, 
380, 400 and 440nm points. 

 

Figure 9-bb to Figure 9-gg show more detailed comparison of transmittance values 
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above 0.6% up to and including 380nm.  At 400nm, the highest transmittance for 

uniform tinted sunglasses was 4.4% (RayBan).  All other new uniform tinted 

sunglasses measured were within 1.1%.  All graduated tints (n=5) showed 

transmittance values within 1% at 400nm at the top of the lens.  The highest 

transmittance measured at the centre of a graduated tint was 3.1%.  The highest 

transmittance measured at the bottom of a graduated tinted lens was 6.1%.  Note 

that figures Figure 9-ff and Figure 9-gg have a different y axis scale. 

 

 

Figure 9-bb Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 315nm. 
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Figure 9-cc Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 350nm. 

 

Figure 9-dd Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 365nm. 
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Figure 9-ee Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 380nm. 

 

Figure 9-ff Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 400nm. 
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Figure 9-gg Comparison of Transmittance of uniform and top and middle sections of 
graduated tints at 440nm. 

 

A wider variation was seen in transmittance at 440nm with the highest transmittance 

of 21.1% (LaCoste) and lowest of 0.2% (Caruso & Freeland) for uniform tinted 

sunglasses.  For graduated tinted sunglasses, transmittance varied between 1.6% 

(Prada) to 17.1% (RayBan) at the top of the lens increasing to between 23.7% 

(Police) to 40.0% (RayBan) at the bottom of the lens. 

 

All sunglasses measured had an average UVA transmittance less than 1% for the 

wavelength range 315-400nm.  The maximum UVA transmittance (at 400nm) for 

uniform and graduated sunglasses is shown in Figure 9-hh. 
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Figure 9-hh Maximum UVA transmittance at 400nm. 

 

The wavelength at which the threshold for transmittance of 1% and 2 % for uniform 

and graduated sunglasses was assessed.  The results are shown in Figure 9-ii and 

Figure 9-jj respectively.  The wavelength at which the one pair of uniform 

sunglasses whose 1% transmittance occurred within the range of 370-390nm was 

389.8nm. 

 

 

Figure 9-ii Threshold at which 1% UVA is transmitted. 
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Figure 9-jj Threshold at which 2% UVA is transmitted. 

 

9.4.5 Comparison of old and new sunglasses 

One pair of new Oakley Whisker sunglasses was measured.  Transmittance data 

were compared with the two used Oakley Whisker sunglasses.  A summary of the 
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Figure 9-kk Comparison of transmittance points of used grey and brown tinted Oakley 
Whisker sunglasses with a new (grey) equivalent model. 

 

There was insufficient data to statistically determine whether a difference in 

transmittance was present between new and used sunglasses however the data do 

not suggest that used sunglasses have noticeably higher transmittance than new 

sunglasses.  No data was collected from pilots during this phase of data collection 

regarding the age of their sunglasses. 

 

Two pairs of pilot sunglasses were noted to have scratched lenses.  These were 

both RayBan sunglasses with graduated tints and they also were found to have the 

highest transmittance at 440nm.  

 

9.4.6 Photochromic sunglasses 

Data from the photochromic sunglasses were analysed separately and presented 

below.  These included five pairs of used Serengeti sunglasses, sunglass 19 with 

suspected photochromic lenses in an Oakley frame and a new pair of Bigatmo 

Copper P20 photochromic sunglasses.  All lenses were measured as presented and 

the state of the photochromic lens activation was not known.  Serengeti lenses also 

had a graduated tint and the transmittance curves for upper and lower parts of the 

lenses are shown in Figure 9-ll and Figure 9-mm respectively. 
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Figure 9-ll Spectral transmittance curves through the top part of photochromic lenses 
measured. 

 

One pair of sunglasses (no. 27) was measured immediately following exposure to a 

UV pen light (type and power output unknown) for approximately 1 minute to the 

centre of the lens.  This is shown in Figure 9-ll. 
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Figure 9-mm Spectral transmittance curves through the bottom part of photochromic 
lenses measured. 

 

9.4.7 Solar UVA/luminous transmittance 

Further analysis was conducted on three pairs of uniform tinted sunglasses (two 
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transmittance at 400nm of all new uniform tinted sunglasses measured. 
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(2013).  The luminous transmittance of all three sunglasses fell within the 8-18% 

category 3 filters under ISO 12312 classified as general purpose sunglasses.  The 

solar UVA transmittance / luminous transmittance were 0.01 and 0.06 for the two 

new sunglasses and 0.02 for the used sunglasses. 

 

9.5 Discussion 

Of the used pilot sunglasses presented for measurement, the most prevalent was 
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where, of the sunglass users, RayBan were worn by 32.1% of respondents, Oakley 

were worn by 19.1% and Serengeti sunglasses were worn by 8.6% of respondents.  

Prescription sunglasses were used by 16.8% of sunglass users in the questionnaire 

and found in 18% of the used sunglass sample presented.  It would be reasonable 

to conclude that the sample of used sunglasses presented offered a good 

representation of the general population of sunglass wearing pilots. 

 

All sunglasses presented were measured, however as discussed in section 9.4.3, all 

prescription sunglasses were excluded from analysis.  Additionally, a number of 

photochromic lenses were presented.  The activation state of these lenses was 

unknown and it was not possible to measure in their fully activated state.  Figure 9-ll 

shows the general effect of a degree of activation however full analysis of their 

effectiveness in the cockpit environment cannot be certain.  A degree of activation 

should take place in the cockpit, particularly behind a poor UVA attenuating 

windshield.  Based on this, there is no reason to believe that photochromic lenses 

would not meet the suggested minimum criteria for aviation use as discussed in 

section 10.9. 

 

It is recognised that used sunglasses filters were not assessed for polarisation.  This 

would have been straightforward to conduct by using a known polarising filter and 

checking the sunglass lens with cross polarisation.  With the exception of Serengeti 

sunglasses, one pair of used sunglasses was known to be polarised from its model 

number.  It is anticipated that the prevalence of polarised sunglass filters in the pilot 

population would be low as not only do polarised lenses sold represent a minority of 

the market share (personal communication, H Obstfeld 04/08/14) but additionally all 

published pilot sunglass information discourages their use for aviation. 

 

All uniform and graduated tinted sunglasses measured showed good UVA 

attenuation to 380nm.  This is unsurprising as ISO 12312-1, 2013 requires minimum 

lens transmittance requirements up to 380nm.  Between 380-400nm there is a wider 

transmission range seen in both new and used sunglasses although 84% (42/50) 

had a measured transmittance of less than 2% at 400nm.  The sunglasses with the 

highest transmittance at 400nm were a pair of used sunglasses (no. 10) whose 

transmittance curve can be seen in Figure 9-d.  Interestingly, these sunglasses had 

a dip in the transmittance curve at 440nm offering lower transmittance at the peak of 

the blue light hazard and a level (mean 10.5%) well within the range of other 

sunglasses. 
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One pair of sunglasses (Caruso & Freeland) had the lowest transmittance at 440nm 

of 0.2%.  These sunglasses are specifically marketed for pilots and are advertised 

for their blue light blocking properties (Caruso & Freeland, no date).  

 

There was no apparent difference in UVA and blue light attenuation between used 

and new sunglasses measured.  This can be observed not only in the comparison of 

a used and new (assuming a grey tint) Oakley model (Figure 9-kk), but also the 

overall transmittance results within new and used sunglass groups.  It is interesting 

to note that the sunglasses with the highest transmittance at 440nm were used 

sunglasses and were the only sunglasses to be recorded as having scratched or 

marked lenses.  This finding is perhaps unsurprising as if the tint were applied to the 

lens surface during manufacture, subsequent surface damage could increase lens 

transmittance. 

 

Similarly, a slight decrease in transmittance at 440nm was observed in a pair of 

used sunglasses with smeared or fingerprint marked lenses compared to the same 

lenses after cleaning.  The obvious contamination may have reduced transmittance.  

Additionally, greater beam diffraction may have taken place causing a lower signal 

to be detected by the spectrometer’s collimating lens. 

 

It is reported (Dain et al, 2009) that many sunglass materials have a steady 

transmittance of 92% above 700nm.  The remaining 8% is lost due to refection from 

each surface of the lens.  Consideration was given to adjusting sunglass spectral 

transmittance data such that appropriate sunglass data would meet this 92% 

transmittance criteria.  It is recognised that the column of radiation emitted from the 

first collimating lens may be affected by factors other than being absorbed by or 

reflected from the lens material.  Beam displacement may occur where prismatic 

effects from the lenses are present.  Additionally, where the filter is not positioned at 

an angle normal to the beam, a longer beam path through the lens may result.  

These factors may result in falsely low transmittance. 

 

Data adjustment cannot be applied to other types of sunglasses including polarised 

and photochromic lenses (personal communication S. Dain 29/04/14).  As 

measurement from pilot sunglasses involved data collection from all sunglasses 

presented, it was decided not to adjust data for only some types.  It is however 
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recognised that these transmittance values may be lower than if measured in a 

more controlled laboratory based environment. 

 

Recommended minimum sunglass criteria for professional pilots are discussed in 

chapter 10.  All sunglasses are comfortably able to attenuate UVA to a level within 

ICNIRP guidelines.  Measurement uncertainties induced in transmittance data would 

not affect this conclusion.  Suggestions for blue light hazard attenuation are also 

discussed (section 10.9) and the suggested level of attenuation is comfortably met 

by all sunglasses.  It is recognised that it is possible that some of the poorer 

performing blue blocking sunglasses may fall outside this recommendation their 

data were adjusted to 92% transmittance beyond 700nm.  However, this suggested 

level of blue light hazard attenuation is not due to acute retinal health concerns but a 

suggested level of protection based on typical irradiances at altitude and a lifetime of 

occupational blue light hazard exposure. 

 

9.6 Results with reference to ISO 

The purpose of the sunglass transmittance measurements was to assess the 

effectiveness of the typical sunglasses used by pilots at controlling exposure to short 

wavelength radiation in the cockpit environment using the new knowledge of 

irradiance levels received during flight. 

 

This research did not aim to determine whether sunglasses met international 

minimum standards.  ISO 12311 and 12312-1, 2013 transmittance requirements are 

based on sample tint measurement using a CIE Standard Illuminant D65 (ISO 

11664-2).  However, this is important where a single value is obtained using a 

broad-band meter between 380-780nm.  Where spectral transmittance is measured, 

as in this research, the transmission data at each wavelength point is a relative 

value between source with and without the sunglass filter in place.  Therefore, 

provided the source has sufficient output within the spectral range of interest, the 

calculations with reference to ISO should be unaffected by the use of a different light 

source.  

 

For interest purposes, the formulae set out in ISO were used to calculate solar UVA 

transmittance between 315-380nm.  The UVA transmittance / luminous 

transmittance values were low and within the limits for filter category 3 as set out in 

ISO. 
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There would seem no indication that other sunglasses used in this research would 

not meet UV transmittance requirements if tested.  The percentage of filters tested 

that fail ISO UV specifications is likely to be minimal (Dain et al, 2010; personal 

communication H. Obstfeld 04/08/14). 

 

9.7 Summary 

The selection of pilot’s used sunglasses that were measured offered a good 

representation of the types of sunglasses worn by pilots as discovered in chapter 4.  

All uniform and graduated tinted sunglasses measured showed good UVA 

attenuation up to 400nm.  There was no reason to believe a significant difference is 

present between new and used sunglasses although those used sunglasses with 

noticeably scratched lenses showed the highest transmittance at 440nm.  Marked 

lenses showed a marginal decrease in transmittance outside of the UV range.  Only 

limited analysis has been carried out on photochromic sunglasses presented for 

measurement.  

 

The results demonstrate that all sunglasses filters measured would offer sufficient 

UVA attenuation to reduce ocular exposure to within ICNIRP guideline limits.  Based 

on the recommendation made in chapter 10, all sunglasses measured should also 

offer sufficient protection from the blue light hazard at altitude to result in an ocular 

exposure that is no greater than the mean exposure of the unprotected eye at 

ground level. 
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10. Chapter 10 Discussion and conclusions 

CHAPTER OVERVIEW 

This chapter aims to incorporate the findings from all three phases of the research.  

As discussed in chapter 3, this will include an assessment of the conditions under 

which the greatest risk of ocular exposure is present to the professional pilot.  

Evidence-based recommendations for pilot sunglass selection and 

recommendations to spectacle wearing pilots will be addressed together with 

identified areas for further future research.  A number of other recommendations 

based on the results of this research are made to pilots, the CAA, eye care 

practitioners, and industry. 

 

10.1 The flight deck environment 

The visual task and pilot workload was observed to vary throughout flight.  During 

the takeoff, climb and approach phases of flight, the aircraft is flown with primary 

use of the instruments.  Therefore, a higher near vision workload would be present 

undertaking tasks such as frequent heading and altitude changes, changes of radio 

frequencies when communicating with air traffic control, changes of heading, 

airspeed or altitude when directed by air traffic and pilot referencing to charts and 

check lists. 

 

During the cruise phase of flight, the overall workload is generally less but does 

include flight planning which is a near vision orientated task and includes monitoring 

and calculating fuel consumption, planning approach procedures, checking of 

alternate destination aerodrome and determining destination aerodrome information 

and local weather information.  However, more time is generally available to 

undertake these tasks and there is likely to be a shift of attention from a generally 

eyes down position to a combination of eyes down and eyes ahead. 

 

Although not present on the aircraft types flown for this study, new aircraft types 

such as the Boeing 787 have head up displays fitted.  These allow flight information 

to be projected in front of the pilot as they adopt an eyes ahead position.  Although 

no Boeing 787 was available for ground measurement, windshield transmittance 

measurements were captured from an Embraer 195 (Figure 10-a) which does have 

a head up display fitted. 
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Figure 10-a Embraer 195 with Head Up Display (HUD). 

 

This windshield was considered a poor UVA attenuator (section 8.3).  As the greater 

proportion of pilot’s attention flying this aircraft is likely to be in the eyes ahead 

position where exposure is greater, ocular UVA may exceed recommended 

guideline limits after a shorter period of flight than in an aircraft with traditional flight 

instrument displays.  The data show the head up display did not block UVA radiation 

and that new aircraft are more likely to have poor attenuating windshields.  Further 

data on the windshield transmission properties of aircraft with head up displays is 

recommended however, this new finding reveals that pilots should be warned of the 

potential increased risk of ocular exposure to UVA and the blue light hazard unless 

sun protection such as a head up display visor or sunglasses are used. 

 

10.2 Exposure at altitude 

The cruise phase of flight coincides with the time where pilots are most likely to use 

sunglasses as discovered in section 4.9.  This is perhaps unsurprising as firstly, the 

near vision task is less and pilots often report difficulty in quickly interpreting 

instruments through their sunglasses and secondly during the near vision intensive 

tasks, there is not the time available to put on sunglasses.  Indeed, the 
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observational data of pilots use of sunglasses shows that they were either put on 

before taxy or at the top of the climb and the start of cruise flight (section 6.2.20). 

 

The data show that pilots have to potentially manage high irradiance levels in flight 

for example, during flight 4 Tobago (section 6.2.3.4) where illuminance levels 

reached nearly 120,000 lux at the windshield.  High illumination in the cockpit should 

not be considered to be solely an issue for the airline pilot as it was also discovered 

during some helicopter flights where significant levels of irradiance were measured 

at relatively low altitude (section 6.2.18). 

 

The results of section 4.9.4 also show that sunglass use is strongly driven by 

perceived overall illuminance levels.  It was found that 69.6% of pilots wear 

sunglasses part of the time during flight (between 0-90%) however, it is not known to 

what extent sunglasses use may be initiated during the high workload periods during 

climb and descent.  As the data demonstrate that light levels are generally higher at 

altitude than at ground level, sunglasses are likely to be initiated in the earlier stages 

of flight and removed in the latter stages of flight.  It could be argued that removing 

sunglasses is a quicker process and less likely to disrupt pilot workload than the 

putting on of sunglasses particularly in the presence of a headset.  The 

observational data (section 6.2.20) suggest that the pilot may postpone initiating 

sunglass use until there is felt to be sufficient time, with the knowledge that the climb 

phase of flight is relatively short.   

 

It is reassuring that sunglasses are more likely to be worn during cruise as this is a 

time where irradiance levels are found to be higher (section 6.2.2).  It was also 

found that all sunglasses measured are effective in reducing the potential UVA 

exposure to within recommended guideline limits.  However, it was found that large 

increases in irradiance can also occur during takeoff, climb, descent and approach 

phases of flight.  Although the total time of these phases of flight is less than the 

cruise phase (unless the flight is of a particularly short duration), a significant 

proportion of the ocular irradiance dose may be received during these times, 

particularly as the pilot is less likely to be using sunglasses.  Indeed, data from flight 

5 demonstrated that ocular exposure to UVA would exceed recommended limits 

within one hour of take-off unless solar eye protection was used.  Ocular exposure 

was higher in the presence of a cloud top layer just below the aircraft, as is likely to 

occur during descent, and in the situation of a low relative solar elevation angle 
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during climb.  This can be seen in the results of flight 5 (section 6.2.3.5) and flight 6 

(section 6.2.3.6) 

 

10.3 Windshield transmittance  

No measurable UVB was present during any flight which concurs with previous 

studies (Diffey and Roscoe, 1990; Kohn and Harper, no date).  However, this study 

has shown that the transmission properties of the windshield are the most important 

factor in determining the levels of UVA present in the cockpit during flight.  On board 

an aircraft with a good UVA attenuating windshield, data show that the unprotected 

eye is unlikely to receive a UVA dose outside recommended limits even if of long 

duration and during bright sunlight conditions.  This may provide reassurance to the 

24.6% of pilots who never or rarely (<10% of flight) use sunglasses (section 4.9.4). 

 

Although Nakagawara et al (2007) report UVA transmission through some 

commercial aircraft windshields, the data presented in this research project has 

shown that most aircraft measured and importantly newer aircraft are likely to have 

poorer UVA attenuating windshields (section 8.4.1).  Pilots independently report an 

assumption that windshields provide adequate protection from UV.  The logic of this 

assumption includes knowledge that there is no skin tanning noted during flight and 

that the thickness of windshield is a measure of the degree of protection (section 

4.9.9).  Therefore, information should be readily available to professional pilots to 

state that some UV radiation may pass through the thick front aircraft windshields.  

Although this would be the less energetic, ‘near visible’ UVA part of the 

electromagnetic spectrum which doesn’t cause skin tanning, external irradiance 

levels outside the aircraft at altitude are sufficiently high that a significant UVA dose 

may be received inside the cockpit.  Sufficient UVA protection from a windshield 

should not be assumed. 

 

The data presented show that the majority of commercial jet aircraft measured have 

windshields with poor UVA attenuation and that generally it is the older aircraft 

which have good UVA attenuating windshields.  This, together with the limited data 

presented regarding replacement windshields (see section 8.6) indicate that newer 

cockpit windshields fitted on commercial passenger aeroplanes are likely to have 

poor UVA attenuation properties.  This is a surprising finding and any explanation for 

this finding is limited as, despite efforts to contact both aircraft and windshield 

manufacturers, no information has been received at the time of writing.  It is possible 
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that there may be a higher financial implication of manufacturing a windshield with 

good UVA attenuating properties.  Additionally, a windshield with good UVA 

attenuating properties will absorb more energetic radiation than its poor UVA 

attenuating equivalent.  It is possible that this may cause a faster degradation of the 

windshield. 

 

However, based on the data presented, it would be reasonable to conclude that the 

prevalence of good UVA attenuating windshields on  commercial passenger 

aeroplanes will decrease over time as older fleets of aircraft (such as the Boeing 

747) are replaced with new aircraft types (such as the Boeing 787). 

 

Data show that the front visors absorb a large proportion of radiation including UV, 

although measurable levels of UVA are transmitted.  Additionally, the visors cover 

only a proportion of the total windshield area and high levels of diffuse radiation are 

still present in the cockpit.  Fitting all aircraft with good UVA attenuating windshields 

would ensure that all pilots are protected from UV radiation regardless of whether 

sunglasses are used.   

 

There is limited data regarding helicopter windshields, however it is clear that there 

are aircraft with both good and poor UVA attenuating windshields.  As with the 

professional fixed wing pilot, the helicopter pilot has no way of visually assessing the 

UVA attenuating properties of the windshield of the particular helicopter flown.  The 

safest course of action would be to assume poor UVA attenuation through the 

windshield. 

 

10.4 Aircraft visors and blinds  

As described in section 10.3, front visors block a relatively small portion of the total 

front windshield area.  Of the aircraft flown in this study, the Airbus A330 (flight 4) 

appeared to offer the largest screen coverage by being a retractable hard material 

which could be pulled down when required in a similar fashion as a traditional roller 

blind.  All other jet aircraft were observed to have smaller visors which could be 

angled and were either attached to a rail or pivoted from a single point. 

Transmittance data were captured from an Airbus A320 visor in two phases of this 

research; during ground measurements (section 8.3) and during sunglass 

transmittance measurements (section 9.4.3) and are shown in Figure 10-b.  Issues 
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with potential variations in the (solar) source during ground measurements are 

discussed in section 8.5.  

 

 

Figure 10-b Comparison of visor ground transmittance data against a solar source 
compared to the more controlled environment with the use of a deuterium tungsten 
halogen source.  Note that the transmittance scale has been adjusted from 100%. 

 

Transmittance curves through finger marked and cleaned areas of the visor were 

similar.  Unsurprisingly, unclean areas had a marginally lower transmittance.  This 

finding concurs with measurements through marked and cleaned sunglass lenses 

(p.240).  The small variation around 657nm represents the effect of the emission line 

from the deuterium component of the lamp as discussed in section 9.3.1.  At the 

time of ground measurements, it was not known that the Airbus visors had a slight 

graduated tint however it can be seen that all sections have minimal transmittance 

between around 450 to 550nm.  Ground measurements showed the right visor to 

have similar transmittance in this area with the left approximately 2% higher.  A 

small increase in UVA transmittance is seen particularly through the bottom section 

of the visor.  This is unlikely to represent an experimental error but the effect of the 

normal transmission properties of the visor material together with the attenuation 

properties of the tint applied.  It also confirms the findings in section 8.3 where a 
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small UVA signal was detected through the front visors of aircraft with poor UVA 

attenuating windshields. 

 

 Side window blinds were seen to offer not only a larger coverage of the window 

area, but also superior UVA absorbing qualities to the front visors (section 8.4.4). 

The high levels of diffuse sunlight observed in the cockpit is strongly corroborated 

from the high levels of dissatisfaction with the standard aircraft fitted sunlight 

protection systems reported in the questionnaire (section 4.9.9) results.  The 

number of non-standard strategies employed by pilots during flight (section 4.9.7) 

including the use of newspapers, checklists, charts, tray liners, jackets, seat and 

HUD covers demonstrate that a high proportion of pilots find the standard visors 

unfit for purpose and resort to using whatever is to hand to block sunlight during 

flight.  Further, a small proportion of pilots have actively obtained additional sun 

glare protection and carry this in their flight bag.   This is often in the form of a 

vehicle glare screen.  

 

These previously undiscovered findings demonstrate that although front visors offer 

sufficient UVA and blue light attenuation properties, large areas of the windshield 

remain without protection and high levels of diffuse radiation are likely to be present 

in the cockpit.  Therefore, aircraft manufacturers should attempt to install superior 

levels of sunlight protection in aircraft for the pilots in the form of greater flexibility of 

visor positioning and a larger area of front windshield protection.  Dimmable 

electrochromic user operated tinted windows are available for aircraft cabin windows 

PPG Aerospace, 2009) for passenger comfort.  To maintain safety in the situation of 

a loss of power, the window system defaults to a clear state.  Although no details 

are given regarding the transmission properties when activated, this technology 

could also offer comprehensive cockpit protection for the pilot. 

 

10.5 Pilot flying schedules 

Professional pilots are limited to a maximum of 900 flying hours per annum (section 

1.5.3).  Two airlines and the helicopter operator participating in the research were 

questioned regarding the likely number of hours logged per annum of a full time 

employed pilot and additionally the amount of time spent operating during daylight 

hours. 
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A number of factors determine the annual number of daylight hours flown by the 

professional pilot. 

1) Type of operation – One airline questioned relied more heavily on supplying 

flights to holiday destinations and the pilot workload was consequently more 

seasonal with busiest months being January to March and May to 

September.  Pilot schedules would tend to be quietest from October to 

December when there are fewer daylight hours.  The second airline 

approached operated flights to more cities and there was less seasonal 

variation of flights.  The helicopter operator ran flights to offshore installations 

all year round. 

2) Size of base – Both airlines had a relatively large presence at London 

Gatwick.  Pilots based here would expect to accrue 100-150 hours more per 

annum than pilots based at other airports.  The helicopter operator had the 

largest base at Aberdeen with pilots accruing approximately 50-100 hours 

more than those at the Shetland base and 150 hours more than those based 

at Norwich. 

3)  Number of waves per day – This is the number of return trips that the 

aircraft makes from the base per day.  It is, to a certain extent, influenced by 

the airport operating hours and night time air traffic noise constraints.  The 

number of waves gives an indication of the number of hours that the aircraft 

is flown during daylight hours.  Both airlines generally operated 3 waves per 

day during the summer and 2 during winter months.  On a 3 wave day, the 

first would leave from around 0500 to 0700 local.  The second from around 

1100-1300 local and the third from around 1800-2100 local.  The helicopter 

operator normally conducted 3 waves starting around 0700 local.  

Occasional 4 wave days were conducted, but the operations were restricted 

by the airport closing at 2230 local. 

4) Number of sectors flown per day – The flight crew would be scheduled to fly 

a certain number of sectors per day.  For airline flights, this is often 2 sectors 

as was experienced on flights during data collection with the exception of 

flight 4 for which the crew had a stopover rest at Tobago.  This airline had a 

mixture of long and short haul destinations.  The longest 2 sector destination 

would be Egypt with a return flight time of approximately 11 hours and the 

longest long haul destination would be Goa at just under 11 hours.  The 

other airline approached operated shorter sectors and pilots could be 

scheduled to fly between 2 and occasionally 6 sectors in a day. 

Pilots based at London Gatwick flying for the airline operating more holiday routes 

average 700 hours per annum.  This airline has mainly short haul routes but with 

some long haul routes.  Pilots fly either short haul or a mixture of long and short 

haul.  It is estimated that around 80% of short haul flying is conducted during 

daylight hours and around 60% of long haul flying is conducted during daylight 

hours.  The second airline operates no long haul routes.  Pilots based at London 

Gatwick fly around 870 hours per year with an overall estimate of 80-90% daylight 
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flying.  Both airlines questioned had a large base at London Gatwick and the 

estimates given are higher than the mean number of hours flown over the past year 

as declared by short haul pilot participants of the questionnaire (640+/-151 hours).  

Enquiries revealed that pilots operating on purely long haul routes would likely fly 

approximately 700 hours per annum.  This concurs with the mean value from long 

haul pilots in the questionnaire ( 707+/-150 hours). 

 

Pilots employed by the helicopter operator at Aberdeen would average around 700 

hours per year.  Due to airport operating hours and summer daylight hours in 

Aberdeen, it is estimated that 95% of flying is carried out during daylight hours. 

Based on the estimates given above, a short haul pilot would expect to fly at least 

480 daylight hours per annum if operating from a smaller base and up to 780 

daylight hours per annum from a larger base.  The long haul pilot would fly 

approximately 420 daylight hours per annum and this could be less depending on 

pilot rotation and crew rest breaks on flights with 3 (or 4) pilots present.  The 

average offshore helicopter pilot is likely to fly between approximately 520-670 

daylight hours per annum. 

 

Calculation of the average SED per hour across all aeroplane flights was 0.06 

SED/hr (section 6.2.10).  Based on this value, estimated annual exposure would be 

between 29 to 47 SED per annum for short haul pilots and approximately 25 SED 

per annum for long haul pilots.  The average SED per hour across helicopter flights 

was 0.04 SED/hr giving an estimated annual exposure of 21- 27 SED.  It should be 

noted that these figures are estimates and that more accurate data would be 

expected from a long term dosimetry study.  Additionally, these estimates only take 

into account occupational exposure and would be less than the total annual 

exposure.   

 

It can be seen from the results that the SED per hour calculations appear only 

marginally affected by the UVA attenuation properties of the windshield.  This is 

most likely due to the erythema weighting function which is weighted towards 

shorter wavelengths including UVB.  Therefore, there is little effect of increased 

levels of near visible UVA on SED values. 

 

The estimated pilot occupational exposures do compare favourably with studies 

assessing annual exposure in indoor workers and gardeners in Denmark (median 

132 and 224 SED respectively) (Thieden, 2008) and in mountain guides (mean 
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cumulative annual exposure >1,000 SED per annum) (Moehrle et al, 2003).  Median 

daily SED exposures for training athletes during summer months in Spain have 

been reported as 7.5, 8.1 and 14.5 for tennis players, hikers and runners 

respectively (Serrano et al, 2014).  Construction workers in Spain were reported as 

receiving a median SED dose of 6.1 in the month of July (Serrano et al, 2013).  It is 

recognised that those subject to outdoor exposure may be more likely to use sun 

cream and sunglasses. 

 

Long haul pilots wear sunglasses significantly less than their short haul 

counterparts, which is thought to be due to the finding that this cohort has a higher 

mean age and a higher prevalence of a requirement for corrective spectacles.  Long 

haul pilots are also the highest users of non-standard sunlight blocking strategies 

(section 4.9.7), most of which involve placement of an opaque material near or on 

the inside of the windshield to prevent direct sunlight.  Although this practice was not 

observed on flight 4, it is likely that this action will also reduce ocular exposure to 

UVA and the blue light hazard.  It is not known how effective this practice is in 

reducing ocular exposure compared to wearing sunglasses.  However, it can be 

seen that long haul pilots undertake the lowest estimated number of daylight annual 

flying hours and it is likely that long haul pilots are more likely to receive a lower 

annual exposure than their short haul pilot counterparts. 

 

The fact that helicopters operate at lower altitude than airline operations does not 

necessarily result in a lower UVA exposure for the pilot.  Section 6.2.13.2 

demonstrated that an equivalent ocular dose can be received by the helicopter pilot 

under certain conditions as discussed in section 6.3.1.  As these helicopter pilots 

operate in aircraft with little or no fitted solar protection and without the opportunity 

to undertake non-standard sunlight protection strategies, it is feasible that a higher 

annual ocular dose could be received during flight by the helicopter pilot compared 

to the airline pilot particularly as sunglasses are less likely to be used.  However, the 

annual variability of low altitude cloud compared to the conditions at high altitude 

does not make it possible to extrapolate these findings to an estimate of annual 

exposure even though a higher number of daylight flying hours are likely to be 

undertaken by the helicopter pilot compared to the long haul pilot.   

 

Assuming that no solar eye protection is used, calculations show that short haul 

pilots should be considered at a risk of the highest annual exposure due to the 

higher number of daylight hours flown.   
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There are a number of factors which support the hypothesis that the occupational 

ocular lifetime exposure is likely to increase with time.  As discussed, it is likely that 

newer aircraft will have poor UVA attenuating windshields and may utilise 

technologies such as HUDs.  Newer aircraft designs are generally more efficient not 

only in fuel consumption but also in flight profiles, being able to attain a higher 

altitude in a quicker time than older aircraft designs.  It is anecdotally reported that 

applicants are entering pilot training at a younger age.  Although there are minimum 

ages for holding both medical certificate and licence (section 1.5.3), it was 

traditionally more common for airline flying to be considered a second career rather 

than for school leavers.  Finally, airlines are likely to organise their flight operations 

to ensure that every pilot employee is utilised to the maximum benefit which in turn 

is likely to increase a pilot’s flying hours towards the 900 hour per annum limit. 

 

10.6 Ocular exposure levels 

The data clearly demonstrate the difference between pilot exposure and that of an 

office worker during a normal eight hour working shift (section 7.3).  Although a 

lower exposure in office workers may be expected, it would seem likely that the 

windows in the office building have good UVA attenuating properties as the 

calculated UVA dose remained relatively constant at different workstations including 

an office with no natural light.  It would be reasonable to conclude that the source of 

the UVA signal detected is influenced by the fluorescent tube lighting present 

throughout the building.  The office used with windows had horizontal slat blinds 

covering the entire window area and thus allowed good control of diffuse illumination 

with a subsequent reduced risk of glare symptoms. 

 

It is recognised that the average outdoor worker is likely to receive a significantly 

higher ocular exposure than the average office worker however it was felt that, for 

the purposes of comparing populations of a similar socio-economic status, a 

comparison to office workers would be more appropriate.  The office chosen, the 

CAA Safety and Airspace Regulation Group building, houses approximately 700 

employees of which a number are professional pilots.  The data presented is 

unlikely to reflect the range of occupational exposures of all office workers; however, 

this was not an aim of the study.  

 

A summary of the UVA dose found in this research is shown in Table 10-a.  
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Aeroplane 
UVA per hour J/m

2
 

(ahead) 

good UVA atten 263 

poor UVA atten 5160 

Helicopter   

good UVA atten 196 

poor UVA atten 7725 

Office worker 290 

Table 10-a Mean UVA dose per hour measured during flight for both windshield types 
in aeroplane and helicopter operations and office workers. 

 

UVA dose per hour in aircraft with good UVA attenuating properties is comparable 

with office workstations measured and would not exceed ICNIRP recommended 

limits over an 8 hour period.  A pilot operating an aeroplane with a poor UVA 

attenuating windshield and without ocular UV protection will, on average receive an 

ocular exposure in excess of ICNIRP recommended limits after 2 hours of flight.  

However, this was found to occur in less than 30 minutes after takeoff on flight 5 for 

an eyes ahead position and within 1 hour after takeoff for an eyes down position.  

This was mainly due to the combination of a poor UVA attenuating windshield, the 

position of the solar disc and high irradiance on the outbound sector.   

 

Based on the considerations described above, a busy short haul pilot operating 

aircraft with poor UVA attenuating windshields could be expected to receive an 

additional 3.8 x 106 J/m2 of UVA per annum over the office worker before any 

outdoor activities are taken into account.  The risk of developing UVA related ocular 

pathology in any individual would have to take into account the estimated annual 

dose from outdoor activities which is likely to vary widely between individuals. 

 

10.7 Pilot eye protection practices  

Phase 1 revealed the prevalence of sunglass use and the typical types of 

sunglasses used in flight.  There was a surprisingly even spread for the amount of 

time that sunglasses were used with similar numbers of pilots using sunglasses near 

constantly during daylight flying hours through to those pilots who never use 

sunglasses in flight.  Clearly there is a population variation to bright light and glare 

tolerance which influences whether sunglasses are used.  Factors such as degree 

of ocular pigmentation (Stringham and Hammond, 2007; Stringham and Hammond, 

2008; Loughman et al, 2010a; Loughman et al, 2010b), age and the presence and 
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type of ocular media changes (Vos, 2003) are likely to affect an individual’s 

sensitivity to glare.  Whilst many respondents are clearly comfortable using 

sunglasses to the extent that they do, a number of barriers to sunglass use were 

discovered including using corrective spectacles, difficulties interpreting instruments 

through a sunglass tint and comfort over prolonged periods particularly in the 

presence of the headset.  It is reasonable to conclude that this group of pilots would 

wear sunglasses more during flight in the absence of these barriers. 

 

It would be beneficial for detailed and targeted information to be drawn up and made 

available for pilots purchasing sunglasses.  The range of sunglasses comfortably 

used by pilots in flight suggests that there is no common sunglass tint or 

manufacturer of sunglasses which would be preferred by all pilots performing any 

type of flight operation.  It is therefore suggested that detailed generic guidelines be 

drawn up which include each of the main barriers raised in the questionnaire and 

helpful tips to avoid these issues.  Suggested recommendations are made in the 

section 10.16. 

 

It should also be important to recognise that many spectacle wearers may not wish 

to or may not feel the need to wear specific solar radiation protection during flight.  It 

would therefore be beneficial to develop a lens with appropriate UVA protection and 

blue light hazard reducing properties which would not be classed as a sunglass tint 

and could be worn during night flying. 

   

It should also be made clear within the information that, as discovered as part of this 

study, many cockpit windshields do not attenuate UVA sufficiently to offer sufficient 

ocular protection as defined by international guidelines and that further steps should 

be taken by the pilot to ensure adequate ocular protection.  Adequate UVA 

protection from the aircraft windshield cannot be assumed. 

 

10.8 Peripheral incident radiation 

Aircraft windshield binocular field of visibility charts for Airbus A320 and A330 are 

described in section 1.5.6.  These state the potential angular range of incident 

radiation during flight however, the charts do not take into account the use of visors 

or side blinds during flight. 
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Results from visor and blind transmittance (section 8.3) show that good UVA 

attenuation is achieved and, with the exception of the data from the Embraer 195 

aircraft, less that 5% of blue light was found to be transmitted.  No blinds were used 

on the side ‘fixed window’, further behind the pilot (Figure 1-j), during any flight.  

Indeed, it is possible that no blinds are fitted as standard for these windows.   

 

It would be reasonable to expect that a well fitting pair of sunglasses would offer 

protection from the front windshield.  Based on data in Figure 1-h and Figure 1-i, this 

would be to around 30-35° superiorly, 35° nasally, around 20° inferiorly and up to 

45° temporally.  However the edge of the sliding side window would exceed 100° 

temporally.  Wrap-around sunglasses were the most prevalent style used and were 

worn by 37.6% of sunglass wearing pilots (see section 4.9.4).  Without the use of 

the blinds, this type of sunglass would provide the optimum protection from radiation 

through the side window assuming they were well fitting. 

 

Binocular field of visibility data for helicopters flown were not available.  Due to the 

aircraft manoeuvrability and vision requirements for approach and landing, 

windshield area is extended inferiorly but would likely remain at around 100° to the 

pilot’s eye temporally (Figure 10-c and Figure 10-d).  No side window blinds were 

fitted on the helicopters flown.  In the absence of high reflection from ground level, it 

is unlikely that radiation through the lower windows contributes significantly to ocular 

exposure.  Intense reflected radiation through these lower windows could act as a 

glare source near the direction of gaze when viewing instruments and could be 

difficult for the helicopter pilot to manage. 
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Figure 10-c Lower windshield on Sikorsky s-92A helicopter 

 

Figure 10-d Lower windshield on Aerospatiale AS332 Super Puma helicopter 
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Studies have demonstrated that the peripheral light-focusing (PLF) effect discussed 

in section 2.4 results in a peak intensity at the nasal limbus approximately 20 times 

that of the incident light and that an incident angle of around 120° is required to 

produce the maximal effect (Kwok et al 2003).  High intensity incident radiation is 

likely to be encountered during flight at this angle as it will fall within the range of the 

pilot’s side window.  Results of the audit (section 4.14) showed a low prevalence of 

recorded pterygium (0.05%) in Class 1 licence holders.  This is likely to be due to a 

number of reasons including the effective filtering of UVB by the windshields, the 

higher prevalence found of good UVA attenuating side windows, use of side blinds 

in bright conditions and their UVA attenuating qualities and use of wrap-around 

sunglasses.  The PLF effect has also been reported to increase the risk of cortical 

cataracts, particularly in the lower nasal quadrant.  Results from both audit and 

questionnaire were not able to distinguish type and position of reported cataracts.  

Kagami et al (2009) examined each participant using the slit lamp biomicroscope 

and found cortical cataracts to be the most common non-congenital type cataract.  

However, the location of the cataract was not reported. 

 

The use of UV blocking contact lenses would help to reduce any PLF effect 

(Wolffsohn, 2013).  Results from the questionnaire (section 4.9.2) show that of the 

contact lens wearing pilots, 30.9% knew that their contact lenses had UV blocking 

properties.  Additionally, a higher prevalence of contact lens use was noted than 

reported in the general population of working age (section 4.11.1).  This, together 

with calculated ocular UVA dose found on six of the ten flights undertaken, enforces 

the importance of promoting awareness amongst contact lens wearing professional 

pilots as to the benefits of lenses with a UV block. 

 

10.9 Blue light data 

The data do not indicate a risk to pilots of type II blue light retinal phototoxicity based 

on the ICNIRP guidelines.  Although mean and maximum blue light weighted 

radiance was highest onboard aeroplane flights, the highest dose measured was 

approximately a quarter of the limit value recommended in ICNIRP.  Further detailed 

task analysis may offer further refinement of blue light weighted radiance, however 

as discussed in section 6.1, if errors are present due to the criteria used in these 

calculations, it is most likely to have resulted in an over-estimation of blue light 

weighted effective radiance.  It therefore follows that further analysis is unlikely to 

affect the overall outcome as, if anything, lower radiance values would result.   
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There is not thought to be a risk of type II retinal photochemical damage to the pilot 

due to repeated daily exposures during flight as ICNIRP (2013) state that long 

exposures should be considered as a series of separate 10,000 second events.  

This conclusion was reached by Roscoe and Diffey (1994) in their preliminary study 

measuring blue light during a one sector flight. 

 

It is difficult to ascertain the effect to the retina of the increase in blue light received 

at altitude over a full career as a professional pilot.  Although there is some evidence 

of the effect of longer term rhodopsin mediated type I blue light photochemical 

damage, there appears insufficient data to determine if an exposure limit should be 

recommended and if so what the limit should be.  There is limited evidence of a 

cumulative effect of blue light exposure (see section 2.6) and a variation in 

susceptibility for retinal damage due to the circadian cycle (Duncan and O’Steen, 

1985) which may be interrupted particularly in the long haul pilot. 

 

This research has shown that the mean blue light weighted radiance was 4.1 times 

higher at altitude than on the ground for aeroplane flights.  The similar calculated 

mean blue light weighted radiance increase on helicopter flights was 2.5 times 

higher at altitude.   

 

All visor and side blinds measured demonstrated transmittance below 5% around 

440nm with the exception of aircraft 13 which showed a transmittance of between 5-

10% around 440nm for one front visor and one side blind (p.216).  Although good 

attenuation properties are afforded, significant levels of diffuse radiation remain due 

to the area of front windshield not covered by a visor as discussed in section 10.3. 

 

Pilots should be aware of increased dose of blue light weighted radiance at altitude.  

Results from sunglass transmittance measurements (sections 9.4.3 and 9.4.4) show 

that non-graduated tints and the top of graduated tints have transmittance values of 

440nm radiation generally between 5-20%.  This correlates to between 5-25 times 

signal attenuation. 

 

The blue light hazard action spectrum is applied over the range 300-700nm but 

strongly weighted around 440nm (section 1.4.8).  For the purposes of the following 

blue light attenuation figures, the attenuation of signal at 440nm has been applied as 

an approximation of blue light hazard reduction.  It is recognised that a sunglass 
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lens is likely to have lower transmission properties at shorter wavelengths and 

higher transmission properties at longer wavelengths. 

 

A small number of uniform and graduated sunglasses (including RayBan, Oakley 

and Serengeti) were individually assessed as to the attenuation of the blue light 

hazard spectrum at each wavelength from 300-700nm.  The resultant overall blue 

light hazard reduction was compared to the lens transmittance at 440nm.  It was 

seen that the use of this wavelength point would underestimate actual blue light 

hazard reduction by between 0.2 to 8.8%.  

  

Although a conservative estimate, if sunglass protection for the airline pilot was 

sought to reduce the average incident radiance at altitude to an equivalent average 

radiance for an unprotected eye at ground level, a transmittance of around 24% or 

less at 440nm should be selected.  Based on the findings in sections 9.4.3 and 

9.4.4, this would include all RayBan, Oakley and Serengeti sunglasses measured.   

 

Results from the questionnaire shows that this covered 59.8% of the sunglass 

wearing cohort.  Although these estimates represent the mean increase in blue light 

weighted irradiance measured at altitude, clearly there will be a large variation with 

higher levels experienced at times.  However, as no risk has been found of shorter 

duration type II photochemical retinal toxicity, there is no evidence that sunglass 

protection from the highest signals found in flight would be necessary.  There were 

two sunglasses measured which could reduce the maximum blue light weighted 

signal to an equivalent average radiance for an unprotected eye at ground level.  

These had a transmittance of less than 2.2% at 440nm and one pair of sunglass 

was specifically marketed for pilots. 

 

Based on the results, the helicopter pilot would need to have a sunglass lens with 

transmittance of less than 40% at 440nm in order to reduce the average incident 

radiance at altitude to an equivalent average radiance for an unprotected eye at 

ground level.  All sunglasses assessed met this criterion.   

 

It has been demonstrated in sections 4.5.2.1 and 4.9.4 that the use of corrective 

spectacles is a barrier to sunglass use and that spectacle wearers use sunglasses 

significantly less than non spectacle wearers.  A typical untinted lens materials such 

as CR39 has a high transmittance around 440nm.  However, it is reported that the 

addition of a blue light blocking anti-reflection coating on a lens can reduce the 
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incident signal by up to 25% (personal communication Norville, 07/05/14).  The 

addition of this coating would offer a degree of blue light protection for the spectacle 

wearing pilot, although this effectiveness would likely be reduced where the lenses 

surface had damage such as scratching. 

 

UK Driving standards currently stipulate that for night driving, spectacle lenses 

should not have a tint with a lower luminous transmittance than 75% (Fowler, 2011).  

EASA medical requirements state that: “No more than one pair of spectacles shall 

be used to meet the visual requirements when exercising the privileges of the 

applicable licence(s)”, that any correction required: “be well-tolerated and suitable 

for aviation purposes” and that “a spare set of similarly correcting spectacles, for 

distant or near vision as applicable, shall be readily available for immediate use 

when exercising the privileges of the applicable licence(s).” (EASA, 2013a) However 

there is no statement regarding a luminous transmittance requirement for night 

flying.  ICAO state that: “Tinted spectacles, prescription or otherwise, are for daytime 

use only and result in severe reduction of visual performance if used in twilight or 

darkness” (ICAO, 2012) and it has been UK CAA guidance (CAA, 2008) that one 

pair of spectacle should be untinted. 

 

A lens designed to meet a luminous transmittance of 80% but with bias toward short 

visible wavelength absorption could attain a reduced transmittance at 440nm.  A 

lens such as this combined with a blue light blocking anti-reflection coating could 

potentially reduce the blue light hazard and be available to spectacle wearers for 

both day and night flying.  In view of this and the results of this study, further 

investigation of the approval of this type of lens for use by pilots is recommended. 

 

10.10 Sunglasses versus visors 

All sunglasses showed less than 1% transmittance up to 380nm increasing in some 

cases marginally up to 400nm.  They were able to provide sufficient UV attenuation 

such that the pilot would not be exposed to UVA radiation in excess of 

recommended guideline limits regardless of the length of flight, irradiance levels or 

windshield property.  The visors measured also showed good UVA attenuation with 

minimal transmittance, although some visors showed an increased transmittance in 

the UVA range.  However, only in a scenario where all incident light were filtered by 

a visor would sufficient protection from excess ocular exposure be afforded.  As 

discussed in section 10.3, this cannot occur as the visor only partially covers the 
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total windshield area and high diffuse irradiance levels may still present within the 

cockpit. 

 

Similarly for protection from blue light, all sunglasses and visors measured would 

offer sufficient attenuation to ensure that exposure were no greater than that of the 

unprotected eye at ground level, assuming that no diffuse, unfiltered radiation were 

present.  The visors measured generally offered greater attenuation of blue light 

compared to sunglasses with measured transmittance at 440nm generally less than 

5%.  While some sunglasses also showed similar transmittance values, others 

showed transmittance up to around 30% at 440nm. 

 

Due to their positioning relative to the eye, sunglasses would always be expected to 

offer a superior level of ocular protection from non-ionizing radiation compared to 

visors.  Significant levels of ocular irradiance may be received in the presence of a 

visor despite its adequate transmission properties. 

 

10.11 Considerations for sunglasses 

As described above, all sunglasses measured showed adequate ocular protection 

for the professional pilot from UVA and blue light received during flight.  Were a pilot 

to be seated behind a good UVA attenuating windshield, there would be no 

requirement for additional protection in order to ensure UVA ocular exposure 

guidelines are not exceeded.  However, as the majority of windshields measured 

were not good UVA attenuators, a degree of UVA protection in sunglasses would be 

required in order to ensure safe ocular protection.  All fixed tint, graduated and 

polarised sunglasses met this requirement and it is reasonable to conclude that all 

sunglasses meeting ISO standards would provide sufficient UVA protection for the 

professional pilot.  Additionally all sunglasses measured are able to provide a level 

of blue light hazard protection to the pilot which would be no worse than the average 

unprotected eye in the cockpit at ground level.  To attenuate the mean blue light to 

levels comparable to that of the unprotected eye of an office worker in workstation 1 

(office with windows and natural daylight), a sunglass lens with less than 2% 

transmittance at 440nm should be sought. 

 

The International Standard for sunglasses state requirements for general use filters 

for the detection of signal lights for road use.  The results from section 4.9.4 showed 

that pilots had no particular preference for a tint colour although the majority (86.8%) 
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used a sunglass with a grey (38.3%), brown (36.8%) or green (11.7%) tint.  As it 

was found that all sunglasses measured provided adequate protection for the pilot, 

the other tint requirement should be that the tint colour should not interfere with the 

colour rendering ability of the pilot.  As the colour vision standards for pilots are 

more stringent than for drivers (EASA, 2013b), it would seem prudent that a neutral 

tint for aviation continue to be promoted.   

 

A number of other factors should be considered when selecting sunglasses.  As 

discovered in sections 4.5.2.1 and 4.9.4, frame comfort and interaction with the 

headset is a strong factor for success with sunglasses.  The frame therefore should 

be light with thin comfortable fitting sides over the ears.  The sides of the sunglasses 

should not cause the headset cups to be pushed away from the ears.  This is of 

particular consideration for the helicopter pilot where greater ambient noise is 

present during flight and a risk of noise induced hearing loss is present if not 

adequately protected.  The helicopter pilot operating to off-shore sites also needs to 

ensure that any sunglasses used are secure when outside the aircraft with the rotors 

running such as when off-loading and on-loading passengers on oil platforms. 

 

The sides of the sunglasses should be thin also to prevent any significant frame 

artefact induced visual field defect for the pilot.  This is the case for any glasses 

(prescription or sunglasses) used in flight where a pilot is required to keep a look out 

scan outside for any conflicting traffic.  Although being thin, the sunglass sides 

should not be too flexible such that they cannot be easily put on during flight with the 

pilot retaining one hand on the controls.  

 

 It is reassuring that when questioned, the most important factor for a pilot in 

sunglass selection was comfort in both frame and tint (section 4.9.4). 

Wrap-around sunglass styles are inherently likely to offer good protection from 

peripheral radiation, however in sunglasses where the sides are also curved, there 

is likely to be more  interference with the headset.  Ground transmittance 

 measurements have demonstrated that, where fitted, side window blinds provide 

good UVA attenuation and also cover almost the entire window area. 

 

One of the main factors for not using sunglasses was the requirement to wear 

prescription corrective lenses.  A lens material with good UVA blocking properties 

(e.g. Trivex) should be chosen for all spectacle wearing professional pilots.  As 

discussed on page 267, the addition of a degree of protection from the blue light 



281 
 

hazard could be incorporated and would require further work to be approved for 

night flying. 

 

10.12 Recommendations for windshields 

Currently, the pilot has no means to assess the windshield attenuation properties of 

a particular aircraft.  This should be addressed. 

 

One method for a pilot to assess the UVA blocking properties of a particular 

windshield would be to carry on board a UVA sensitive dosimeter.  However, there 

is no UVA sensitive film that is as convenient to use and process as a polysulphone 

(UVB sensitive) dosimeter (Parisi et al, 2004).  A number of UVA dosimeter 

materials have been proposed (Faneslow et al, 1983; Wong and Parisi, 1996; 

Turnbull and Schouten 2008), however there are difficulties with their processing 

after exposure (Paris et al,, 2004).  There are dosimeter materials reported which 

are sensitive to both UVA and UVB (Diffey et al, 1977; Diffey and Davis, 1978).  

Wong and Parisi (1996) describe a system using four different types of UV sensitive 

polymer films to evaluate UVA exposure.  The dosimeter proposed by Turnbull and 

Schouten (2008) measured levels of solar UVA in excess of 20,000 Jm-2. 

 

The use of a spectrometer by the pilot to assess each aircraft’s windshield would be 

costly and impractical.  An instrument such as the illuminance UV recorder used in 

this study has the potential to be used by the pilot to determine the UVA attenuating 

properties of a particular windshield.  An approximately ten fold lower signal was 

recorded on the UV channel behind a good UVA attenuating windshield compared 

to a poor UVA attenuating windshield.  However, further research would be required 

in order for guidelines to pilots to be issued if using this equipment. 

 

It has been demonstrated that motor vehicle windshields transmit a degree of UVA 

and it has been recommended (Parisi et al, 2004) that UVA exposures that may be 

received whilst in a car are an important risk factor to consider when undertaking 

any human cancer risk assessment.  An ultraviolet protection factor (UPF) for 

vehicle windscreens has been suggested based on the transmission properties of 

the material weighted with erythemal action spectrum and uses a similar principle to 

sun protection factor (SPF) used by sunscreens (Paris et al, 2004).  A UPF of 100 

transmits 1% of erythemal UV and absorbs 99%.  However there is no significant 

additional protective benefit in UPF values beyond 50 and laminated windshields are 
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reported to have UPF values in excess of 75 (Parisi et al, 2004).  This finding 

concurs with relatively low in flight SEDs calculated as UPFs are weighted with the 

erythemal action spectrum.  It is suggested that adopting UPF for aircraft windshield 

is not appropriate as it would mask the effect of the difference in UVA transmittance 

between windshields due to much lower spectral weighting of UVA in UPF values.  

As irradiance levels may be high during flight, this potentially small difference in UPF 

may result in a large difference in UVA exposure.  It is recommended that while 

emphasising that all aircraft windshields should offer good erythemal protective 

properties, an identification system should be developed to provide the pilot with 

information as to the UVA blocking properties of a particular windshield.  

 

Long pass filters are available which increase cut off wavelengths.  They are 

generally made from materials such as mylar or cellulose acetate (Parisi et al, 2004) 

and are sometimes available as thin, flexible rolls which can be used to cover larger 

areas (Edmundoptics, 2014).  However these filters are reported to degrade with 

time and need regular replacement (Parisi et al, 2004). 

 

While an optimum solution would be to replace all poor UVA attenuating windshields 

with windshields of better UVA attenuation, this is unlikely to be considered a 

feasible solution based on cost and the lack of acute health effects.  Therefore, in 

the absence of this, it is recommended that windshields should be assessed and 

labelled so that every pilot using that aircraft has the opportunity to tailor their ocular 

protection strategies accordingly.   

 

This would additionally raise awareness within the pilot population of the risk of long 

term UVA exposure to health as repetitive exposures to relatively low erythemal UV 

is reported to have an cumulative effect which can produce early skin alterations 

indicative of skin damage (Lavker et al 1995, Lavker and Kaidbey 1997, Lowe et al 

1997), premature photo-aging and wrinkling.  Kligman and Gebre 1991 report that 

UVA causes biochemical changes in mouse skin and authors including Wang et al 

(2001) have linked UVA exposure to an increased risk of malignant melanoma 

formation. 

 

In the absence of this recommendation being implemented, pilots have to assume 

that, without ocular protection, their eyes may be exposed to UVA above 

recommended ICNIRP guideline limits even on relative short sectors.  Pilots should 

be aware that this may easily occur during flights which do not feel bright and that 
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subjective assessment of sunlight conditions would not be a reliable means of 

determining whether to use solar eye protection.  Pilots should also be informed that 

sunglasses or UV absorbing contact lenses will provide a better control of UV 

reaching the eye than the use of aircraft visors. 

 

10.13 Infrared 

Full infrared spectra were not measured and no data regarding exposure to infrared 

radiation has been presented.  However, there was no reporting of thermal 

discomfort in section 4.9 and therefore solar infrared is unlikely to present a health 

concern. 

 

10.14 Further research 

A number of new findings have emerged from this study.  It has also highlighted 

gaps in existing knowledge which further research may be able to address. 

As discussed in section 2.7, the prevalence of non-ionising radiation related ocular 

pathology in professional pilots compared to a general population has not been 

established.  It was not the aim of this study to determine this.  However, this 

research has shown that there is an increased risk present from the high levels of 

UVA irradiance measured in the cockpit during flight.  The research has established 

that the level of ocular exposure is complex and is affected by a number of factors.  

The traditional view that ocular dose is related to altitude and length of flight has 

been shown to be false.  This is clearly demonstrated by higher UVA ocular 

irradiance and dose during some short helicopter flights compared to a nine hour 

trans-Atlantic flight.  It has been demonstrated that the type of aircraft windshield 

installed is the main factor for UVA exposure but significant UVA transmittance by 

some windshields can be compensated by sunglass wear. However, for a number of 

reasons identified in this research there are many pilots not using sunglasses during 

flight.  Additionally, it is the busy short haul pilot who will accrue the greatest number 

of daylight flying hours annually.  A study investigating the prevalence of UV related 

pathology in pilots could therefore be more appropriately targeting using this new 

knowledge. 

 

The use of a large cohort of older, retired professional pilots may reveal that a 

career long exposure places the individual at higher risk than age matched controls.  

Identification of sufficient numbers of suitable participants may be problematic and 

recruitment techniques such as respondent-driven sampling (Heckathorn, 1997) 
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may be utilised to identify this population.  The finding of this research that older 

aircraft windshields are likely to be better UVA attenuators may affect the 

prevalence of cataract in this population.  However, a longitudinal study may identify 

an increase in cataract prevalence over time as pilots may spend more of their 

career behind a poor UVA attenuating windshield.  The levels of blue light hazard 

are less likely to be affected by windshield type.  With increasing evidence of the 

role of blue light in damage to photoreceptors (sections 2.4 to 2.6), the prevalence of 

macular degeneration in retired pilots together with their flying history would be of 

great interest. 

 

Were an industry standard windshield labelling system to be implemented to inform 

the pilot of the UVA attenuating properties of a particular windshield, independent 

research would be recommended in order to evaluate the effectiveness of such a 

scheme. 

 

Certain assumptions, discussed in section 7.1, have had to be made regarding the 

blue light hazard data and the calculations have likely produced a conservative 

estimate.  While complex scenario testing and data re-analysis may produce a more 

accurate estimate, this would still show the exposure to be within recommended 

guideline limits.  Any future changes to recommended guideline limits including 

recommendations for repeat exposures could be applied retrospectively to the 

existing data. 

 

There is strong evidence of an increased prevalence of melanoma in the pilot 

population (Hammer et al, 2009; Sanlorenzo et al, 2014; dos Santos Silva et al, 

2013).  There is also increasing evidence of the separate and particular role that 

UVA plays in development of melanoma (Wang et al, 2001; Mitchell and Fernandez, 

2012; Autier et al 2011).  Although dos Santos Siva et al (2013) found occupation 

type (pilot or air traffic controller) to be a poor predictor of prevalence, this was 

without the knowledge of the differing windshield transmission properties of aircraft.  

The particular filtered spectrum of high intensity irradiance of the less energetic part 

of UVA found in the cockpit could assist in the development of a UVA melanoma 

action spectrum.  Although erythemal hazard ratios were found to be low, these are 

heavily weighted toward UVB (section 1.4.8).  A UVA melanoma action spectrum 

could be easily applied to existing data. 
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A large and repeated variation particularly in short wavelength visible light affects 

melatonin production (Lockley et al 2003).  The data show that this scenario could 

occur in flight with large changes in blue light between ground level and altitude.  

Melatonin is a hormone produced by the pineal gland and is present in humans.  It is 

known to influence the regulation of circadian rhythm and it is affected by high 

irradiance conditions which suppress its release.  This, in turn, delays the onset of 

sleep and may lead to fatigue.  Additionally, the repeated cycle of low and bright 

conditions as may be found during a shift of a short haul pilot flying a number of 

daily sectors may increase the risk of fatigue. 

 

10.15 Appraisal of research 

The research described in this thesis sought to gain insight into the occupational risk 

of ocular exposure to the professional pilot.  Following careful information gathering 

and questionnaire preparation, information regarding the issues of sunlight in the 

cockpit, eye protection strategies used by professional pilots and barriers to the use 

of sunglasses has been elicited from nearly 3,000 current professional pilots.  This 

represents a significant proportion of the UK professional pilot population and gives 

a high level of confidence to data validity.  It is recognised that participants were 

likely to be BALPA members as this was the organisation through which the survey 

was promoted.  It is not known if this population is different to the overall UK 

professional pilot population or indeed if differences are present in professional 

pilots worldwide.  However, not only have clear themes arisen from these data but 

the findings have been invaluable in informing the other phases of the project. 

 

Large amounts of in flight spectral data have been collected using equipment which 

has been prepared and calibrated to a robust standard.  A range of flights on various 

aircraft types have been undertaken with the goal of determining the range of likely 

irradiance present during flight.  A small number of spectrometer readings had to be 

discarded due to signal saturation.  Here, irradiance calculations were based on 

data immediately before and after signal saturation.  A series of dark readings taken 

in controlled conditions have been applied to the data for the occasions where an 

intermittent shutter fault was present.  This resulted in irradiance calculations which 

were consistent with functioning shutter data. 

 

Further data collection of aircraft windshield transmittance at ground level from a 

number of aircraft types has assisted greatly in determining those aircraft in which 
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high ocular UVA exposures are likely.  These measurements were taken in situ and 

as discussed in section 8.5, some data were discarded due to likely variation in 

source intensity during data collection.  Additionally, it is acknowledged that there 

was a relatively low UV signal present.  However, using these data, new knowledge 

of the prevalence of the use of eye protection strategies has been combined with the 

transmission properties of typical visors and sunglasses to evaluate the ocular UV 

and blue light dose received in flight. 

 

Using the research data collected together with additional data such as MORS and 

typical pilot flight schedules, has enabled a picture to be built of the pilot ocular risk 

with regard to occupational exposure to short wavelength radiation based on best 

current knowledge of the ocular effects and safe recommended doses to minimise 

the risk of permanent ocular damage. 

 

The diagrammatic summary of the research on p.57 shows how the results from 

various components of the research have been used to inform other stages and to 

draw final conclusions.  At the time of writing, there has been no published work 

during the period of this research directly attempting to address this research 

question. 

 

10.16 Conclusions 

This research has found that UVB is blocked effectively by the aircraft windshield 

even in conditions of high overall incident irradiance.  This concurs with the results 

from previous studies.  However this study has, for the first time, established 

significant levels of UVA exposure on most flights.  Pilot UVA exposure is highly 

reliant on the type of windshield fitted on the aircraft.  Two similar aircraft of the 

same type may have different windshield transmission properties.  One will 

attenuate sufficient UV such that an unprotected eye would not receive a dose 

beyond the daily recommended limit during flight.  The other may cause the 

recommended ocular dose to be exceeded within ½ hour of flight.  The pilot has no 

means to visually assess the windshield to determine its UV transmission properties.  

It is therefore recommended that the pilot should assume poor UVA attenuation as a 

minority of the aircraft measured showed windshields with good UVA attenuation 

and these were generally older registered aircraft. 
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During aeroplane flights, there was a 4.1 times greater mean blue light hazard signal 

at altitude compared to at ground level.  The calculated ocular exposure level fell 

well below limits at which a risk of type II retinal photochemical damage may occur.  

However, the effect to the retina of repeated cyclic doses during different phases of 

the circadian cycle over a long term lifetime flying career is not known.   

 

This research has investigated solar eye protection habits of professional pilots and 

has uncovered the barriers present to using sunglasses, the issues with managing 

bright sunlight on the flight deck and the range of practices to block sunlight during 

flight.  From an ocular exposure perspective, the pilots most at risk will be those who 

use sunglasses minimally and who operate aircraft with poor UVA attenuating 

windshields.  Individual risk assessment of ocular exposure is difficult without 

knowledge of the windshield properties of all aircraft flown by a particular pilot and 

number of daylight hours flown.  From the results of this research, all sunglasses 

used by pilots are likely to provide adequate occupational ocular protection from 

UVA in flight and will ensure that recommended ocular exposure limits are not 

exceeded.  As the risk to pilots of retinal photochemical damage through long term 

lifetime blue light hazard exposure is uncertain, a minimum safe level of blue light 

hazard protection required in sunglasses cannot be ascertained.  However, the 

research has demonstrated that sunglass filters are likely to reduce the mean ocular 

exposure to the blue light hazard to at least the mean level expected on the ground 

without protection.   

 

There is a level of pilot misconception regarding UV exposure which is also likely to 

be held in the general population.  Pilot education should be considered an 

important tool.  Not only should the raising of awareness of the research findings be 

undertaken, whilst also addressing the misconceptions such as the protection 

afforded by thick windshields and the measure of skin tanning as a measure of 

overall UV exposure, but also the recommendation of practical strategies to reduce 

ocular exposure.   

 

The results show that the prevalence of non-ionising radiation related ocular 

pathology is low however it is recognised that it may not present within the working 

career of pilot.  Strong evidence suggests a higher prevalence of melanoma in pilots 

and further evidence links UVA with increased risk of melanoma formation.  The 

data collected in this research could be used to assess likely skin exposure in flight 

to any recommended guideline limits. 
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As the use of spectacle correction is a barrier to sunglass use, active steps can be 

taken to ensure that optimum UV protection is incorporated into the spectacle 

wearer’s lenses.  Assessment of the feasibility of promoting a spectacle lens with 

additional blue light hazard protection which is approved for night flying should be 

investigated. 

 

Based on the results of this research, a series of recommendation are made to 

different groups and organisations: 

1) The CAA should use the results of this research to update their website 

guidance materials as this is a key source of information to pilots and 

industry.  The results could also be disseminated to pilots and industry 

through CAA publications whilst specialists involved in Aviation Medicine 

could be informed through presentation at international conferences. 

 

2) There are a number of key messages to be delivered to the pilot population.  

Pilots must be made aware that windshields may transmit significant levels 

of UVA which may cause ocular exposure in excess of recommended limits 

within 30 minutes of flight unless eye protection is used.  The visual 

inspection of a windshield will not reveal which are good or poor UVA 

attenuators.  Any sunglass conforming to national or international standards 

will offer adequate UV protection and reduce harmful radiation to within 

recommended limits.  Graduated tints are useful for pilots and help to ensure 

that sunglasses can be worn successfully during flight.  Well fitting, 

lightweight frames with thin sides should help to ensure good headset 

compatibility, particularly for helicopter pilots.  Pilots should consider taking a 

headset when trying sunglasses to assist appropriate selection and fitting. 

 

3) Eye healthcare professionals should be able to make a number of 

recommendations to their pilot patients.  The promotion of graduated tints 

and frame fit as described above is recommended.  Additionally, 

optometrists and dispensing opticians should recommend a lens material 

which offers good UVA attenuation for spectacle wearing pilots.  All contact 

lens wearing pilots should be offered a lens with UV blocking properties. 

 

4) Windshield manufacturers should manufacture all new windshields with good 

attenuation up to 400nm and place information on existing windshields as to 
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their particular UVA attenuation properties.  As the industry regulator, the 

CAA should be instrumental in ensuring this change occurs by using the 

evidence presented in this research. 

 

5) Aircraft manufacturers should place greater emphasis on designing blinds 

and filters which offer greater windshield coverage as this research has 

found a high use of additional non standard protection strategies and poor 

ratings by pilots of the current aircraft standard systems.  The research has 

shown that some aircraft types offer greater overall light attenuation than 

others. 

 

6) As any change to aircraft sun visor design is likely to take some years, 

airlines should ensure that existing visors are serviceable and can be used in 

flight and should consider providing pilots access to further protection such 

as stick on visors in the cockpit.  Additionally, instrument screen brightness 

settings should not be limited as this is likely to discourage pilot sunglass 

use. 

 

This is an important piece of research as it has discovered a risk to pilot eye health 

through UVA exposure during flight.  While the blue light hazard measured is within 

recommended guidelines limits for exposure, the typical increase at altitude has 

been established.  Although the effects of lifetime exposure remain uncertain, the 

effect of typical sunglasses to reduce pilot ocular exposure has been quantified.  In 

order to reduce the ocular exposure risk, a number of practical and achievable 

recommendations have been made.  
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                       C HORLEY  AC, E VANS  BJW, B ENWELL  MJ.  Civilian pilot exposure to 
ultraviolet and blue light and pilot use of sunglasses.  Aviat Space 
Environ Med 2011; 82:895 – 900.  

 Population and animal studies indicate that long-term exposure to 
short-wavelength visible light and ultraviolet (UV) radiation causes in-
creased risk of certain ocular pathologies such as cataracts and macul-
opathy. The potential risk to fl ight crew is unknown. The UK Civil Aviation 
Authority (CAA) has issued guidance to pilots regarding sunglass selec-
tion; however, it is not known if this guidance is appropriate given pilots’ 
unique occupational environment. A search and appraisal of the relevant 
literature was conducted which showed that within the airline pilot pop-
ulation, there is limited evidence of a higher prevalence of cataracts. There 
are no data of other known UV-related ocular pathology. There is some 
evidence of higher prevalence of skin melanomas. Studies measuring 
cockpit UV radiation levels are limited and leave unanswered questions 
regarding airline pilot exposure. Data from optical transmission of cock-
pit windshields demonstrates the UV blocking properties at sea level. No 
studies have addressed the occupational use of sunglasses in airline pilots. 
Although it is likely that an aircraft windshield effectively blocks UV-B, 
the intensity of UV-A and short wavelength blue light present within the 
cockpit at altitude is unknown. Pilots may be exposed to solar radiation 
for periods of many hours during fl ight where UV radiation is known to 
be signifi cantly greater. Aircraft windshields should have a standard for 
optical transmission, particularly of short-wavelength radiation. Clear, un-
tinted prescription glasses will offer some degree of UV protection; how-
ever, sunglasses will offer superior protection. Any sunglasses used should 
conform to a national standard.   
 Keywords:   airline pilots  ,   UV  ,   blue light hazard  ,   ocular exposure  , 
  sunglasses  .     

 AIRLINE PILOTS ARE exposed to large variations in 
light levels within the cockpit environment. Factors 

infl uencing pilot exposure to solar radiation include azi-
muth of the sun, time of day and year, light refl ection from 
surfaces such as snow or cloud top, fi ltering effect of the 
ozone layer, the aircraft’s track, attitude, and altitude, 
transmission properties of the cockpit windshield, and 
the use of protection (sunglasses) by airline pilots. It is 
feasible that daytime long-haul fl ights expose airline pilots 
to high light levels for prolonged periods of time, par-
ticularly when  ‘ chasing the sun ’  fl ying east to west during 
daylight hours. 

 Ultraviolet (UV) radiation is defi ned as the waveband 
100-400 nm. It is generally subdivided into UV-A (315-
400 nm), UV-B (280-315 nm), and UV-C (100-280 nm) ( 20 ). 
The main source of UV radiation is from the sun. The 
Earth’s atmosphere, including the ozone layer, is respon-
sible for fi ltering the UV-C and most of the UV-B radia-
tion. UV radiation increases by 10 – 12% every 1000 m in 
altitude ( 3 , 45 ). This translates to a 170 – 290% increase in 
UV between sea level and a cruise altitude of 35,000 ft 

(10,668 m  ). This would be expected to increase further 
where refl ection from cloud top or snow is present ( 45 ). 
Blue light falls within the 400-500 nm range. 

 A photon is the basic unit of electromagnetic radiation. 
The amount of energy of a photon is inversely propor-
tional to the wavelength ( l ) of the radiation, as described 
by the Planck-Einstein equation E  5  hc/ l . This means 
that radiation of short wavelength (UV and blue light) 
carries more energy and is more damaging to human 
tissue than that of longer wavelength (for example green 
and red) light. 

 The areas of the body at most risk of excessive exposure 
to UV are the eyes and the skin. The National Radiologi-
cal Protection Board ( 31 ) suggests that approximately 
1 million workers are exposed to high levels of optical 
radiation from the sun. It is recognized that many of 
these individuals work outside and are involved in 
manual labor. Less than 1% of UV radiation below 340 nm 
reaches the retina; the remainder is absorbed by the cor-
nea and lens. This means that most UV is absorbed by 
the anterior structures of the eye, the cornea and lens, 
which are, therefore, most at risk of damage. Although 
only 10% of short wavelength blue light reaches the ret-
ina ( 42 ), there is evidence to suggest that long-term ex-
posure is suffi cient to disrupt its structure. 

 It is known that intense exposure to UV can disturb 
the cornea, which absorbs all UV below 300 nm and 40% 
of UV at 320 nm ( 44 ). This can cause an acutely painful 
infl ammation of the cornea, known as photokeratitis. 
This is not relevant to aviation since UV levels in this band 
of wavelengths are not suffi ciently intense in aircraft 
cockpits to invoke this response, which more commonly 
occurs following insuffi cient eye protection during elec-
tric arc welding. A large body of evidence supports the 
proposition that long-term exposure to UV is a risk 
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factor for cataracts ( 9 , 14 , 26 ). UV-induced cataracts are 
likely to arise through oxidative stress causing an in-
crease in reactive oxygen species (chemically reactive 
molecules which can, in turn, cause damage to the lens 
DNA and cross-linking of proteins) ( 5 ). There is a higher 
risk of cortical cataract with UV-B exposure consistent 
through different study designs, different populations, 
and varying levels of other known risk factors ( 27 ). There 
is only weak evidence for any association with other 
ocular surface conditions ( 44 ). 

 A multicenter study by Brilliant et al. ( 4 ) assessed the 
presence of cataract in 30,565 life-long residents of Nepal 
and found a positive association between cataract and 
increased sunlight exposure. Surprisingly, there was a 
negative correlation of similar magnitude between alti-
tude and cataract prevalence, which the authors attrib-
ute to tall neighboring mountains blocking the sun. The 
authors did not consider other potentially confounding 
factors, such as diet. 

 Increasing evidence ( 38 , 43 , 46 ) supports an association 
between solar radiation exposure and the risk of age-
related macula degeneration (AMD). This condition in-
volves degeneration of the photoreceptors in the macula 
area of the retina ( 25 ) and is the most common cause of 
irreversible visual loss in the developed world in indi-
viduals over 50 yr of age ( 23 ). Taylor et al. ( 41 ) found that, 
in a population of watermen, those with advanced dry 
AMD had signifi cantly higher exposure to predicted blue 
or visible light, but no difference with regard to UV-A or 
UV-B exposure. Deep blue light has been described as 
50-80 times more effi cient at causing photoreceptor dam-
age than green light ( 34 ). This  ‘ blue light hazard ’  has an 
excitation peak around 440 nm (due to the photobiolog-
ical action spectrum). Although some of the evidence is 
limited by the use of animal models, there is persuasive 
evidence that long-term exposure to high levels of solar 
radiation is a factor in photoreceptor damage ( 1 ) and a 
plausible mechanism for the damage has been identifi ed 
( 18 , 32 , 43 ). 

 There is increased risk of late AMD following cata-
ract removal and lens implant ( 1 ) as the crystalline 
lens absorbs an increasing proportion of shorter wave-
length visible light during cataract development. 
UV and blue light hazard blocking fi lters have been 
shown to cause signifi cantly less retinal damage in 
animal models. Intraocular lens implants with short 
wavelength fi ltering properties are being used increas-
ingly. Additionally, it has been proposed that a sensi-
tivity to glare and poor tanning ability increase AMD 
risk ( 12 ). Outdoor leisure time has been signifi cantly 
associated with an increased risk of early AMD in 
later years ( 10 ). 

 Part of the UK Civil Aviation Authority’s (CAA) remit 
covers fl ight crew health issues ( 8 ). The CAA has is-
sued guidance to pilots on sunglass selection ( 7 ). This 
paper aims to address UV and short-wavelength visi-
ble electromagnetic radiation exposure in airline pilots, 
the prevalence of related ocular pathology within the 
pilot population, and the use of eye protection in the 
cockpit.  

 METHODS 

 A review of the English language literature was under-
taken to identify relevant studies. All electronic searches 
were made through PubMed and Cochrane databases. 
In order to establish literature on optical transmission 
properties of cockpit windshields, additional electronic 
searches were conducted through the International Civil 
Aviation Organization, Federal Aviation Administration, 
Civil Aviation Authority, and  ‘ Google Scholar ’  search 
engine. 

 To determine studies addressing the use of sunglasses 
in airline pilots, an additional search was made through 
 ‘ Google Scholar ’  search engine to identify relevant jour-
nal articles. Searches were also made through aviation 
medicine books, the International Civil Aviation Organi-
zation, Federal Aviation Administration, and the Civil 
Aviation Authority. Relevant papers found referenced 
from the original shortlist or unpublished papers pre-
sented at scientifi c meetings were included. The fi nal 
electronic search was conducted on 22 February 2011.   

 RESULTS 

 Two studies were identifi ed regarding radiation levels 
within the cockpit. Diffey and Roscoe ( 15 ) measured ul-
traviolet radiation exposure during fl ight using a  ‘ poly-
sulphore fi lm ’  badge worn by pilots on the epaulette 
nearest to the side window. Recordings were taken from 
the captain and fi rst offi cer on 12 fl ights, including long- 
and short-haul on a wide variety of routes worldwide. The 
total exposure during fl ight was then measured from the 
badge, although no details of this process were available. 
Further measurements were taken with separate badges 
at ground level  ‘ around noon ’  from an unshaded hori-
zontal surface in fi ve locations worldwide. 

 The sensitivity of the fi lm was  ‘ confi ned principally to 
wavelengths less than 320 nm ’ . No detail was given re-
garding the accuracy of measurement of the fi lms, the 
range over which the fi lms were sensitive, or the proto-
col used to activate and deactivate the badges. For cali-
bration purposes, UV levels were also measured by the 
authors on one fl ight using a radiometer with a sensor 
with  ‘ similar spectral sensitivity ’  to the badges, although 
these data were not given. The results showed that all 
badges worn during fl ight had minimal exposure to UV 
radiation and were signifi cantly less than readings taken 
outside at ground level. Although no statistical analysis 
was carried out, values were small and projected annual 
doses fell within recommended annual exposure for in-
door workers. 

 The second study by Roscoe and Diffey ( 36 ) was a 
preliminary study of levels of blue light within the cock-
pit. Measurements were taken using a radiometer sensi-
tive to 370-520 nm during just one fl ight on a Boeing 767 
from London to Spain. The authors state that 50 – 60% of 
blue light was transmitted through an airbus A320 wind-
shield, although this differed from the aircraft type used 
in their study. 

 A series of readings were taken during climb, cruise, 
and descent with the sensor in various directions. Wide 
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variances in readings were found depending on the di-
rection of the sensor, but little effect was found with alti-
tude. Results were within recommended  ‘ threshold limit 
values ’  defi ned by the American Conference of Govern-
mental Industrial Hygienists. However, these limits are 
based primarily upon the threshold irradiance levels to 
produce acute photokeratitis ( 44 ). No statistical analysis 
was carried out and it is not known if the results were 
clinically signifi cant. The authors comment that ocular 
exposure in fl ight may be higher due to a slightly nose 
up aircraft attitude during cruise compared to a margin-
ally stooped human posture on the ground. 

 Recommendations for sunglasses with less than 10% 
transmission of blue light were made. It was not clear 
how this was derived based upon the data. The authors 
acknowledge that this was a preliminary study, how-
ever, no further published work was found. 

 One study was identifi ed regarding the optical trans-
mission of cockpit windshields. Nakagawara et al. ( 29 ) 
measured the optical transmission properties of eight 
windshields used in a wide range of aircraft types, includ-
ing Boeing and Airbus. Three radiometers were used to 
measure the transmission of the windshields for radia-
tion in the wavelength range 270 to 780 nm in a labora-
tory setting. Baseline readings without the windshield 
in place were taken between each measurement. The 
authors measured two windscreens under laboratory 
and fi eld conditions for validation purposes. 

 Six windshields (all from large commercial aircraft) 
were laminated glass, with the remaining two being of 
single-layer polycarbonate material (from smaller general 
aviation aircraft). The results showed that transmission 
was less than 1% through both glass and plastic wind-
shields from 280 to 320 nm (UV-B). Transmission varied 
between 0.41% and 53.5% from 320 to 380 nm (UV-A) 
with the plastic material showing superior UV blocking. 
The study, therefore, showed a high percentage of UV-A 
radiation was transmitted through some cockpit wind-
shields. It remains uncertain what the properties of 
windshield transmission are at altitude, where different 
temperatures and composition of incident radiation 
would be present. 

 Inquiries were made within the UK Civil Aviation 
Authority (Scurrah M., personal communication; 1 De-
cember 2009) and with aircraft windshield manufac-
turers (Goudie A., personal communication; 8 December 
2009) regarding windshield properties. There were re-
quirements for bird strike and other debris impact resis-
tance, resistance to variations in temperature, and cyclic 
loading. The only optical transmission requirement found 
was for a minimum transmission of the total visible light. 
Cockpit windshields are assessed at periodic maintenance 
and replaced if delamination, abrasion, or heater ele-
ment problems are detected. A number of factors may 
infl uence the optical transmission profi le of a windshield. 
These include the type of windshield design (three-layer 
laminate glass being common in large commercial jet 
aircraft), type of glass used, the specifi c area of the wind-
shield, the material used for the de-icing heater element, 
and the number of elements used. Although windshields 

are replaced periodically, it is not known whether age 
would affect the optical transmission. 

 Four studies were found investigating the presence of 
cataracts in airline pilots. No studies assessing the inci-
dence of other UV-related conditions, including AMD in 
pilots, were found. Nicholas et al. ( 30 ) investigated self-
reported disease rates among 6609 active and retired 
American and Canadian airline pilots from two airlines 
through questionnaires. Data collected included age, gen-
der, race, start and end years for commercial fl ying, 
lifestyle questions, presence of cataract, and cancer and 
non-cancer disease endpoints. The authors used an esti-
mated standardized incidence ratio, using the length of 
time as a commercial pilot, to compare their data with 
available data from the general U.S. population. It was 
acknowledged that this could induce error as self-re-
ported data in the pilot group was compared to record-
based data in the control group. Additionally, the study 
group would have had to be free from disease at their 
initial medical and may not be representative of the gen-
eral population. 

 A signifi cantly higher incidence of cataracts in the 
pilot population was found. It was unclear how the 
authors or subjects defi ned cataract or how the ques-
tionnaire was worded in order to collect these data. The 
type or grade of cataract present was also not known. 
The authors found a signifi cantly higher rate of motor 
neuron disease, which they felt was due to inaccuracy of 
pilot reporting. This may raise some doubt over the ac-
curacy of the other data. 

 Rebok et al. ( 35 ) studied a cohort of 3019 male pilots 
(ages 45-54 yr) retrospectively over a 10-yr period. Data 
were collected through the U.S. aviation medical records 
system. The research aim was to identify age-related visual 
problems. The study contained no control group and 
therefore no comparison could be made to the general 
population. The authors aimed to assess the risk of visual 
problems with fl ight experience and age through para-
metric modeling. 

 Data were collected on a wide range of ocular pathol-
ogies and grouped into broad categories. The most prev-
alent visual pathology was  ‘ corneal problems ’ . No further 
details were given and it is unknown if any were attrib-
utable to UV exposure. Cataract was the third most com-
mon visual disorder. No details of type or grade of cataract 
were given. For analysis, all data were combined to give 
a relative risk of  ‘ visual problems ’  with fl ight experi-
ence. With regard to the presence of UV-related pathol-
ogy, one can only conclude that cataracts were present 
in some pilots. 

 Kagami et al. ( 22 ) conducted a retrospective cohort 
study over a 12-mo period to determine the prevalence of 
cataract in 3780 Japanese airline pilots. Medical records 
were examined by one of the authors for the presence of 
cataract. Those cases detected had further data collected, 
including age at diagnosis and aeromedical decision 
outcome. The cataract type was classifi ed by the authors 
based upon the documented appearance on record. It is 
not clear if this diagnosis differed from that of the origi-
nal examiner and no interobserver reliability measures 
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were taken. Cataracts were documented as congenital or 
secondary/age-related. 

 The authors compared their results to a Japanese pop-
ulation study and concluded that the prevalence of cat-
aracts in the pilot population was  ‘ signifi cantly lower ’  
than the general population. It is not known how the 
data compare to a Caucasian pilot population. The most 
common age-related cataract detected was cortical 
followed by nuclear. No raw data were given and no 
statistical analysis was conducted. The authors question 
whether the pilot population is  ‘ healthier ’  than the gen-
eral population, but conclude that early cortical cataracts 
at the aeromedical examination may be missed unless 
dilated eye examination is carried out. 

 Rafnsson et al. ( 33 ) conducted a population-based 
case-control study using 71 pilots and 374 controls. Cat-
aracts were quantifi ed and graded according to World 
Health Organization classifi cation and all participants 
completed a lifestyle questionnaire. Cumulative cosmic 
radiation doses were estimated for the pilot group. Cos-
mic radiation consists of ionizing subatomic (mainly 
proton and alpha) particles that do not form part of the 
electromagnetic spectrum. A higher prevalence of nuclear 
cataracts, which was attributed to cosmic radiation, was 
found within the pilot group. The two groups were not 
age-matched and the study group had a higher preva-
lence of smoking, a risk factor for nuclear cataract ( 24 ). 
No acknowledgment was made in the paper of the 
potential effect of UV radiation to the pilot population. 
Criticism was received ( 17 ) as the authors’ estimated 
cosmic radiation doses were argued to be comparable 
with normal background levels. 

 Hammer et al. ( 19 ) reviewed the evidence of cancers 
in aircrew. An approximately twofold increased risk of 
melanoma was found in cohort studies. A weak link was 
found to cosmic radiation, but an established link was 
present between UV exposure and melanoma and non-
melanoma skin cancers. 

 The European standard EN 1836:2005 sets out require-
ments for sunglasses. Within the requirements, there are 
four UV transmittance ratings. The highest UV protec-

tion rating of 7 means that no more than 5% of 380-nm 
radiation is transmitted. There is no rating for transmit-
tance protection for radiation of up to 400 nm. Products 
which fulfi ll the standard receive a CE mark. However, 
these standards, unlike the Australia/New Zealand stan-
dard (AS/NZ1067:2003), may be self-certifi ed by the 
manufacturer and there is no requirement for third party 
testing. Dain et al. ( 11 ) found that 1.8% of 646 CE marked 
sunglasses had excessive UV transmittance. The U.S. 
standard is the American National Standards Institute 
(ANSI) Z80.3-2001 standard which includes three trans-
mittance categories. The lens should have a UV-B trans-
mittance of no more than 1% and a UV-A transmittance 
of no more than 0.3 times the visual light transmittance. 

 There are a wide variety of sunglass lenses commer-
cially available. Within the cockpit, the effectiveness of 
photochromic lenses, which react to UV radiation, will 
be reduced due to absorption properties of the wind-
shield. As the lenses take longer to lighten, they may not 
react rapidly enough when descending through cloud. 
As polarizing lenses allow through light’s transverse 
wave motion in only one direction ( 25 ), they can cause 
distortion patterns from some laminated cockpit wind-
shields, render certain instrument displays invisible, alter 
cloud appearance, and reduce ground refl ections useful 
for pilots. 

 No studies investigating pilot use of sunglasses were 
identifi ed in peer-reviewed journals. A number of articles 
published in aviation magazines and electronically were 
identifi ed. These articles ( 16 , 28 , 39 , 40 ) aim to offer guid-
ance to a pilot or medical examiner and are summarized 
in     Table I   together with the CAA guidance material ( 7 ). 
All authors recommend against the use of polarized lenses 
by aircrew and warn against the potential drawbacks of 
photochromic lenses.     

 Rosenthal et al. ( 37 ) assessed the UV protection qual-
ities of 32 pairs of  ‘ discount price ’  sunglasses (16 glass 
and 16 plastic) purchased from drug stores in the United 
States. Measurements were taken with two separate UV 
detectors and a radiometer. A manikin head was used with 
a detector placed at the eye position behind a 4-mm and 

  TABLE I.         SUMMARY OF RECOMMENDATIONS FOR PILOT SUNGLASSES.  

  Source 

 
CAA Guidance 

Material ( 7 ) Dully ( 16 )
Montgomery and 
Nakagawara ( 28 ) Spencer ( 39 , 40 )  

  Lens material Not stated Glass or polycarbonate CR39 plastic or 
 polycarbonate

CR39 plastic, glass or 
 polycarbonate 

 Tint color Gray or brown One that allows short wavelength 
 blue block, no color distortion, 
 contrast enhancing without 
 misrepresentation

UV blocking gray, 
 gray-green or brown

Gray, green or brown 

 Graduated tint may be 
 useful

No appreciable color 
 distortion

Graduated tint may be 
 useful 

 Tint absorption Up to 80% Up to 75% 70 – 85% 80 – 85% 
 Spectacle frame Well fi tting Sturdy, light, comfortable, 

 compatible with headset
Comfortable fi t 

 Photochromic lenses Discouraged Inappropriate Discouraged Try before buying 
 Polarizing lenses Discouraged Inappropriate Inappropriate Inappropriate 
 Other recommendations Graduated tint. Lens large 

 enough to allow 
 suffi cient protection 
 from oblique sunlight

Optimum tint will vary between 
 individuals. More than 1 tint 
 may be needed during fl ight. 20% 
 absorption yellow tint in low visibility

Small lenses not practical Large lens. Tint should 
 not completely block 
 part of the visible 
 spectrum  
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10-mm aperture. Readings were taken in natural day-
light in a horizontal plane with and without sunglasses. 
Measurements were taken with the sunglasses fi tted 
against the manikin forehead and repeated  ‘ approximately 
6 mm ’  away. 

 Results showed that UV exposure ranged from 0.8 to 
14.1% with no difference between glass and plastic lenses. 
At the 6-mm position, the exposure ranged from 3.7 to 
44.8%. No statistical analysis was carried out; however, 
the study did highlight the importance of frame fi tting 
on sunglass selection.   

 DISCUSSION 

 Shorter wavelength radiation is more energetic, that is 
it has more energy per photon and is associated with a 
higher risk of cellular damage through photochemical 
reactions. The effect of solar exposure on ocular health has 
been extensively researched and there is strong evidence 
that UV radiation exposure is a risk factor for cortical 
cataract formation ( 9 , 27 , 44 ). The presence of cataract, 
even in early stages, can affect visual performance, par-
ticularly in low light conditions. It can reduce visual acu-
ity as measured by a standard visual acuity chart, it can 
reduce the ability to see objects that have low contrast 
against their background ( 2 ), and glare may become trou-
blesome because the cataract causes intraocular light 
scatter. 

 There is no good evidence in the literature indicating 
an increased prevalence of cataracts in airline pilots. 
However, the literature is limited and so this conclusion 
must be tentative. In particular, no study questioned 
pilots on their use of optical correction and sunglasses. 

 There is increasing evidence of retinal damage with 
prolonged UV or blue light exposure ( 1 , 10 , 13 , 46 ); how-
ever, there is no evidence available in the literature of the 
prevalence of AMD in civilian aircrew. Nakagawara et al. 
( 29 ) demonstrated that at ground level, many airline 
cockpit windshields transmit a high percentage of light 
of wavelength over 320 nm (UV-A), but effectively block 
shorter wavelengths (UV-B). This does offer one expla-
nation of the fi nding by Diffey and Roscoe ( 15 ) that 
pilots were exposed to insignifi cant levels of UV. The de-
tectors used in the study were sensitive to wavelengths 
below 320 nm; however, these frequencies would have 
been blocked by the windshield, assuming it to be a sim-
ilar design to that measured by Nakagawara et al. ( 29 ). 
Roscoe and Diffey’s ( 36 ) study was unfortunately not 
followed up. Additional data addressing the variation 
of blue light levels with route, aircraft type, and time of 
day and year would be of great interest. 

 With a projected increase in UV in excess of 170% at 
cruise altitude compared to sea level, the transmission 
properties of airline windshields at altitude remain un-
certain. While it seems likely that UV-B radiation remains 
negligible in the cockpit at altitude, signifi cant levels of 
UV-A and short wavelength light around the blue light 
hazard (peaking at 440 nm) may be present. If this hy-
pothesis is confi rmed experimentally, one may not ex-
pect to fi nd a signifi cantly increased prevalence of 

cataracts due to occupational exposure within the air-
line pilot population. However, there may be a higher 
prevalence of retinal damage within this population. 

 Many pilots are required to wear corrective spectacles 
in order to meet the regulatory vision standards for fl ying. 
A degree of UV protection is offered from untinted pre-
scription glasses. The lens material CR39 is commonly 
used and blocks UV radiation below 355 nm; crown glass 
blocks UV below 320 nm ( 21 ). Antirefl ection coatings on 
spectacle lenses, although transmitting more visible light, 
may refl ect more UV radiation ( 6 ). Some soft contact 
lenses have UV blocking properties. Pilots may choose 
to wear prescription sunglasses in situations of bright 
light and glare. This should further enhance eye protec-
tion. Additionally, the use of aircraft sunshields and pro-
tective headwear may further reduce the level of short 
wavelength light entering the eye. 

 In conclusion, there is good evidence that long-term 
exposure to solar radiation, especially the ultraviolet 
and blue light components, is a risk factor for cataracts 
and, to a lesser extent, age-related degeneration of the ret-
ina. Pilots fl ying in daylight hours are exposed to solar 
radiation often for periods of many hours during a fl ight. 
Ultraviolet radiation is 2-3 times greater at cruising 
altitudes compared to sea level due to diminished atmo-
spheric absorption. Refl ectance from cloud tops also in-
creases incident solar radiation. Pilots are protected by 
the aircraft windshield, which should absorb most ultra-
violet radiation, but there are very few data to show they 
reliably do so. There is no standard for the optical trans-
mission properties of aircraft windshields. There should 
be such a standard. Pilots can be additionally protected 
by ordinary spectacles, which generally absorb UV below 
355 nm. They can also choose to wear sunglasses in bright 
conditions. CAA provides advice on the choice of sun-
glasses, but there are various national standards for sun-
glasses that not only ensure strong absorption of UV, but 
also have requirements for coloration to prevent the color 
of sunglass lenses distorting the color of aviation signal 
lights. Based on current available evidence, pilots could 
simply be advised to wear well-fi tting sunglasses when 
fl ying in prolonged bright conditions and to make sure 
those sunglasses conform to a national sunglass standard.    
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ABSTRACT

It is known that ultraviolet radiation (UVR) increases by 10–
12% every 1000 m altitude; UVR at the 10 000 m of typical
cruise altitude for commercial aircraft may be 2–3 times
higher than at ground level. Information on the levels of solar
UV exposures is essential for the assessment of the occupa-
tional risk of pilots developing sun-related eye disorders and
skin cancers. The aim of the study was to investigate how UV
hazard exposures can be measured during flights so that the
occupational dose can be ascertained and compared with
international guidance. This article describes the development
of instrumentation for automated time-stamped spectral
measurements which were collected using bespoke automa-
tion software. The software enables the advanced acquisition
techniques of automated dark signal capture and multiband
integration control optimizing the dynamic performance of
the spectrometer over the full spectral range. The equipment
was successfully tested in a number of aircraft and helicopter
flights during 2012–2013 and illustrated in this article on an
example of a Gatwick-Alicante flight.

INTRODUCTION
It is known that ultraviolet radiation (UVR) increases by 10–
12% every 1000 m altitude (1); UVR at the typical cruise alti-
tude of commercial aircraft, 10 000 m, may be 2–3 times higher
than at ground level. Ocular exposures may further increase due
to reflectance from clouds as water reflects both the direct UVR
from the sun as well as the diffuse component from the entire
sky. Research addressing the prevalence of UVR related ocular
pathology in the professional pilot population is limited and
inconclusive (2). Investigation of the eye protection habits of
professional pilots (3) shows a wide variation in the use of sun-
glasses during flights. In addition, there is some evidence of an
increased prevalence of melanoma in professional pilots (4).
Information on the levels of solar UV exposures is essential for
the assessment of the occupational risk of pilots developing sun-
related eye disorders and skin cancers.

The International Commission on Non-Ionizing Radiation Pro-
tection (ICNIRP) has issued exposure limit guidelines for both
UVR and Blue Light hazards (5,6). The Exposure Limit Values

(ELVs) take into account the biological effectiveness of the
optical radiation in causing harm at different wavelengths, the
duration of exposure to the optical radiation and the target tissue.
The ELVs represent levels at which ICNIRP considers most of
the working population can be repeatedly exposed without suf-
fering any acute adverse health effects and without demonstrated
risk of long-term effects.

To protect the eye from UV induced cataract, a maximum radi-
ant UV-A (315–400 nm) exposure for the eyes within an 8 h
working day should not exceed 10 kJm�2. The ICNIRP guidelines
recommend that the UV-A limits be considered as “ceiling values”
for the eye and ELVs are directly applicable to exposure of the
cornea under worst-case conditions of normal incidence (7).

Previous research investigating civilian pilot exposure to UVR
and Blue Light hazards is limited (8,9). Diffey and Roscoe (8)
measured erythema-weighted radiant exposure during flights
using polysulfone film badges worn by pilots on the epaulette
nearest to the side window. Recordings were taken from the cap-
tain and first officer on 12 flights, including long and short-haul
on a wide variety of routes worldwide; the total exposure during
flight was then measured from the badge. The results showed
that maximum exposures did not exceed 0.019 MED h�1 and
were significantly less than the doses on unshaded horizontal sur-
face at ground level: 2.3 MED h�1 in Adelaide (35° S, March)
or 0.73 MED h�1 in Newcastle (55° N, partial clouds, June). It
was concluded that annual occupational exposure of four MEDs
is negligible and civilian aircraft offer virtually complete protec-
tion from biologically damaging UVR.

As spectral sensitivity of polysulfone dosemeters is restricted
to the wavelengths shorter than 330 nm (10), they are not suit-
able for UV-A measurements; radiant exposure from solar radia-
tion filtered by the aircraft windscreen may be underestimated if
measurements do not include the contribution from the UV-A
component. Furthermore, polysulfone films register total radiant
exposure and do not contain spectral information or dose rate.
These data cannot be correlated to flight log or used for provid-
ing evidence-based guidance on eye protection.

Roscoe and Diffey (9) also used a sensor comprising an inter-
nally baffled barrel with 2.5° field of view and blue light filter,
370–520 nm, to measure blue light in a cockpit. During a 2 h
15 min flight from Gatwick to Malaga, a wide variation in radi-
ance was found depending on the direction of flight; the authors
concluded that the blue light hazard was similar to that at ground
level pointing up at a clear sky.

To carry out detailed assessments of pilots’ exposure under
different flight conditions, time-stamped spectral data are needed.
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This could be related to flight details, such as duration, direction
of flight, altitude and cloud cover. Miniature CCD array spectro-
radiometers are increasingly used in a range of applications
where rapidly changing spectral information is required to be
captured as a function of time, such as in phototherapy dosimetry
(11), solar monitoring (12) or measurement of emissions from
sunbeds (13,14). Although CCD array spectroradiometers offer
many advantages, they suffer from stray light (15) and variation
in characteristics with ambient temperature (16). Guidance on
their use for measuring solar UV spectra (17) recommends tem-
perature control and automated dark signal acquisition.

The constraints of aircraft cockpits and the operational
requirements of commercial flights apply additional restrictions
on the use of spectroradiometers for the assessment of pilots’
exposure:

1 The confined space rules out temperature control of the instru-
ments;

2 The equipment should not cause interference with aircraft elec-
tronics or compromise flight safety;

3 The input optics and light guides may pose an obstruction to
pilots if placed near the face;

4 All instrumentation must be independently powered for the
duration of the flight.

The aim of this study was to investigate how UV exposures
can be measured during flights so that the occupational dose can
be ascertained and compared with international guidance. This
article describes the design of instrumentation, its limitations and
illustrates an example of its successful operation on a flight from
Gatwick to Alicante.

MATERIALS AND METHODS
At any given time, in the absence of additional filters or screens, the
shape of the transmitted solar spectrum remains the same and it is inde-
pendent of the distance from the windscreen, that is the intensity changes
but the relative percentage of individual spectral regions remains the
same. In other words, UV-A, erythema and Blue–Light-weighted irradi-
ance follow illuminance, and the illuminance is unambiguously linked to
the hazard level. It is, therefore, possible to reconstruct UV-A, erythema
and Blue–Light-weighted irradiance from measured illuminance using a
broad-band instrument if spectral measurements are simultaneously taken
at a different distance from the windscreen (18,19).

In order not to compromise safe flight operations, it was proposed that
measurements of spectral irradiance be carried out at specified times at a
fixed position in the cockpit in close proximity to the front aircraft wind-
screen. Time synchronized broad-band illuminance measurements would
be taken near the pilot’s face representing typical tasks during flight.
Using broad-band illuminance data and spectral irradiance from spectral
measurements, UV-A, erythema and Blue–Light-weighted irradiance may
then be determined from the ratio of illuminance at these locations.
Measurement hardware. The accessible solar emission was measured
over the spectral range of 280–1100 nm using a miniature CCD array
spectroradiometer HR4000 (Ocean Optics Inc, Dunedin, FL), S/N
HR4C1877, equipped with 25 lm entrance slit and HC1 grating. It was
coupled by a metal jacketed QP600-2-SR/BX optical fiber to a CC-3-UV
diffuser, see Fig. 1.

For fully autonomous operation of equipment during flight, an in-line
INLINE-TTL-S fiber shutter was connected directly to the spectroradiom-
eter by RS232. The shutter enabled a dark measurement to be carried out
immediately after every data acquisition. The spectroradiometer and TTL
shutter were controlled by automation software installed on an ASUS
R2E palmtop (Windows Vista operating system) connected to the spect-
roradiometer through a single USB computer cable. An XCell Pro battery
enabled more than 8 h continuous operation of the palmtop and the
HR4000; for longer flights a second battery was available. A YSN-12680
12 VDC battery was used to power the optical shutter.

Two miniature TR-74Ui Illuminance UV Recorders (T&D Corp,
Japan) shown in Fig. 2 were used to record illuminance data that were
time-synchronized with spectral measurements. One unit was at a fixed
position (set for automated readings), side-by-side with the input optics
of the HR4000; the other was used by a researcher taking manual read-
ings from an additional fold down seat located between the pilots’ seats
known as the aircraft “jump seat”. These readings were taken at the level
of the pilot’s face to measure ocular exposure when looking straight
ahead out of the cockpit and angled down to measure ocular exposure
when looking toward the primary aircraft instrumentation. A maximum
obtainable illuminance reading in the cockpit was also taken. These illu-
minance data and spectral irradiance from spectral measurements were
then used to calculate UV-A and Erythema-weighted irradiance for the
assessment of ocular safety for the flight.

An assessment was carried out prior to flight to ensure that the equip-
ment did not interfere with any aircraft systems and that the airline cap-
tain (responsible for the safe conduct of the flight) approved of the
positioning and securing of the equipment for flight.

Accuracy of wavelength calibration of the HR4000 was verified
before and after each flight by a low pressure Hg pen-ray lamp; Fraunho-
fer lines were used for confirmation of wavelength stability of in-flight
data. The system was calibrated and its performance was monitored over
the duration of this study in a laboratory controlled environment using
1000 W tungsten-halogen lamps, calibrated for spectral irradiance to the
Physikalisch-Technische Bundensanstalt (PTB) traceable reference stan-
dards. For the analysis of the in-flight exposures and to minimize contri-
bution of stray light, the spectroradiometer was additionally calibrated to
the solar spectral irradiance at solar noon on a clear day during mid sum-
mer, using a scanning double-grating monochromator D3 180 (Jobin
Yvon, Longjumeau, France) as a reference instrument.

It is important for solar measurements that the input optic is able to
collect radiation at different angles. The angular response of the CC-3-

Figure 1. Components of automated measurement equipment: (a)
HR4000 spectroradiometer, (b) optical fiber, (c) in-line TTL shutter with
control box and power supply, (d) shutter battery, (e) CC-3-UV diffuser,
(f) palmtop computer, (g) battery.

Figure 2. TR-74Ui Illuminance UV Recorder.
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UV diffuser was measured using a collimated 100 W tungsten-halogen
lamp at angles ranging from �80° to +80° in 5° intervals. For the inci-
dent angles (�30°), the input optic of the spectral system matches the
cosine response within 5% and is constant with wavelength. At 40°, the
input optic throughput is approximately 9% lower. The angular response
of TR-74Ui Illuminance UV Recorder is similar; the cosine response
error is 6% at �30° and 8% at �40°. ICNIRP guidance (7) states that
for the eye hazard assessment, the detector field of view can be reduced
and limited to 80° (�40° from the normal). Angles of incidence higher
than 40° are restricted by the cockpit structure and so the angular
response of the instrumentation is considered to be suitable for this appli-
cation.

It is known that the performance of CCD array spectroradiometers is
affected by variations in ambient temperature (15). Constraints of in-flight
measurements rule out the possibility of operation of the instrument in a
temperature-controlled environment. To evaluate temperature effects,
wavelength position, sensitivity and structure of background signal were
measured at the range of foreseeable operation temperatures from 10°C
to 40°C.

Elevated ambient temperature causes blueshift of wavelength position,
exceeding 0.5 nm at 40°C. The sensitivity change with temperature
between 22 and 35°C is relatively small, within 2–3%, with respect to
the sensitivity at 22°C. However, the mean of dark signal and the stan-
dard deviation of the dark signal both increase significantly with increas-
ing integration time above 100 ms and with increasing ambient
temperature. A sharp increase in dark signal, and, as a result, loss of sig-
nal-to-noise ratio at elevated temperatures for this instrument is a major
limiting factor of use outside a temperature-controlled environment. A
dark measurement taken immediately after measuring the signal mitigated
this effect.

It was shown that thermal equilibrium of the HR4000, for example
instrument internal temperature, lagged behind the change of ambient
temperature for up to 30 min. Therefore, monitoring ambient tempera-
ture during field measurements with this particular instrument may be
highly inaccurate if ambient temperature used for correction of its per-
formance. The instantaneous board temperature which relates to the
internal temperature of the HR4000 was a better and more dynamic pre-
dictor of spectroradiometer characteristics than ambient temperature
when the instrument was used outside of a temperature-controlled envi-
ronment. In this study, board temperature of the HR4000 was automati-
cally recorded for each acquisition for indication of required temperature
correction.

Control acquisition software. The Automated Spectrometer Acquisi-
tion System (ASAS) has been designed for operation with Ocean
Optics CCD array spectroradiometers when measurements are required
to be repeated at specific time intervals under variable illumination
conditions. The schedule of measurements, for example start, end and
interval times between measurements, is set within ASAS software so
that measurements run autonomously. Captured data may be analyzed
within ASAS; the results are displayed in tabular and graphical for-
mats.

The ASAS program works by automatically determining the acquisi-
tion time of the current light conditions for the specified spectral range to
reach a user-defined target count level. Between scheduled measurements,
the equipment continuously takes acquisitions and estimates the integra-
tion time for the next scheduled time.

Within each scheduled acquisition, up to three spectral regions can be
chosen to optimize the signal-to-noise ratio within a narrower spectral
range than the full spectral capability of the instrument. The maximum
count level measured by the HR4000 in the 280–1100 nm solar spectrum
is at approximately 530 nm; the signal measured at 400 nm is 20–30%
of the maximum value; at 350 nm the signal is less than 10% of maxi-
mum value, whereas background is nearly constant across the whole
spectral range. If the full spectral range is measured in a single acquisi-
tion, data at wavelengths shorter than 400 nm may be subject to low sig-
nal-to-noise ratios. Splitting the full instrument spectral range into
segments enables optimization of the signal in each spectral region sepa-
rately while allowing saturation outside the region of interest. The choice
of spectral regions may be dictated by the target biomarker, for example
315–400 nm UV-A for studies of ocular damage and 380–600 nm for
retinal phototoxicity or melatonin entrainment. Selected individual spec-
tral regions could then be “stitched” together to obtain the complete spec-
trum. If the spectral ranges of these three regions partly overlap, it also
provides a useful control measure.

For this study, the following spectral regions were chosen: 280–
400 nm, 380–500 nm and the complete spectral region of the HR4000
spectroradiometer, 280–1100 nm. When saturation is permitted outside
the restricted spectral range, charge from saturated pixels may leak into
adjacent pixels. This effect is especially critical in measurements of the
short wavelength UV range where variations in signal level are high.
Well depth is specific to the CCD array spectroradiometer; the HR4000
used in this study has a well depth of 16 383 counts. To avoid saturation
in the target spectral region and signal nonlinearity near saturation level,
the measurement spectral range was set wider than the spectral range of
interest, for example 280–450 nm acquisition boundaries were set for the
280–400 nm spectral region and the target count level was set at 15 000,
~90% of the maximum counts.

The time interval between scheduled measurements can be set from a
few seconds to 99 h. The time interval must be greater than the actual
time required to capture, read out and save light and background data.
The minimum time interval for acquisition of three spectral regions
based on the maximum integration time for the HR4000 (10 s) is 3 min.
In this study, a time interval of 10 min was set; measurements for future
cockpit studies could be taken more frequently, for example for measure-
ments during taking off/landing or fights through fast changing cloud
cover.

Data were saved as raw spectral data and, if selected, as spectral irra-
diance and effective spectral irradiance weighted with a specific action
spectrum, providing that the instrument was calibrated for spectral irradi-
ance and that background measurements were available. Built-in spectral
weighting could be chosen from UV hazard spectral weighting function
S(k) (5,20), Erythema spectral weighting function (19), Blue Light hazard
spectral weighting function B(k) (6), Retinal Thermal hazard spectral
weighting function R(k) (6) and luminous efficiency weighting V(k) (21).
For each measurement, the saved data file contains the raw signals for
light and dark signals, the calibration, un-weighted and, if spectral
weighting is chosen, the effective irradiance. Results are also displayed
graphically.

RESULTS AND DISCUSSION
The automated measurement system was deployed during a
number of aeroplane and helicopter flights. The sample data
presented were taken from a flight on 1 March 2013 from Gat-
wick (51°N, 0.19°W) to Alicante (38°N, 0.56°W) on an Airbus
A321.

Stitching UV spectral region R3 and the whole spectral range
R1 showed good overlap and overall stitching was not required
for the majority of timed acquisitions. The board temperature of
the HR4000 during this flight corresponded to the variation in
ambient temperature within 22–29°C where sensitivity change is
relatively small (2–3%) and temperature correction was not
applied for this flight data.

At cruise altitude, UV-A irradiance measured at a fixed posi-
tion on the aircraft windscreen increased by factor of almost 50
compared with the measurement at ground level at departure in
the morning, and by a factor of 6–7 compared with ground
level at the destination in the early afternoon, see Fig. 3a.
Erythema-weighted irradiance varied from negligible
(<<1 mWm�2) at ground level on departure to 16–20 mWm�2

at cruise altitude and 4–5 mWm�2 at ground level at the desti-
nation.

Similarly, Blue Light irradiance at cruise altitude (Fig. 3b)
reached 60 Wm�2 and increased by a factor of 50–60 compared
with the ground level at departure and by a factor of 7–8 at des-
tination. While all measured parameters, for example illumi-
nance, UV-A, erythema and Blue–Light-weighted irradiances,
varied considerably during flight, UV-A, erythema and Blue–
Light-weighted irradiances closely followed the illuminance; the
ratios of these values with respect to the illuminance, known as
hazard ratios and expressed in Wlm�1 (18,19), were substantially
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constant at cruise altitude and were very similar at ground level
on departure and at the destination as shown in Fig. 4. The lar-
ger difference in erythema hazard ratio at ground level on depar-
ture and at the destination needs further investigation; it may be
attributed to the lower latitude of Alicante (38°N) compared with
Gatwick (51°N).

Hazard ratios shown in Fig. 4 and illuminance measured at
pilot’s eye level were used to estimate UV-A ocular exposure
presented in Fig. 5.

The UV-A exposure for the duration of this flight measured at
a fixed position on the aircraft windscreen exceeded 97 kJm�2.
Ocular UV-A exposure of pilots varied between approximately
20 kJm�2 (looking down) and 26 kJm�2 (looking ahead).

The ocular exposure of pilots during this flight could have
exceeded the ICNIRP guidance of 10 kJm�2 for a maximum 8 h

UV-A exposure if appropriate eye protection was not used. Use
of sunglasses and visors, therefore, is very important and should
reduce ocular exposure.

Erythema-weighted exposure in this flight reached 1.4 SEDs.
Some studies (7,22,23) have shown that indoor workers, as with
most of the population, typically experience about 300 SEDs per
year from solar exposure, mostly from weekends and holidays.
Outdoor workers at the same latitudes may receive in excess of
1000 SEDs per year.

The measured erythema-weighted exposure during this flight
was significantly higher than the level of 0.019 MED h�1 previ-
ously reported by Diffey and Roscoe (8) which may be due to
contribution of high level of UV-A in the current measurements
which was not possible to measure in the previous study and/or
a difference in the UV transmission of aircraft windscreens. This
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Figure 3. Variations in UV-A and erythema-weighted irradiance (a); Blue Light irradiance and illuminance (b) during flight.
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difference and the analysis of the higher erythema dose requires
further investigation.

CONCLUSIONS
Methods for the assessment of personal UVR exposures of com-
mercial aircraft pilots and instrumentations for automated time-
stamped spectral measurements were developed and tested in a
number of aircraft and helicopter flights during 2012–2013,
shown here on an example of a Gatwick-Alicante flight.

The method combines the capture of automated spectral data
from a fixed position just behind the front windshield with unob-
trusive manual measurements of illuminance at the pilot’s eye
level from the jump seat during flight. The spectral measurements

were collected using bespoke automation software. The software
enabled advanced acquisition techniques of automated dark signal
capture and multiband integration control optimizing the dynamic
performance of the spectrometer over the full spectral range.

The data presented show that, despite the ergonomic con-
straints of the flight deck and the importance of maintaining
flight safety, time-stamped spectral measurements can be suc-
cessfully and accurately gathered throughout flight.

Comparison of ground and altitude measurements over a ser-
ies of flights will enable a more detailed evaluation of the effects
of altitude and irradiance levels. In addition, with continuous
data acquisition throughout flight, the occupational UVR and
Blue Light hazard dose to the pilot can be calculated. These data
could also be used for analysis of circadian disruption.

0.0E+00 

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

1.2E-06

0.0E+00 

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

07:40:48 08:09:36 08:38:24 09:07:12 09:36:00 10:04:48 10:33:36

E
ry

th
em

a 
ha

za
rd

 r
at

io
, W

/lm

U
V

A
 a

nd
 B

lu
e 

L
ig

ht
 h

az
ar

d 
ra

ti
os

, W
/lm

Time

UVA
Blue Light
erythema

Ground

Cruise 

Ground

Figure 4. Variation of hazard ratios during flight.

0

2

4

6

8

10

12

14

16

07:48:00 08:02:24 08:16:48 08:31:12 08:45:36 09:00:00 09:14:24 09:28:48 09:43:12 09:57:36 10:12:00

U
V

A
, W

/m
2

Time

looking ahead

looking down

Cruise 

Figure 5. Estimated UV-A irradiance at pilot’s eye level during flight.

Photochemistry and Photobiology, 2014, 90 939

327



Using this equipment and measurement protocol on various
aircraft on differing routes at different times of the year will
enable the variance of exposure to be ascertained and to identify
those flights where exposure is likely to be greatest. Further
knowledge of the eye protection habits of professional pilots will
help to identify whether current practices are likely to offer the
pilot adequate protection from ocular damage. In addition, these
data will enable evidence-based guidance on optimum ocular
solar protection for pilots when choosing sunglasses.
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Appendix D: Information sheet 

The occupational use of eye protection by commercial pilots 

 

Dear 

 

You are being invited to take part in a research study.  Before you decide it is 

important for you to understand why the research is being done and what is 

involved.  Please take time to read the following information and discuss it with 

others if you wish.  Feel free to ask me if there is anything that is not clear or you 

would like more information.  Take time to decide whether you wish to take part. 

 

Thank you for reading this. 

 

It is known that long term exposure to short wavelength light including ultraviolet can 

have detrimental effects to the eyes.  There is a greater risk of eye conditions such 

as cataract and macular degeneration.  Eye protection, such as the use of 

sunglasses in the cockpit, should block potentially harmful light.  However, it is not 

known the frequency or type of eye protection used by pilots.  I would like to conduct 

a one-to-one interview with you to help me establish, from your own experience and 

from observing other pilots, the types and diversity of strategies used by pilots to 

protect their eyes from sunlight and glare. 

 

Be assured that participation is voluntary and any information given regarding your 

own eye protection habits will not affect your medical certification.  Although the 

Authority has issued guidelines for the selection of pilot sunglasses, it is not proven 

that these are appropriate.  Your interview forms part of a larger research project.  I 

plan to use information that you give me to develop a questionnaire which we hope 

a large number of commercial pilots will complete. 

 

Further parts of the research project include the measurement of cockpit light levels 

at altitude and measurement of the effectiveness of a range of sunglasses at these 

light levels.  This research will hopefully lead to a much better understanding of the 

occupational light levels in aviation and targeted advice on sunglass selection to 

pilots. 
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Your interview will be audio recorded so that all appropriate information that you 

give can be used.  No personal identifying information will be recorded and the 

recordings will be deleted once all the information has been transcribed.  I will keep 

a record of who has been interviewed; however, this will be stored separately and 

will not be shared with others.  All of the information you give me will be stored in 

accordance with the Data Protection Act (1998). 

 

For the purposes of a future part of the research, you may be asked if you would be 

willing to donate your current aviation sunglasses for testing and measurement.  In 

this scenario, new replacement sunglasses of the same type would be provided to 

you. 

 

The Authority is sponsoring this research and it is likely that the results will be 

published as a CAA paper sometime around 2013.  The research has ethical 

approval from the Institute of Optometry and the Faculty of Health and Social Care 

Ethics Committee at London South Bank University. 

 

In the event of dissatisfaction with the conduct of your interview, feel free to contact 

my supervisor, Professor Bruce Evans, Director of Research at The Institute of 

Optometry, 56-62 Newington Causeway, London SE1 6DS 

(bruce.evans@virgin.net). 

 

I hope that you will consider participating.  If you do decide to take part, you will be 

given this information sheet to keep and asked to sign a consent form.  If you decide 

to take part, you are still free to withdraw at any time.  Again, if you have any further 

questions, I would be happy to discuss these with you. 

 

Thank you 

 

 

 

 

 

Adrian Chorley   

 

Adrian.chorley@caa.co.uk 

01293-573637  

mailto:bruce.evans@virgin.net
mailto:Adrian.chorley@caa.co.uk
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Appendix E: Consent form 

 

The occupational use of eye protection by commercial pilots 

 

 I have read the attached information sheet on the research in which I have 

been asked to participate and have been given a copy to keep.  I have had 

the opportunity to discuss the details and ask questions about this 

information. 

 The investigator has explained the nature and the purpose of the research 

and I believe that I understand what is being proposed. 

 I understand that my personal involvement and my particular data from this 

study will remain strictly confidential. 

 I have been informed that the interview will be audio recorded, what the data 

collected in this investigation will be used for, to whom it will be disclosed, 

and how long it will be retained. 

 I understand that I am free to withdraw from the study at any time, without 

giving a reason for withdrawing. 

 I hereby fully and freely consent to participate in the study. 

 

Participant’s Name: (Block Capitals)  …………………………….. 

 

Participant’s Signature:   …………………………….. 

 

Date:      …………………………….. 

 

As the investigator responsible for this investigation, I confirm that I have explained 

to the participant named above, the nature and purpose of the research to be 

undertaken. 

 

Investigator’s Name:    ADRIAN CHORLEY 

 

Investigator’s Signature:   …..………………………. 

 

Date:      …..……………………….  
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Appendix F: Questionnaire information sheet 

Dear aviator 

 

It is known that long term exposure to short wavelength (energetic blue) light and 

ultraviolet can have detrimental effects to the eyes.  Over time, there is a greater risk 

of eye conditions such as cataract and macular degeneration following exposure.   

 

Eye protection, such as the use of sunglasses in the cockpit, should help to block 

potentially harmful light.  However, the type of eye protection used and the 

frequency of its use by pilots is currently unknown.  Additionally, the light levels at 

altitude, once filtered by the aircraft windscreen are not fully understood. 

 

As a commercial or airline pilot, you are being invited to take part in a research 

study and we need your help!  Please take time to read the following information 

and decide whether you wish to take part.  The aim of this research is to develop a 

clear picture of the risk to professional pilots of long term exposure to short 

wavelengths and to provide evidence based guidance as to the optimum eye 

protection for use within the cockpit. 

 

This survey should take around 5-10 minutes to complete.  The researchers are 

looking to understand overall trends and averages, not individual responses. No 

identifying information such as name, email address or CAA reference number will 

be requested. 

 

More details about the study. 

• The information being collected in this survey is being used for research 

purposes only.  The research team are committed to protecting your privacy and 

security on line. 

• By participating in this survey, you are consenting to having your responses 

and information about your eye protection habits used by the Institute of Optometry, 

London South Bank University and the UK Civil Aviation Authority as part of the 

research on pilot eye protection.  

• Research results from this survey should be published in a scientific journal 

and as a CAA paper after 2013.  The research has ethical approval from the 

Institute of Optometry and the London South Bank University Research Ethics 

Committees. 
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• Participation is voluntary.  All information will remain confidential and results 

anonymous and will be stored in accordance with the Data Protection Act (1998).  

The results will be retained for 10 years after completion of the project in 

accordance with Medical Research Council guidance. 

• If during the survey you would like to withdraw and not have your answers 

used, please email the researcher at the address below. 

• If you have any questions regarding the survey, please contact Adrian 

Chorley on 01293-573637 or adrianchorley1@aol.co.uk.  If you have any concerns 

about this survey please contact Professor Bruce Evans, Director of Research at 

The Institute of Optometry, 56-62 Newington Causeway, London SE1 6DS 

(bjwe@bruce-evans.co.uk). 

 

We very much appreciate your taking the time to complete this survey.  Thank you. 
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Appendix G: Equipment information and risk assessment 

1. Introduction 

 

The Ocean Optics HR4000 high resolution spectrometer is a device for capturing 

light spectra data.  The instrument measures light and does not emit any light or 

other radiation or radio waves. 

The serial number for this equipment is: HR4C1877 

 

2. The equipment 

a) Ocean Optics Spectrometer HR4000  

 

External 

The HR4000 is a sealed unit.  The casing measures 15cm x 10.5cm x 

4.5cm.  The weight of the HR4000 is 570 g. 

 

 
 

Internal 

 

The USB4000 Spectrometer connects to a computer via the USB port. When 

connected through a USB 2.0 or 1.1, the spectrometer draws power from the 

host computer, eliminating the need for an external power supply. The 

HR4000 will be controlled by the LabView automation software that operates 

on Windows operating systems. 

 

Below is a diagram of how light moves through the optical bench of an 

HR4000 Spectrometer. The optical bench has no moving parts that can wear 

or break; all the components are fixed in place at the time of manufacture. 

The table below lists internal components of the spectrometer. 
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Item  Name  Description  

1  SMA Connector  
Secures the input fiber to the spectrometer. Light from the input fiber 
enters the optical bench through this connector.  

2  Slit  

A dark piece of material containing a rectangular aperture, which is 
mounted directly behind the SMA Connector. The size of the aperture 
regulates the amount of light that enters the optical bench and controls 
spectral resolution.  

Only Ocean Optics technicians can change the Slit.  

3  Filter  

Restricts optical radiation to pre-determined wavelength regions. Light 
passes through the Filter before entering the optical bench. Both 
bandpass and longpass filters are available to restrict radiation to 
certain wavelength regions.  

Only Ocean Optics technicians can change the Filter.  

4  
Collimating 
Mirror  

Focuses light entering the optical bench towards the Grating of the 
spectrometer.  

Light enters the spectrometer, passes through the SMA Connector, 
Slit, and Filter, and then reflects off the Collimating Mirror onto the 
Grating.  

5  Grating  

Diffracts light from the Collimating Mirror and directs the diffracted light 
onto the Focusing Mirror. Gratings are available in different groove 
densities, allowing you to specify wavelength coverage and resolution 
in the spectrometer.  

Only Ocean Optics technicians can change the Grating.  

6  Focusing Mirror  
Receives light reflected from the Grating and focuses the light onto the 
CCD Detector or L2 Detector Collection Lens (depending on the 
spectrometer configuration).  

7  
L2 Detector 
Collection Lens  

An optional component that attaches to the CCD Detector. It focuses 
light from a tall slit onto the shorter CCD Detector elements.  

Only Ocean Optics technicians can add or remove the L2 Detection 
Collection Lens. 

8  CCD Detector Collects the light received from the Focusing Mirror or L2 Detector 
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(UV or VIS)  Collection Lens and converts the optical signal to a digital signal.  

Each pixel on the CCD Detector responds to the wavelength of light 
that strikes it, creating a digital response. The spectrometer then 
transmits the digital signal to the OOIBase32 application.  

 

 

b) 2 metre long Ocean Optics 600μm diameter optical fibre in protective 

metal jacket. 

 
c) Ocean Optics CC-3-UV diffuser (19 mm length, 6 mm diameter) 

 
 

 

d) Ocean Optics shutter (14 cm s 5cm x 5cm, weight 600g) 

 

The INLINE-TTL-S is TTL-driven shutter which allows blocking the light path 

without disturbing the experiment. The INLINE-TTL is driven by a small 

board that is powered with 12VDC with a TTL input. Included is a cable for 

interfacing to a spectrometer. During the cockpit studies, the shutter will be 

powered by a YSN-12680 12V DC battery. 

 

 
 

 

3. Description of Operation 

 

Light data is captured through the CC-3-UV diffuser attached the fibre optic 

cable which is connected to a TTL-S shutter which is turn connected to both 

the HR4000 spectrometer and a notebook or handheld PC (by PIN 15 

connection). The shutter will be operated by the automation software. 
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The HR4000 Spectrometer also connects to the notebook or handheld PC 

via USB port. When connected to the USB port of a computer, the HR4000 

draws power from the host computer, eliminating the need for an external 

power supply.  The computer to which the spectrometer is connected is an 

Asus R2E handheld palmtop computer (23.5 cm x 13.5 cm x 3 cm, weight 

830g) with Microsoft Vista operating platform.  The computer will have 

installed automation software to drive both the spectrometer and the shutter.  

The computer is not connected in any way to the aircraft systems and is run 

from a battery pack.  

 

Additionally, illuminance recordings will be taken using 2 TandD TR74Ui with 

2 illuminance UV sensors. (Image shows equipment with 1 illuminance UV 

sensor and 1 temperature/humidity sensor).  The unit requires one AA 

alkaline battery and measures 5.5cm x 7.8cm x 1.8cm, weight 62g.   

 

 
 

4. Intended locations for equipment (aircraft types) 

 

Light data is to be collected within the cockpit at altitude.  The light spectra 

and intensity is collected at the position of the collecting head.  The 

spectrometer and associated handheld PC can be positioned up to 2 metres 

away.   

 

The collecting probe and one illuminance meter are to be positioned in a fore 

position, ideally at the front window, out of line of sight and vision of the pilot.  

The spectrometer, TR74Ui unit, shutter and palmtop PC can be secured up 

to 2 metres away.  They are linked by a cable and no wireless or other radio 

signals are generated.  The spectrometer will be programmed to take a 

series of automated spectral readings during flight and will not be required to 

be assessed by the researcher.  The second illuminance meter will be hand 

held by the researcher collecting data who will be present in the jump seat.  

A series of illuminance measurements will be taken during flight with the 

probe positioned facing forward between the captain and first officer at eye 

level. 

 

A diagrammatic summary of the set up is shown below. 
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5. Hazard Assessment 

a) Temperature and Altitude 

 

The operating temperature range of the spectrometer is –10˚ to +50˚ C.  The 

operating temperature range of the illuminance UV recorder is –10˚ to +60˚ 

C.  Altitude will not impact upon the equipment’s performance.   

 

b) Temperature Variation 

 

Large cyclic temperature changes to the spectrometer may affect the 

instrument’s performance therefore, care must be taken not to allow the unit 

to be exposed to direct sunlight.  The researcher collecting data will assess if 

large temperature variations to the unit may have affected the unit calibration 

and will instigate a calibration check, if appropriate, after flight.   

 

c) Humidity 

 

Operating limits stated by the manufacturers are 0 to 90% humidity. 

 

d) Operational Shocks and Crash Safety 

 

Shocks and are not anticipated to affect the performance of the 

spectrometer.  However, significant shocks to the unit will necessitate a 

calibration recheck of the unit after flight.  The researcher collecting data will 

assess when a calibration check is required. The illuminance UV recorder 

should not be affected by shocks.  However, significant shocks causing 

damage to the unit will necessitate a new unit to be purchased. 

 

e) Vibration 
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The construction of the spectrometer is such that, as the unit has no moving 

parts, vibration is not anticipated to affect the unit.  However, significant 

vibration to the unit will trigger a calibration recheck of the unit after flight.  

The researcher collecting data will assess when a calibration check is 

required.  The illuminance UV recorder should not be affected by vibration. 

 

f) Explosion Proofness 

 

It is not anticipated that the spectrometer, illuminance UV recorder and 

associated PC will come into contact with flammable liquids or gases. 

 

g) Waterproofness 

 

It is not anticipated that the spectrometer and associated PC, illuminance UV 

recorder will come into contact with water. 

 

h) Fluids Susceptibility 

 

It is not anticipated that the spectrometer, illuminance UV recorder and 

associated PC will be installed in an environment where fluid spills are likely.  

Spills of hot or cold drinks might be possible on the flight deck.  In this case, 

the unit casing should prevent fluid penetration.  Any concerns by the 

researcher of fluid ingress to the unit would warrant a calibration check after 

flight.  Fluid penetration into the illuminance UV recorder causing non-

function would necessitate purchase of a new unit. 

 

i) Sand and Dust 

 

The spectrometer, illuminance UV recorder and associated PC will be on the 

flight deck for short periods of time.  The units’ casing will prevent dust 

ingress 

 

j) Fungus Resistance 

 

Not applicable by virtue of the location/time span of the installation 

 

k) Salt Spray 

 

Not applicable by virtue of the location/time span of the installation 

 

l) Magnetic Effect 

 

Not applicable by virtue of the location/time span of the installation 

 

m) Power Input 

 

The Asus PC can run from a mains supply, through a 12V charger or from 

the PC’s battery pack.  A fully charged battery pack will provide a few hours 
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of working power and the actual figure will vary depending on use of power 

saving features, system memory size and PC usage.  A spare battery pack is 

available and would be fully charged before flight.  The spectrometer draws 

power from the PC and does not require a dedicated power supply. 

 

The shutter will be powered by a YSN-12680 12V DC battery and TR74Ui by 

one 1.5V AA alkaline battery. 

 

n) Voltage Spike 

 

The equipment will not be plugged in to the aircraft power supply 

 

o) Lightning Induced Transient Susceptibility 

 

This is not applicable by virtue of the location of the spectrometer, 

illuminance UV recorder and associated PC within the flight deck 

 

p) Lightning Direct Effects 

 

This is not applicable by virtue of the location of the spectrometer, 

illuminance UV recorder and associated PC within the flight deck 

 

q) Icing 

 

This is not applicable by virtue of the location of the spectrometer, 

illuminance UV recorder and associated PC within the flight deck 
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Appendix H: CAA letter of endorsement 
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Appendix I: Research ethics approval letter from London 
South Bank University 
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Appendix J: Research ethics approval letter from the Institute 
of Optometry 
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Ronald Rabbetts, MSc, FCOptom, SMSA, DCLP 
31 Warblington Street 

PORTSMOUTH, PO1 2ET 
 

Phone: 023 92816571 

Email: ronald.rabbetts@virgin.net  

 

12 January 2011 

 

Reference: 

 

Application from Mr Adrian Chorley for research for his Doctorate of 

Optometry: 

 

Occupational ultraviolet light and blue light ocular protection in pilots 

 

 

 

My colleagues and I on the Institute of Optometry's Research and Ethical Committee 

have read Adrian Chorley’s LSBU Research application.  Several suggestions were 

made from an optometric point of view.   Mr Chorley has either dealt with these in the 

revised application documents or replied to our concerns in his reply document. 

 

On behalf of the Institute of Optometry Research and Ethical Committee, I am happy 

to confirm our agreement on the revised documents and our approval for the study to 

proceed. 

 

Yours sincerely  

 

 
 

Ronald Rabbetts,  

Chairman, Institute of Optometry's Research and Ethical Committee 
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Appendix K: Interview coding and categorisation 

Topics covered within Interview Questions: 
Length of time licence held 

Total flight time logged 

Aircraft type(s) flown 

Requirement on medical certificate for spectacles to be worn  

- Tinted prescription specs 

o Tint type: Colour, uniform/graduated/photochromatic/polarised 

o Age and condition 

o Fitted professionally or not 

- Plano sunglasses used on top of own glasses 

- Contact lenses used 

o UV block on contact lenses 

Sunglasses used for aviation 

- Make and type: Colour, uniform/graduated/photochromatic/polarised 

- Age and condition 

o Fitted professionally or not 

- Considerations at selection and purchase (e.g., cost/comfort/other) 

Previous sunglasses used for aviation 

- Description of type 

- Details of how these compared with current sunglasses 

More than one pair of sunglasses used for aviation 

- What tasks are each set of sunglasses used for  

Requirement on medical certificate for spectacles to be carried (reading glasses) 

- Affect of this to using sunglasses 

Awareness and use of CAA guidance on sunglass selection 

Description of any aircraft sun protection systems 

- When used and issues with use 

Other strategies used during flight 

- Type, when used and issues with use 

Any circumstances where glare (discomfort or disability) more apparent 

Issues flying towards direct sunlight 

Any circumstances where there are issues with interpreting flight information 

Experience with sunlight management on different aircraft types 

- How it may be different and if different protection practices used 

Observed eye protection practices in other pilots 

- Description of any practices that it is felt may affect flight safety 

Eye health concerns 

Other comments with regard to sunlight & sunglasses in the cockpit 
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Quantitative data entered onto Excel spreadsheet: 

Length of time licence held Requirement on medical for spectacles to be 
worn / carried 

Total flight time logged Details of prescription / non-prescription 
sunglasses – when used 

Aircraft type(s) flown CAA guidance used 

Other strategies used Sun protection on different aircraft types 

Symptoms of glare Presence of health concerns  

Other observed practices  

 
 
Initial interview category themes: 

1) Sun 6) Previous sunglass 
experience 

2) Sunlight & flight information 7) Strategies 

3) When sunglasses used 8) Observed practices in 
other pilots  

4) Comfort and choice of sunglasses 9) Experience on different 
aircraft 

5) Sunglass tint 10) Eye health 

 
Final coding categorisation: 
 
The visual environment 

 External - where sunlight most of an issue and any symptoms arising 

Internal - Description of sun protection systems, instrument lighting 

 Additional consideration for helicopter pilots 

Coping strategies 

Sunglasses – type, when worn, compatibility with spectacle use, comfort 

issues 

Standard aircraft sun protection systems - difference between aircraft type, 

seen as primary aid for controlling sunlight levels 

Adaptation to standard aircraft sun protection systems – reported only in 

airline operations, items used for additional solar protection 

Other practices – hats, adjusting seat, using hand in front of eyes, squinting, 

use of helmet with visor, which strategies are more prevalent in different 

flight operations 

Observed practices in other pilots – range of sunglass use observed, clip-ons, 

newspapers to block sunlight  

Eye Health concerns – yes, no, non eye-related health concerns  
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Appendix L: Questionnaire 

  



Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots

Dear aviator 
 
It is known that long term exposure to short wavelength (energetic blue) light and ultraviolet can have detrimental 
effects to the eyes. Over time, there is a greater risk of eye conditions such as cataract and macular degeneration 
following exposure. Eye protection, such as the use of sunglasses in the cockpit, should help to block potentially 
harmful light. However, the type of eye protection used and the frequency of its use by pilots is currently unknown. 
Additionally, the light levels at altitude, once filtered by the aircraft windscreen are not fully understood. 
 
As a professional pilot, you are being invited to take part in a research study and we need your help! Please take 
time to read the following information and decide whether you wish to take part. The aim of this research is to develop 
a clear picture of the risk to professional pilots of long term exposure to short wavelengths and to provide evidence 
based guidance as to the optimum eye protection for use within the cockpit. 
 
This survey should take around 510 minutes to complete. The researchers are looking to understand overall trends 
and averages, not individual responses. No identifying information such as name, email address or CAA reference 
number will be requested. 
 
More details about the study. 
 
• The information being collected in this survey is being used for research purposes only. The research team are 
committed to protecting your privacy and security on line. 
• By participating in this survey, you are consenting to having your responses and information about your eye 
protection habits used by the Institute of Optometry, London South Bank University and the UK Civil Aviation 
Authority as part of the research on pilot eye protection.  
• Research results from this survey should be published in a scientific journal and as a CAA paper after 2013. The 
research has ethical approval from the Institute of Optometry and the London South Bank University Research Ethics 
Committees. 
• Participation is voluntary. All information will remain confidential and results anonymous and will be stored in 
accordance with the Data Protection Act (1998). The results will be retained for 10 years after completion of the 
project in accordance with Medical Research Council guidance. 
• If during the survey you would like to withdraw and not have your answers used, please email the researcher at the 
address below. 
• If you have any questions regarding the survey, please contact Adrian Chorley on 01293573637 or 
adrianchorley1@aol.co.uk. If you have any concerns about this survey please contact Professor Bruce Evans, 
Director of Research at The Institute of Optometry, 5662 Newington Causeway, London SE1 6DS (bjwe@bruce
evans.co.uk). 
 
We very much appreciate your taking the time to complete this survey. Thank you. 

How many years have you been a professional pilot?
 

 
1. Eye protection and professional pilots

*
6
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
What is your current flight time logged?

Which category best describes the main type of flying that you undertake?

Approximately how many hours have you flown within the last year?
 

What other categories of professional flying have you previously undertaken? (Tick 
all that apply)

*

*

*

*

<1,000 hours
 

nmlkj

1,000  2,500 hours
 

nmlkj

2,500  5,000 hours
 

nmlkj

5,000  7,500 hours
 

nmlkj

7,500  10,000 hours
 

nmlkj

10,000  12,500 hours
 

nmlkj

12,500  15,000 hours
 

nmlkj

>15,000 hours
 

nmlkj

Aeroplane airline transport long haul
 

nmlkj

Aeroplane airline transport short haul
 

nmlkj

Aeroplane cargo
 

nmlkj

Aeroplane business jet
 

nmlkj

Aeroplane charter
 

nmlkj

Aeroplane aerial work
 

nmlkj

Aeroplane instructor
 

nmlkj

Helicopter offshore
 

nmlkj

Helicopter charter
 

nmlkj

Helicopter police/air ambulance
 

nmlkj

Helicopter aerial work
 

nmlkj

Helicopter instructor
 

nmlkj

Other
 

nmlkj

Other (please specify) 

No other categories
 

gfedc

Aeroplane airline transport long haul
 

gfedc

Aeroplane airline transport short haul
 

gfedc

Aeroplane cargo
 

gfedc

Aeroplane business jet
 

gfedc

Aeroplane charter
 

gfedc

Aeroplane aerial work
 

gfedc

Aeroplane instructor
 

gfedc

Aeroplane military
 

gfedc

Helicopter offshore
 

gfedc

Helicopter charter
 

gfedc

Helicopter police/air ambulance
 

gfedc

Helicopter aerial work
 

gfedc

Helicopter instructor
 

gfedc

Helicopter military
 

gfedc

Other
 

gfedc

Other (please specify) 
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
On your medical certificate, is there a requirement for corrective lenses to be worn 

and spare correcting spectacles to be carried (VDL limitation)?

How long has the spectacle requirement been present on your medical certificate?

Do you use clipon shades onto your prescription glasses?

Do you wear contact lenses in flight?

Do your contact lenses have a UV block?

Do you ever wear sunglasses in the cockpit environment?

*

 
2. Eye protection and professional pilots

*

*

*

 
3. Eye protection and professional pilots

*

 
4. Eye protection and professional pilots

*

 
5. Eye protection and professional pilots

Yes
 

nmlkj

No
 

nmlkj

Within last 5 years
 

nmlkj

510 years
 

nmlkj

>10 years
 

nmlkj

I have always had this requirement on my medical certificate
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Don't know
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
What, if any, are the reasons that you do not wear sunglasses in flight? Tick all that 
apply

Overall, what percentage of daytime flights would you wear sunglasses?

Do you use more than one pair of sunglasses within a flight?

Thinking about the sunglasses that you use most frequently. When would you 
normally wear them?

 
6. Eye protection and professional pilots

*

*

*
Never Rarely Sometimes Usually Always

Walkaround nmlkj nmlkj nmlkj nmlkj nmlkj

Taxy nmlkj nmlkj nmlkj nmlkj nmlkj

Take off nmlkj nmlkj nmlkj nmlkj nmlkj

Cruise nmlkj nmlkj nmlkj nmlkj nmlkj

Approach nmlkj nmlkj nmlkj nmlkj nmlkj

Landing nmlkj nmlkj nmlkj nmlkj nmlkj

When tired nmlkj nmlkj nmlkj nmlkj nmlkj

When flying towards direct 
sun

nmlkj nmlkj nmlkj nmlkj nmlkj

When it feels too bright nmlkj nmlkj nmlkj nmlkj nmlkj

Other nmlkj nmlkj nmlkj nmlkj nmlkj

 
7. Eye protection and professional pilots

Aircraft has adequate protection offered with visors
 

gfedc

I forget to carry them with me
 

gfedc

I wear clear prescription glasses instead
 

gfedc

Sunglasses too expensive
 

gfedc

Sunglasses uncomfortable
 

gfedc

Sunlight doesn’t bother me
 

gfedc

Too much hassle to put on during flight
 

gfedc

Other strategies used (please give details)
 

 
gfedc

<10%
 

nmlkj 1030%
 

nmlkj 3050%
 

nmlkj 5070%
 

nmlkj 7090%
 

nmlkj >90%
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Other (please specify) 
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
When would you use your 2nd pair of sunglasses?

Please describe in what way the second pair of sunglasses differ from your main pair. 
For example, do they have a different colour or shade of tint? Is the frame a different 
style? How does it help you in the areas selected above?

 

Thinking about the main sunglasses that you use in the cockpit: 

How old are the sunglasses you use most often during flight?

What type of tint do the sunglasses you use most often during flight have?

*
Never Rarely Sometimes Usually Always

Walkaround nmlkj nmlkj nmlkj nmlkj nmlkj

Taxy nmlkj nmlkj nmlkj nmlkj nmlkj

Take off nmlkj nmlkj nmlkj nmlkj nmlkj

Cruise nmlkj nmlkj nmlkj nmlkj nmlkj

Approach nmlkj nmlkj nmlkj nmlkj nmlkj

Landing nmlkj nmlkj nmlkj nmlkj nmlkj

When tired nmlkj nmlkj nmlkj nmlkj nmlkj

When flying towards direct 
sun

nmlkj nmlkj nmlkj nmlkj nmlkj

When it feels too bright nmlkj nmlkj nmlkj nmlkj nmlkj

Other nmlkj nmlkj nmlkj nmlkj nmlkj

55
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8. Eye protection and professional pilots

*

*

Other (please specify) 

< 1 month
 

nmlkj

16 months
 

nmlkj

612 months
 

nmlkj

12 years
 

nmlkj

24 years
 

nmlkj

48 years
 

nmlkj

> 8 years
 

nmlkj

Fixed (equal depth of colour from the top to bottom of lens)
 

nmlkj

Graduated (lenses are darker at top the lens and lighter at bottom of lens)
 

nmlkj

Photochromic (lenses darken in sunlight)
 

nmlkj

Polarised
 

nmlkj

Don't know
 

nmlkj
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
What is the predominant colour of the tint in the sunglasses you use most often 

during flight?

What is the make of the sunglasses you use most often during flight?

*

*

Grey
 

nmlkj

Green
 

nmlkj

Brown
 

nmlkj

Yellow
 

nmlkj

Don't know
 

nmlkj

Other
 

nmlkj

Other (please specify) 

Prescription sunglasses
 

nmlkj

American Optical
 

nmlkj

Bigatmo
 

nmlkj

Bolle
 

nmlkj

Caruso & Freeland
 

nmlkj

Maui Jim
 

nmlkj

Mile High
 

nmlkj

Oakley
 

nmlkj

Pitts
 

nmlkj

Randolph
 

nmlkj

RayBan
 

nmlkj

Serengeti
 

nmlkj

Silhouette
 

nmlkj

V:One
 

nmlkj

Nonbrand
 

nmlkj

Not known
 

nmlkj

Other
 

nmlkj

If other, please specify 
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
Examples of frame styles

Which category best describes the frame style of the sunglasses you use most often 
during flight?
*

Aviator
 

nmlkj

Oval / Round
 

nmlkj

Rectangular
 

nmlkj

Rimless
 

nmlkj

Wraparound
 

nmlkj
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
When did someone (at an opticians) last check the fitting of your sunglasses?

How would you rate the overall comfort and performance of your sunglasses in the 
aviation environment?

Did you review CAA guidance before purchasing sunglasses?

When purchasing sunglasses for flying, please select the importance that you would 
place on each of the following factors:

When purchasing sunglasses for flying, please select the importance that you would 
place on each of the 
following factors:

Has the frequency of your sunglass use in flight changed within last year?

*

*

*

*
Not important Slightly important Quite important Very important

Brand nmlkj nmlkj nmlkj nmlkj

Colour of tint nmlkj nmlkj nmlkj nmlkj

Protection from oblique or 
peripheral light

nmlkj nmlkj nmlkj nmlkj

Style of frames nmlkj nmlkj nmlkj nmlkj

UV protection nmlkj nmlkj nmlkj nmlkj

*

Not important Slightly important Quite important Very important

Comfort of frames nmlkj nmlkj nmlkj nmlkj

Comfort of tint nmlkj nmlkj nmlkj nmlkj

 
9. Eye protection and professional pilots

*

 
10. Eye protection and professional pilots

Within last month
 

nmlkj

1  6 months ago
 

nmlkj

6  12 months ago
 

nmlkj

More than 1 year ago
 

nmlkj

Never
 

nmlkj

Very poor
 

nmlkj Poor
 

nmlkj Average
 

nmlkj Good
 

nmlkj Excellent
 

nmlkj

Please give any specific comments 

Yes
 

nmlkj

No
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
If yes, how frequently did you use your sunglasses previously?

Does glare from the sun cause you visual discomfort?

Does glare from the sun prevent you from visualising aircraft instruments?

Do you use other means of protecting your eyes from sunlight (please specify the 
percentage of daytime flight that you are likely to use the following). Note that if you 
never adopt this strategy, please select 0%.

 
11. Eye protection and professional pilots

*

*

*

0% <5% 510% 1030% 3050% 5070% 7090% >90%

I use the aircraft sun visors gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

I use a baseball cap gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

I put my hand up to 
prevent direct sunlight in 
my eyes

gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

I adjust my seat position to 
prevent direct sunlight in 
my eyes

gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

I use newspapers or charts 
against the aircraft 
windshield or attached to 
visor

gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

I use plastic sheets/tray 
liners against the aircraft 
windshield

gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

I have another strategy 
that I use

gfedc gfedc gfedc gfedc gfedc gfedc gfedc gfedc

 
12. Eye protection and professional pilots

<10%
 

nmlkj

1030%
 

nmlkj

3050%
 

nmlkj

5070%
 

nmlkj

7090%
 

nmlkj

>90%
 

nmlkj

Please specify if there is a cause for this change 
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Never
 

nmlkj Rarely
 

nmlkj Sometimes
 

nmlkj Generally
 

nmlkj Always
 

nmlkj

Any specific comments? 

Never
 

nmlkj Rarely
 

nmlkj Sometimes
 

nmlkj Generally
 

nmlkj Always
 

nmlkj

Any specific comments? 

please specify other strategy, if used 
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots

This final section includes some questions regarding your eye health. Be assured that all the information you provide 
is anonymous. 

Have you been told that you are developing or have got cataract(s)?

Have you been told that you are developing or have got macular degeneration?

Have you had cataract surgery and intraocular lens implant(s)?

Are you aware of the role of diet in maintenance of eye health?

Do you regularly take vitamins or supplements?

What is your age?
 

Which of the following best decribes your number of hours logged over the last 12 
months?

Do you have any other comments with regard to sunlight and eye protection in flight?

 

*

*

*

*

*

6

*

55

66

Yes
 

nmlkj

No
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Yes
 

nmlkj

No
 

nmlkj

Don't know
 

nmlkj

No
 

nmlkj

Yes, for general health reasons, not because I am concerned about eye health
 

nmlkj

Yes, for both general health reasons and also because I am concerned about eye health
 

nmlkj

Yes, specifically and solely because I am concerned about eye health
 

nmlkj

less than 100 hours
 

gfedc

100  300 hours
 

gfedc

300  500 hours
 

gfedc

500  700 hours
 

gfedc

more than 700 hours
 

gfedc
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Eye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilotsEye protection and professional pilots
Thank you for your time today and for participating in this survey. 
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Appendix M: Spectrometer reliability 

1) Calibration 

PHE conducted a series of tests to ensure accurate calibration of the HR4000 

spectrometer.  Sensitivity checks were carried out at the PHE labs in Chilton, 

Oxfordshire in September 2011, February 2012, June 2012 and May 2013 using a 

1kW Tungsten Halogen standard calibration lamp (BN 9101-548).  This lamp has a 

known output against which the HR4000 can be assessed and is calibrated for 

spectral irradiance to the Physikalisch-Technische Bundensanstalt (PTB) traceable 

reference standards.  The performance of the calibration lamp is ensured as its 

output can be compared against 2 stationary double grating monochromators Jobin 

Yvon D3 180 (Jobin Yvon, Longjumeau, France) at the PHE laboratories.  To assess 

the HR4000 accuracy in the UV range, measurements were taken using a longer 

integration time (t=2sec) to improve signal to noise ratio and optimise UV part of the 

spectrum. 

 

In order to reduce the potential for stray light during in flight measurements, the 

HR4000 sensitivity was additionally calibrated in June 2013 to the solar spectral 

irradiance at solar noon on a clear day, using a scanning double-grating 

monochromator D3 180 as a reference instrument.  This calibration provided a good 

correlation (<1% error) between the HR4000 and both illuminance UV recorders 

used for in flight measurements. 

 

The HR4000 spectral irradiance calibration measurements produce a calibration 

factor.  This is the ratio of the irradiance of the certified calibration source and the 

measured intensity and which can then be applied either prospectively or 

retrospectively if required, to the flight data. 

 

On each calibration assessment, wavelength position verification was carried out at 

the PHE labs using a low pressure Hg penray lamp with known mercury position 

lines (253.65nm, 296.73nm, 404.66nm, 435.83nm and 546.07nm).  The wavelength 

position was also checked in CAA offices before and after each deployment.  This 

was carried out by taking a spectral reading using the mercury peaks on a standard 

room fluorescent tube light (365.02nm, 404.66nm, 435.83nm and 546.07nm).  On 

every occasion, wavelength peaks measured were within the accuracy resolution of 

the spectrometer and were within 0.37nm. 
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All calibration checks were carried out using the same CC-3-UV cosine corrected 

diffuser, fibre optic cable and shutter as used for all data collection.  A separate 

calibration assessment was carried out using the 3m fibre optic cable; however, 

there was no measurable difference found between the cables. 

 

2) Accurate range 

Results of the performance of the HR4000 against the certified calibration lamp 

showed that there were increasing degrees of uncertainty of spectral measurements 

below 350nm.  This was however, dependent on the strength of short wavelength 

signal of the calibration lamp and additionally, the board temperature of the HR4000.  

Below 350nm, greater accuracy would be obtained using multi-region measurement 

to improve signal to noise ratio.  The instrument was assessed up to 800nm and 

remained sensitive in this range.  The variation in sensitivity with wavelength is 

shown in Figure 1. 

 

 

Figure 1 Summary of the variation of sensitivity of the HR4000 which peaked around 
520nm. 

 

The accuracy of the HR4000 at measuring low signals was assessed by taking 

measurements against the certified calibration lamp using increasingly shorter 
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integration times.  The HR4000 showed a linear response provided the signal was at 

least 2 standard deviations higher than the background noise level. 

 

The angular response of the CC-3-UV was measured by varying the angle from -80° 

to +80° in 5 intervals of a collimated 100W tungsten halogen source to the detector 

and measuring the irradiance response at 400nm, 500nm, 600nm and 700nm 

(Figure 2).   

 

 

Figure 2 Angular response of CC-3-UV at various wavelengths and compared to a 
cosine response curve. 

 

This was then compared to an ideal cosine response and showed that the diffuser 

matches the ideal cosine response within 5% for incident angles +30° to -30° and is 

consistent with wavelength.  Between 30° to 50°, the CC-3-UV was found to 

underestimate between 5-10% (Figure 3). 
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Figure 3 Percentage error of CC-3-UV diffuser from ideal cosine response 

 

3) Variation with temperature 

The performance of CCD array spectrometers are affected by variations in ambient 

temperature (Price et al, 2014).  To ensure data reliability, a spectrometer can be 

operated in a temperature-controlled environment.  However this was not possible 

on the flight deck due to power and space constraints. 

 

For each spectral measurement, internal temperature information of the HR4000 is 

captured.  This is known as the board temperature.  To evaluate the effect of 

temperature, the wavelength position, sensitivity and structure of background signal 

were measured at the range of foreseeable operation temperatures from 10°C to 

40°C. 

 

Elevated ambient temperature caused blue-shift of wavelength position exceeding 

0.5 nm at 40°C. The sensitivity change with temperature between 22°C and 35°C 

was within 2-3%, with respect to the sensitivity at 22°C. However, the mean of dark 

signal and the standard deviation of the dark signal both increased significantly with 

increasing integration time above 100 ms and increasing ambient temperature. This 

sharp increase of dark signal and, as a result, loss of signal-to-noise ratio at 

elevated temperatures for this instrument was considered a potential limiting factor 

of its use outside temperature controlled environment.  To counter this issue, a dark 

measurement was taken immediately after every in flight spectral measurement. 
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When the HR4000 was temperature stabilised, the board temperature directly 

correlated to ambient temperature (Figure 4); thermal equilibrium of instrument 

lagged behind the change of ambient temperature for up to 30 min as illustrated in 

Figure 5. The board temperature was a better and more dynamic predictor of the 

HR4000 characteristics than ambient temperature when the instrument was used 

outside of a temperature-controlled environment. 

 

Figure 4 Correlation between ambient and board temperatures of the HR4000 in 
thermal equilibrium 

 

Figure 5 Time taken for HR4000 to reach thermal equilibrium 

 

Reference 

Price, L.L., Hooke, R.J. and Khazova, M. (2014) Effects of ambient temperature on 

the performance of CCD array spectroradiometers and practical implications for field 

measurements. J.Radiol.Prot., 34, (3) 655-673. 
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Appendix N: Spectral stitching 

To determine whether stitching of the spectral data in the UV and visible regions 

was required, the files of all three regions were examined.  A two-step procedure 

was followed, firstly examining the UV region overlap and secondly visible. The 

following steps were undertaken: 

UV 

1. The difference between the integration times of region 2 (380-500nm) and 

region 3 (280-400nm) were assessed for the overlapped region of 380 – 

400nm. If a large difference was observed stitching may be required, 

dependent on conditions 2 and 3. 

2. For the file containing the region of 280 – 400nm, the value at 430nm was 

assessed.  If it was greater than 15,500 counts after subtracting the dark 

signal from the raw signal, stitching could not be performed higher than 

380nm due to potential signal saturation and pixel leakage.  In this scenario, 

region 1 data were used. However, the spectral regions captured were set so 

this event was avoided in the majority of cases. 

3. For the two files, the counts per second (cps) values, calculated by 

subtracting the dark value from the raw value and dividing by integration 

time, were compared for each wavelength. Stitching was considered from 

the wavelength where a difference in cps was greater than 10%. 

In the case of point 2, it was expected that if saturation did occur at 430 nm, 

stitching could not take place above 380nm so comparison of the cps of regions 2 

and 3 were only possible at the single value of 380nm.  Comparing region 1 with 

region 3 would yield the same result as comparing region 2 with region 3 even 

though region 1 has a complete overlap of region 2. The reason is that the peak 

response from the solar visible spectrum would occur within both regions 1 and 2.  

Therefore, both regions should have a similar integration time and region 1 cps 

value should almost be identical in the majority of cases to region 2.  Therefore, for 

the purposes of stitching, the outcome of comparison of region 1 to region 3 would 

be the same as for the comparison of region 2 and region 3. 

 

For stitching, regions 1, 2 and 3 were only considered in cases of poor signal to 

noise ratio within the UV range of region 1.  For the majority of the results, stitching 

was not required as the signal to noise ratio within the UV range of region 1 was of 

an acceptable level for examination.   
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A similar procedure was followed for the visible spectral overlapped regions of 1 and 

2.  To assess if stitching were required, the following procedure was followed: 

 Visible 

1. The difference between the integration times of region 1 (280-1100nm) and 

region 2 (380-500nm) were assessed for the overlapped region. If a large 

difference was observed stitching may be required, dependent on conditions 

2 and 3. 

2. For the file containing the region of 380 – 500nm, the value at 530nm was 

assessed.  If it was greater than 15,500 counts after subtracting the dark 

signal from the raw signal, stitching could not be performed higher than 440-

450nm due to potential signal saturation and pixel leakage.  In this scenario, 

region 1 data were used. However, the spectral regions captured were set so 

that this was avoided in the majority of cases. 

3. For the two files, the counts per second (cps) values, calculated by 

subtracting the dark value from the raw value and dividing by integration 

time, were compared for each wavelength. Stitching was considered from 

the wavelength where a difference in cps was greater than 10%. 

Where the difference in cps between the regions 1 and 2 was greater than 10% and 

stitching were limited to below a determined wavelength due to potential pixel 

leakage, stitching was possible from the start of the overlapped region (380nm) to 

the ‘safe’ wavelength point rather than to 500nm. The upper limit of stitching was 

therefore dependent on whether saturation takes place for the 380 – 500nm file at 

530nm. 

 

A multiple file checking software was available which extracted the above 

information from each set of files.  The output of the program would then indicate 

whether stitching of the files was required.  

 

For a set of files requiring stitching, the Spectral Stitching Program (SSP) was used 

(Figure 1). Once the appropriate files are selected, the wavelength range of the 

regions overlap were determined by SSP. SSP allows up to three spectral 

measurements from different regions to be interlaced together at a wavelength for 

each overlapping region defined by the user. 

 

SSP plots the spectral irradiance (mW/m2nm-1) of the two sets of overlapping 

regions of interest in separate tabs for assessment by the user.  Due to potential 

signal saturation and pixel leakage, the upper stitching limit determined by the file 

checker program was observed.  Figure 2 shows an example of stitching of regions 
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1 and 2.  In this example, stitching was not required due to good overlap of the two 

regions. 

 

Figure 1 Screenshot from spectral stitching software showing the input of time 
matched region files for stitching. 

 

 

Figure 2 Output of spectral stitching software showing the frequency range overlap. 
The two regions in this example show good correlation and would not require 

stitching. 
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The spectral irradiance of the stitched spectra (Figure 3) was then saved as a single 

file in either .txt or .csv formats.  In addition to the spectral irradiance (mW/m2nm-1), 

details of the date, spectrometer type, wavelength range and integration times of 

each spectral measurement were recorded. 

 

 

Figure 3 Output of three regions saveable as one file in either .txt or .csv format 
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Appendix O: Manual illuminance data recording sheet 

  



371 
 

 

Date   Flight   Page 

Time Ahead Down Max Comments 
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Appendix P: Information and request sheet for pilot 
sunglasses 
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Sunglass measurement test 
 

We are looking to measure the 

transmission properties of sunglasses 

used by pilots. 

This is being undertaken as part of a large 

research project investigating light 

exposure to the eye during flight. 

 

We would be very grateful 

if you would allow us to 

take a couple of 

measurements from your 

sunglasses.  It will only take 

a minute! 
 

Thank you 
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