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Abstract This paper explores the optimal expenditure rate that a firm should

employ to develop a new technology and pursue the registration of the related

patent. Our model takes into account an economic environment with indus-

trial competition among firms operating in the same sector and in presence

of uncertainty in knowledge accumulation. We develop a stochastic optimal

control problem with random horizon, and solve it theoretically by adopting

a dynamic programming approach. An extensive numerical analysis suggests
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that the optimal expenditure rate is a decreasing function in time and its sen-

sitivity to uncertainty depends on the stage of the race. The odds for the firm

to preempt the rivals non-linearly depend on the degree of competition in the

market.
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1 Introduction

The decision to develop a new technology and -once it has been fully developed-

the selection of the appropriate time for taking out a patent are very complex

issues. On the one side, the sooner the firm takes the patent out, the sooner

it earns exclusive rights in production and commercialization of the patented

good. On the other side, patenting requires a very costly commitment of re-

sources in the Research and Development (R&D) phase, and introducing a

new product in the market also implies to face a highly uncertain demand

for it. For these reasons R&D investments must be thoroughly phased in by

R&D intensive firms. In addition, R&D investment decision entails a dy-

namic decision making process and it represents a very relevant topic, given

the huge amount of money at stake. Thus, the issue has attracted much at-

tention in the literature. Related models can be grouped into two streams.

The first is mainly concerned with the qualitative characterization of the time

pattern of R&D expenditure rate over the completion time of the project.
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The decision making process is analyzed in a context of a single firm with-

out rivalry [8,10,17,26,30,33]. The second stream considers R&D activities

in a competitive setting. Some contributions deal with a static context [9,21],

others with a multi-stage approach [18,25,34] and, more recently, taking ad-

vantage of optimization theory with a continuous framework [11,15,27,28,31,

37].

In this paper, we take the stance of a R&D intensive firm which has to decide

its optimal investment policy with flexible termination time in an uncertain

and competitive environment. Investing resources will produce a (possible, not

sure) benefit in the future, against a sure commitment of resources now. This

tension is at the basis of investment decisions. The investment policy can be

considered as optimal whenever it maximizes the expected discounted net re-

turn from the project. In particular, we face the issue of the optimal selection

of the expenditure rate to be employed by a firm to develop R&D policies

as a stochastic optimal control problem. As in [1,16,38] and the ensuing lit-

erature, the state variable is modeled as a controlled diffusion process, and

it is supposed to be evaluated at any point in time during its conduct. The

state variable, i.e. the project status, is measured in terms of the monetary

value of knowledge accumulated by the firm’s R&D program, in comparison

with other competing products currently in the market. The presence of com-

petition is formalized through the introduction of an exogenous random time

representing the date in which a rival wins the race. In doing this, we are

consistent with the common practice followed in the literature to model com-
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petition as a random negative sudden occurrence.1 Net of the presence of this

negative jump, we assume the state variable to follow a geometric Brownian

motion dynamics and we largely motivate the plausibility of this assumption

from an economic point of view. The control variable is the aforementioned

expenditure rate. It is assumed to be a stochastic process which describes the

monetary outflow dedicated to R&D, hence feeding deterministically into the

value of the state variable. More specifically, the drift term of the state variable

accounts for diminishing returns due to increased R&D efforts. The horizon of

the problem is random, in that the natural conclusion of the R&D process can

occur for three different reasons: i) the firm abandons the project; ii) the firm

takes out the patent; iii) a rival preempts the firm. The first and the second

case occur when the monetary value of knowledge accumulation reaches one of

the two opportunely selected thresholds (i.e. at a pre-specified exit time), while

the third case occurs -as already said- at a given stopping time. Unlike many

models in the literature, including those incorporating uncertain knowledge

accumulation [15,32], in which optimal expenditure on R&D is either zero or

at the maximum permitted rate, in this model the optimal expenditure rate

is assumed to vary over time with the level of accumulated knowledge. This

makes the model more interesting and more realistic, as well as more difficult

to solve.

To solve the optimal control problem, we adopt a strategy based on the deriva-

tion of a maximum principle, namely Dynamic Programming Principle (DPP).

1 Typically, the rival’s success is modeled as a negative Poisson jump [1,28,35,37,38].
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Moving from DPP, we prove that the value function is a classical solution of a

particular second-order ordinary differential equation -the so called Hamilton

Jacobi Bellman (HJB) equation- and then we derive the optimal strategies in

feedback form through a Verification Theorem. The solution procedure offers

several mathematical difficulties. Firstly, the introduction of a stochastic hori-

zon in the problem invalidates a great part of dynamic programming theory as

commonly known in the literature. To deal with this point we rely on a result

recently proved in [7], which formalizes a DPP for a wide class of stochastic

control problems with exit time. Secondly, the HJB equation is claimed in

a formal sense, i.e. the value function is assumed to be twice differentiable.

Unfortunately, the value function is not generally regular enough. Hence, a

preliminary discussion on the existence and uniqueness of the solution of the

HJB equation in a weak -namely viscosity- sense is needed. This step is in line

with several works dealing with viscosity solutions of HJB equations in the

context of optimal control problems [12,24]. Existence and uniqueness theo-

rems for viscosity solutions of HJB equations in presence of stochastic horizon

can be found in [4,5], just to cite some prominent contributions. Thirdly, the

regularity of the value function is an aspect of central relevance in the entire

model. In order to prove the twice differentiability of the value function, we

first prove that it belongs to a certain Sobolev space, and then we derive the

thesis by opportunely applying an embedding theorem.

In general, stochastic optimal control problems are very complex because of

their dynamic and stochastic nature, high dimensionality and the presence of
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complex constraints. Nevertheless, in our specific context explicit solutions are

available. However, in order to provide some economic insights, we propose the

validation of the theoretical framework through an extensive numerical analy-

sis. In particular, a numerical algorithm is provided, and a sensitivity analysis

of the optimal expenditure rate is presented. This numerical scheme is based

on the finite difference discretization of the HJB equation, coupled with a fixed

point scheme to deal with its non-linearity.

One of the main predictions of the model consists in a declining expendi-

ture rate over time. This finding is consistent with [11,19] who find that the

equilibria investment rates should decrease in time. Differently, the result con-

tradicts the one presented by Zuckerman and coauthors in [33,37], where, in

a set up close to ours, the authors find the expenditure rate to be monoton-

ically increasing over time. As we will see below, the difference between the

contributions of Zuckerman and coauthors and our paper is mainly due to

a modeling assumption on the knowledge accumulation. The behavior of the

expenditure rate is further characterized by the analysis of its sensitivity with

respect to uncertainty in knowledge accumulation. In particular, the firm’s

reaction to changes in uncertainty is contingent upon the stage of the race.

That is, an increase in uncertainty will engender a limited increase in the rate

when the race is in an early stage. Conversely, the increase in the rate will be

higher if the change in uncertainty occurs in a later stage. Yet, uncertainty

in knowledge accumulation affects in a non-linear fashion the odds for the

firm to preempt the rivals. The higher uncertainty, the higher the odds when
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competition is severe, conversely under mild competition. As a consequence

of these results, it follows a prescription in terms of policy interventions. If

authorities’ intervention increases uncertainty about the returns to R&D in

the near future, the resulting movement of the aggregate investment rate is

unpredictable, depending on some instances such as: the stage of the race, the

degree of competitiveness in the market and their combinations.

The paper proceeds as follows. Section 2 sets out the economic issue we want

to deal with and presents the model. Section 3 solves the control problem by

employing a dynamic programming approach. Section 4 analyzes the sensi-

tivity of the numerical solution with respect to some relevant parameters of

the model. Section 5 discussing the results obtained draws some concluding

remarks.

2 The Model

We consider a patent protection decision model for a firm operating in a

stochastic environment with competition. The decision is modeled as a so-

lution of a stochastic optimal control problem. At this purpose, we firstly

introduce a filtered probability space (Ω,F , {Ft}t≥0, P ) on which we define a

standard Brownian motion W with respect to {Ft}t≥0 under P . The filtration

{Ft}t≥0 represents the P -augmentation of the natural filtration generated by

W , that is Ft = σ
(

W (s) | s ∈ [0, t]
)

∨ N , ∀ t > 0, where N is the collection

of all the sets of measure zero under P , i.e. N :=
{

A ∈ F : P (A) = 0
}

. Since

the Brownian motion is a continuous process, then {Ft}t≥0 is right continuous.
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Hence, the usual conditions apply to the filtration.

Let X = {X(t)}t≥0 be a stochastic process representing the time-dependent

monetary value of the technological knowledge accumulated by the firm’s

R&D program, in comparison with other competing products currently in

the market. We will refer to X simply as technological knowledge, representing

the state variable of the problem. Its evolution is assumed to be driven by a

controlled stochastic differential equation with initial data as follows:

dX(t) = α(C(t))X(t)dt + βX(t)dW (t) ∀ t > 0; X(0) = x, (1)

where i) β ∈]0,+∞[ is the volatility term of the process X . It may capture

fluctuations in X due to layoffs and/or to the monetary component, such as:

changes in taxation, exchange rate depreciations, new criteria for the evalua-

tion of knowledge accumulated, etc. ii) C = {C(t)}t>0 represents the expen-

diture rate. It is modeled as a stochastic process with support [0, 1] such that

C(t) is Ft-progressively measurable, for each t > 0. iii) α : [0, 1] → [0,+∞[

describes the growth rate of the value of knowledge accumulated, it is an in-

creasing and strictly concave function in ]0, 1[ representing diminishing returns

due to increased R&D efforts. iv) x ∈ [0,K] is a real number representing

the initial value of the technological knowledge, where 0 and K represent the

absorbing barriers of the dynamics. In particular, 0 is associated to the bad

situation in which a similar technology is introduced and protected by a firm’s

rival, while K represents the situation in which the firm takes out the patent

first.

Equation (1) constitutes one of the main building block of the model. For
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this reason we further motivate the economic plausibility of our modeling as-

sumption. In [38] it is pointed out that a diffusion process can be successfully

employed to describe the monetary value of accumulated knowledge. Interest-

ingly, this viewpoint also appears to be natural from more practical consider-

ations as reported in [29] for the remarkable case of Sony. Furthermore, [2,6]

show that firms not only learn, but also forget because of turnover and layoffs.

It follows that, if there is organizational forgetting, a firm’s stock of experi-

ence can decrease over time, and the ups and downs of the process in (1) can

capture this realistic feature. Differently, assuming a one-sided non-decreasing

process, as in [33,37], most of the features just mentioned could not be cap-

tured. By assuming α(C(t)) increasing and strictly concave we are consistent

with the empirical findings that document decreasing returns to scale in R&D

[13]. In particular, it represents the deterministic component of knowledge ac-

cumulation, deriving from the expenditure in R&D. Put differently, when a

firm invests a given amount of money it cannot precisely know how much of

the expenditure will turn into knowledge, but this piece of information can

be known up to a certain level of (un)certainty. The deterministic drift plays

this role in the sense that it represents the deterministic yield of the R&D

investment, although at a decreasing rate, while β captures the remaining un-

certainty in knowledge accumulation, i.e. in R&D returns.

Given this premise, we analyze the patent race played by the firm up to the

registration of the patent. The timing of the end of the race is unknown and

depends on the stochastic dynamics of X in (1). Therefore, we need to in-
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troduce the random times at which the process X reaches the absorbing bar-

riers 0 or K. We denote by T the set of the stopping times in [0,+∞] as

T := {η : Ω → [0,+∞] : {η ≤ t} ∈ Ft, ∀ t ∈ [0,+∞)}, while the exit time

τ of the dynamic from ]0,K[ is τ := inf
{

t ∈ [0,+∞] : X(t) /∈]0,K[
}

. Since

{Ft}t≥0 satisfies the usual conditions, it follows that τ ∈ T . We also denote as

σ ∈ T the random time at which a firm’s rival beats the firm, i.e. it introduces

and protects a similar (or the same) technology.

To try to win the race, the firm can act optimally by deciding its expenditure

rate. That is, it can optimally set a stochastic expenditure at time t as a share

of X(t) devoted to R&D. Hence, the admissible region, i.e. the functional

space containing the admissible controls, can be defined as follows:

A :=
{

C : [0,+∞)×Ω → [0, 1], Ft − progressively measurable processes
}

.

The objective of our analysis is to maximize the firm’s expected discounted

net returns. At this purpose, it is necessary to distinguish some occurrences.

On the one side, if the value of technological knowledge reaches the absorbing

barrier K before σ, the technology developed is protected and introduced in

the market by the firm. In this case P (τ < σ) = 1 and a monetary return,

MK > 0, accrues to the firm. This amount can be interpreted as the benefits

from the innovation produced by the patent. On the other side, if the value of

technological knowledge reaches the absorbing barrier 0, or equivalently if a

rival firm introduces and protects the innovation first, we consistently assume

that X(σ) = 0 for P (τ = σ) = 1. In this case, the monetary return to the

firm is M0 ≥ 0. Of course, MK > M0. The paradigmatic case of M0 = 0



Optimal Investment in Research and Development Under Uncertainty 11

corresponds to the winner-takes-all hypothesis, and will be discussed below.

To play the race, at each point in time t, the firm incurs the R&D expenses

C(t)X(t), until the exit time σ ∧ τ . The optimal expenditure rate C∗ ∈ A can

be found by maximizing the firm’s expected discounted net value J , defined

as follows: J : [0,K]×A → R such that

J(x,C) = Ex

{

Λ(X(σ ∧ τ))e−δ(σ∧τ) −
∫ τ∧σ

0

e−δtC(t)X(t)dt

}

,

where Λ(0) = M0 and Λ(K) = MK , i.e. Λ maps the technological attainment

at the end of the game into the monetary value of the prize. We also denote

with Ex the expected value conditioned on X(0) = x and e−δ is a continuous

uniperiodal discount factor, with δ > 0. The value function V : [0,K] → R is

V (x) := sup
C∈A

J(x,C). (2)

3 Dynamic Programming and Optimal Strategies

The control problem described in the previous section is solved by adopting a

dynamic programming approach. To this aim, we refer to [7], in which a DPP

for a rather wide class of optimal control problems with random horizon has

been proved. Hence, here we state the DPP by adapting [7] to our case:

Theorem 3.1 (DPP) For each η ∈ T , we have

V (x) = sup
C∈A

Ex

[

−
∫ η∧σ∧τ

0

e−δtC(t)X(t)dt + e−δ(η∧σ∧τ)V (X(η ∧ σ ∧ τ ))
]

.

From Theorem 3.1, the HJB equation can be directly derived. Such an equation

is stated formally, in the sense that the value function V in (2) is a classical

solution of the HJB equation only under the necessary regularity conditions.
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Theorem 3.2 (HJB Equation) Suppose that V ∈ C0([0,K]) ∩ C2(]0,K[).

Then

δV (x) = x sup
c∈[0,1]

{α(c)V ′(x) − c}+ 1

2
β2x2V ′′(x), ∀ x ∈]0,K[, (3)

with the relaxed boundary conditions for x ∈ {0,K}:

min
{

δV (x)−x sup
c∈[0,1]

{α(c)V ′(x) − c}− 1

2
β2x2V ′′(x), V (x)−Λ(x)

}

≤ 0, (4)

and

max
{

δV (x)−x sup
c∈[0,1]

{α(c)V ′(x)− c}− 1

2
β2x2V ′′(x), V (x)−Λ(x)

}

≥ 0. (5)

The proof is rather standard, and is omitted. Existence and uniqueness of the

classical solution of the HJB equation (3) with boundary conditions (4)-(5)

are needed in order to obtain the optimal strategies of the control problem.

The following theorem guarantees such conditions. The proof is quite technical

and for this reason it is confined to the electronic supplementary material.

Theorem 3.3 The value function V in (2) is twice differentiable in ]0,K[,

continuous in [0,K] and it is the unique solution of HJB equation (3) with

variational boundary conditions (4) and (5).

Theorem 3.3 states that V is the unique classical solution of the HJB equa-

tion. This fact turns out to be useful in formalizing optimal strategies and

trajectories, which can be theoretically identified by means of the Verification

Theorem stated below:

Theorem 3.4 (Verification Theorem) Assume u ∈ C0([0,K])∩C2(]0,K[)

to be a classical solution of (3). Then the following statements hold true:
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(a) u(x) ≥ V (x), ∀x ∈ [0,K].

(b) Let us consider (C∗, X∗) an admissible couple at x such that

C∗ ∈ arg sup
c

{α(c)V ′(X∗(t))− c} .

Then (C∗, X∗(t)) is optimal at x if and only if u(x) = V (x), ∀x ∈ [0,K].

See the electronic supplementary material for the proof. We notice that the

Verification Theorem is grounded on the regularity of the value function, which

is a classical solution of the HJB equation. This fact highlights the usefulness

of Theorem 3.3. The next step consists in providing an explicit form of the

optimal strategies and trajectories through the so-called closed loop equation:

Theorem 3.5 Consider

C∗(x) =















1, for x such that V ′(x) ∈]−∞, 0∗,

min
{

I
(

1
V ′(x)

)

, 1
}

, otherwise.

where I is the inverse function of α′. Denote as X̄ the solution of the closed

loop equation dX̄(t) = α(C∗(X̄(t)))X̄(t)dt + βX̄(t)dW (t), X̄(0) = x. Then,

by setting C̄(t) := C∗(X̄(t)), we have J(x, C̄) = V (x) and the pair (C̄, X̄) is

optimal for the control problem.

The proof stems from the Verification Theorem, starting from the existence

and uniqueness of the solution of the state equation (1). Theorem 3.5 explicitly

determines the optimal strategies for our stochastic control problem.
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Fig. 1 Value function (up), optimal expenditure rate (middle) and optimal expenditure

(down) as a function of x: K = 10, MK = 10, β = 0.4 (left), β = 0.05 (right) and α(c) =
√
c

4 Sensitivity Analysis

The experiments2 are carried out considering α(c) =
√
c. Similar results are

obtained also considering other grow rate functions, e.g., α(c) = c2/3. The-

oretical results allow us to derive some interesting static sensitivity analysis.

Specifically, the expenditure rate C∗(x) in Theorem 3.5 can be studied3.

First of all, we assume K = 10 and MK = 10. Figures 1-2 show the optimal

expenditure rate and the optimal expenditure as functions of the initial data

x along with the value function, for different values of δ and β, considering

α(c) =
√
c. We notice that: i) higher values of δ make the value function

shift downward, while both the optimal expenditure curves shift upward (see

Figure 1); ii) higher values of β engender a slight shift downward in the value

2 The HJB equation (3) is solved through a numerical procedure based on a finite differ-

ence scheme. Details of the procedure and the Matlab code are reported in the electronic

supplementary material.

3 Some theoretical results on the behavior of C∗ have been derived for four special cases

of the α function. See the electronic supplementary material for details.
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Fig. 2 Value function (up), optimal expenditure rate (middle) and optimal expenditure

(down) as a function of x: K = 10, MK = 10, δ = 0.1 (left), δ = 0.01 (right), and α(c) =
√
c
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Fig. 3 Value function (up), optimal expenditure rate (middle) and optimal expenditure

(down) as a function of x: δ = 0.1, β = 0.4, K = 5 and α(c) =
√
c

function, and in the opposite direction for the expenditure curves (see Figure 2,

left panel); this effect is stronger for low values of δ (see Figure 2, right panel);

iii) for given δ and β, both the value function and the optimal expenditure are

increasing in the initial value of the technological knowledge, contrarily to the

optimal expenditure rate which slopes downward (see Figures 1-2).

In Figure 3 we analyze the behavior of our solution with respect to x for

different values of MK , setting β = 0.4 and δ = 0.1. We notice that the higher
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Fig. 4 Mean optimal expenditure (left) and expenditure rate (right) as a function of time

t ∈ [0, 10], assuming σ ≥ 10: K = 10, MK = 10, X0 = 2 and α(c) =
√
c.

the monetary return to the race, namely MK , the higher the value function

and the expenditure curves, as expected.

4.1 A Dynamic Sensitivity Analysis

The time-varying nature of the optimal expenditure rate {C̄(t)}t≥0 of Theorem

3.5 is here considered. To this purpose, we perform a Monte Carlo simulation

of the process (1). More precisely, we fix a starting value X0 = 2 and simulate

1,000,000 possible scenarios for the process {X(t)}t≥0. By means of the pro-

posed numerical scheme the optimal expenditure rate {C̄(t)}t≥0 is obtained

numerically, as C̄(t) = C∗(X(t)), for each simulated scenario {X(t)}t≥0.

Figure 4 shows the mean value of {C̄(t)}t≥0 over the scenarios and the optimal

total expenditure. The upper part of Figure 4 sets out that higher values of δ

correspond to higher expenditure curves, that is, higher discount rates make

the firm more eager to invest. As regard to the sensitivity with respect to β (see

the lower panel of Figure 4) in an early stage of the race the total expenditure
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β = 0.4 δ = 0.1 β = 0.4 δ = 0.1

δ = 0.01 δ = 0.1 β = 0.05 β = 0.2 δ = 0.01 δ = 0.1 β = 0.05 β = 0.2

σ Odds Expected time of success

4 8.82 38.92 9.48 34.36 3.03 2.90 3.86 3.39

6 21.54 69.93 100.00 87.71 4.21 3.79 4.34 4.26

8 34.44 86.48 100.00 98.84 5.25 4.38 4.34 4.53

10 45.62 94.02 100.00 99.37 6.17 4.75 4.34 4.57

Table 1 Odds and expected time (in case of success). Parameters as in Figure 4. Extended

results are reported in the electronic supplementary material.

seems scantly sensitive to β, while as the race proceeds it is higher for lower

values of β, conversely for the rate. Notice that both sensitivities of the expen-

diture, the positive one with respect to the discount rate and the negative one

with respect to uncertainty, are in line with the real options prediction, but

our stylized framework enables us to add more information to those results,

as we can trace the optimal investment over time, rather than considering it

as a lump sum cost. We will discuss this point in greater detail in Section 5.

In Table 1 we also report the odds, i.e. the chance that the firm takes out the

patent before σ, and the expected time of success -when success occurs, namely

when the firm takes out the patent- for different values of σ. The odds increase

as δ increases, because the latter brings about an increase in the total optimal

expenditure, whereas they decrease as β increases only for σ ≥ 5. Notice also

that, for a combination of low uncertainty and high discount rate (β = 0.05,

δ = 0.1) all the simulations obtain a success, i.e. Xt = K, within 6 years. We

will devote more attention also to this point in Section 5. Considering only the
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simulation for which the firm takes out the patent, it is worth noting that the

expected time of success is generally decreasing in δ. Whereas, the behavior of

the expected time of success with respect to β is rather mixed. In particular,

it increases with β when σ is large (σ ≥ 9), decreases when σ is small (σ ≤ 6)

and has an inverted U-shape for intermediate values of σ (7 ≤ σ ≤ 8).

5 Perspectives and Conclusions

Gathering the evidence and the regularities arising from the simulation we

can now characterize qualitatively the firm’s behavior in the race from two

points of view, namely the expenditure rate dynamics and the odds. These

key aspects are analyzed in terms of sensitivities to the model parameters

with particular emphasis on the effects of competition. As far as the expendi-

ture rate is concerned its characterizing features can be summarized as follows:

i) for given x, it is an increasing function of the discount rate (Figure 1); ii) it

is a decreasing function of the initial values of the knowledge, x (Figures 1-2).

This result is at odds with [33,37], in which the authors find an increasing

function of the knowledge accumulated both in a non competitive and in a

competitive environment, respectively. This sharp contrast is due to the fact

that the articles just cited consider {X(t)}t≥0 as a one-sided non-decreasing

jump process. Differently, in our context, being {X(t)}t≥0 supposed to evolve

as a diffusion process and, furthermore, being a relative measure of knowl-

edge accumulated, the path of {X(t)}t≥0 over time is not restricted to be

increasing. In addition, the result is consistent with [11], but it is important
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to stress that [11] claims that the result can be obtained by abandoning the

assumption of memoryless process for knowledge accumulation in favor of a

long-memory process. Here, we prove that the same result can be achieved by

still adopting a memoryless process, such as in (1), coupled with decreasing

returns to scale in R&D. Moreover, iii) the sensitivity of C̄(t) with respect

to uncertainty in knowledge accumulation, which is formalized through the

parameter β, changes over time, depending on the stage of the race. That is,

if an increase in uncertainty occurs, then the optimal expenditure rate will

scantly (remarkably) increase in an early (late) stage of the process (Figure

4). Finally, iv) the optimal expenditure rate is decreasing over time, steeper

in the initial part of the race and tends to flatten out subsequently (Figure

4). Again, this result is at odds with that in [33,37] in which the authors find

that the expenditure rate increases monotonically over time, and is consistent

with [11] and [19], in which the authors claim that the equilibria investment

rates should decrease in time.

From an economic standpoint, it is realistic to think of R&D as requiring a

remarkable effort in terms of resources invested; however, after a certain period

of time, the resources will reach a critical bulk, such that investment proceeds,

but at a declining or constant rate. This phenomenon is referred to as the pure

knowledge effect and is due to the fact that a firm’s past R&D efforts con-

tribute to increase the odds. This effect has important implications in terms of

strategic interactions. In particular, a firm that is behind in the race has the

possibility to catch-up. This pattern of strategic interactions is more consistent
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with action-reaction, rather than with increasing dominance, the latter being

characterized by increasing investments as resources are accumulated. Indeed,

empirical research [14,20,23,36] lend more support to action-reaction than in-

creasing dominance. In [22] the authors find a negative relationship between

R&D intensity and firm’s explorative activities, the latter being considered

as a proxy of knowledge accumulation. Moreover, the presence of the term

β in the process {X(t)}t≥0 captures a non negligible aspects of uncertainty

surrounding R&D investment decisions, as firms must consider rivalry dy-

namically, i.e. at any time t, not only in terms of the termination of the race

σ. Indeed, β plays this role, capturing the level of the dynamic competition

and contributes to reveal the decreasing path of the expenditure rate over

time. For this reason our results seem to be more realistic than those achieved

in [33,37], and this is due to the less restrictive assumptions put forth in the

present model.

As regard to the simulated odds, their behaviour is consistent with the op-

timal total expenditure path. For instance, an increase in the discount rate

brings about the expenditure rate to increase, in turn, making the odds in-

crease. A very interesting fact concerning the firm’s behavior in a competitive

environment arises from the role played by the uncertainty parameter β in the

knowledge accumulation dynamics. In particular, we have noticed that as β

increases the odds increase only when competition is more severe, i.e. small

sigma, σ < 5 in the simulation. This behavior can be explained in the light

of the fact that when competition is severe the chance for the firm to pre-
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empt the rivals are due mainly to the volatility of knowledge accumulation,

i.e. in presence of high riskiness as well as great opportunities. Put another

way, the deterministic component of the knowledge evolution, α(C(t))dt, does

not suffice to reach the level of knowledge enabling the firm to patent, but

it is needed a favorable random event, βdW (t), with β sufficiently large and

positive. Hence, in this situation the smaller β, the less likely the event to

occur. When competition is less severe, i.e. for larger values of σ, the effect of

the deterministic component becomes more relevant, increasing the chances to

take out a patent; hence, uncertainty is regarded as hindering this occurrence,

and higher β decreases the odds.

At this point it is straightforward that the firm’s behavior is crucially affected

by uncertainty and that its response depends on different instances, such as

high/low competition, early/late stage of the race and their interactions. It

follows that the effects of an increase in uncertainty about the future returns

to R&D caused by authorities’ intervention, such as uncertain and unclear

taxation rules, are unpredictable both in terms of aggregate investment, de-

pending on which stage the different competing firms are, and in terms of

firms achievements, depending on the degree of competition in the market.

This finding is consistent with the evidence arising from the European Frame-

work Program (FP), which is a policy program aimed at overcoming a set of

failures hindering the innovation process. This program is composed of a large

number of instruments4 and each instrument is designed in order to address

4 For a detailed list of the instruments contained in FP5 and FP6 see [3, Table 1].
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a certain given type of failure. In [3], on the basis of an empirical study, the

authors show that firms do not perceive the differences due to this variety of

instruments. Thus, the final effect of the program is unpredictable because

firms, from the policy maker’s point of view, do not appropriately select the

instruments, and the authors even claim that developing too complex instru-

ments is counterproductive. Last, but not least, keeping instruments simple

and stable over time should also reduce the costs of public administration.

As far as the value function is concerned, its behavior with respect to the

change in the parameters of the model is not surprising, as it monotonically

increases as the discount rate and the uncertainty parameter decrease, or the

initial value and the final prize, MK , increases. Being our attention focused on

the behavior of the optimal expenditure rate the response of the value func-

tion to the possible perturbations can be viewed as a sort of validation of the

results obtained for the expenditure rate.

To conclude, we believe that, although the patent race is a very complex phe-

nomenon entangled with multiple sources of uncertainty, the model presented

can be considered as capturing a realistic situation and moves a little, but

significant step ahead in the comprehension of this aspect of the industrial

economic field.
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